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Abstract The human operator’s ability to perform their

tasks can fluctuate over time. Because the cognitive demands

of the task can also vary it is possible that the capabilities of

the operator are not sufficient to satisfy the job demands. This

can lead to serious errors when the operator is overwhelmed

by the task demands. Psychophysiological measures, such as

heart rate and brain activity, can be used to monitor operator

cognitive workload. In this paper, the most influential psy-

chophysiological measures are extracted to characterize

Operator Functional State (OFS) in automated tasks under a

complex form of human–automation interaction. The fuzzy

c-mean (FCM) algorithm is used and tested for its OFS

classification performance. The results obtained have shown

the feasibility and effectiveness of the FCM algorithm as well

as the utility of the selected input features for OFS classifi-

cation. Besides being able to cope with nonlinearity and fuzzy

uncertainty in the psychophysiological data it can provide

information about the relative importance of the input features

as well as the confidence estimate of the classification results.

The OFS pattern classification method developed can be

incorporated into an adaptive aiding system in order to

enhance the overall performance of a large class of safety–

critical human–machine cooperative systems.

Keywords Operator functional state � Fuzzy c-means

algorithm � Psychophysiological measures �
Feature extraction � Pattern classification

Introduction

Research background

In many real-world complex human–machine cooperative

or synergistic systems, the performance of the automated

components has already been satisfactory and thus the

overall performance as well as the task-execution effec-

tiveness of the whole systems would be largely determined

by the effectiveness of the cooperation between human

operator and the automated systems, in which the operator

always plays a crucial role for system performance. With

increasing development and maturity of automation tech-

nologies, a variety of automatic control systems has

become increasingly sophisticated and advanced and found

many applications in virtually all areas. Unfortunately,

most automated systems at the current technological level

have not been equipped with the judgment and reasoning

capacities, knowledge and experience of humans, which

would often result in less desirable control performance

and even the so-called operator effectiveness issue (Wilson

and Fisher 1991). The decrement or impairment in Oper-

ator Functional State (OFS) would be prone or susceptible
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to operational errors, risks or accidents, whose conse-

quences may be extremely severe or catastrophic particu-

larly in the safety–critical systems. The human operators

unavoidably exhibit fatigue and mental or psychological

overload. If we could not make accurate prediction on

those operator states, undesirable or unwanted effects

would be brought on the safety and performance of those

systems involving complex forms of human–machine

cooperation or synergy. For instance, in the sector of

nuclear power plants the operator errors have accounted for

50–70 % of all accidents, while the pilot misjudgment

caused nearly 80 % of all flight accidents or crashes.

In the safety–critical human–machine cooperative sys-

tems in such fields as nuclear power plants, aviation and

aerospace industry, the impact of the possible decrement in

operator work performance on the reliability and safety of

complex human–machine systems has drawn world-wide

attention, which necessitated such scientific disciplines as

human factors engineering. To cope with this problem, a

viable solution is to dynamically adjust (or control) the task

(or function) allocation between human and machine

agents based on the estimated OFS. For example, with the

OFS pattern recognition methods we can design an adap-

tive aiding system either to remind the operator or to

reduce the task load during the period of excessive mental

workload, with an aim to enhance the overall system per-

formance (Hockey 2003). The OFS refers to the task-

completion performance of the operator under the current

task environment and is basically an estimation of the

operator’s work performance, which is related not only to

the external environment and task difficulty but to the

psychophysiological state of the operator himself. A key

problem involved is how to accurately recognize (or

identify) the OFS based on measured data. In practical

applications, the computational efficiency of the OFS pat-

tern recognition also needs to be considered.

A literature review on OFS recognition and estimation

In such domains as accident analysis and system safety

assessment, some qualitative studies on the OFS analysis

have appeared, in which the subjective ratings of the

operator are widely utilized. It has been shown that dif-

ferent physiological measures may reflect different aspects

(or dimensions) of the OFS (Gao et al. 2011; Werner 2012;

Zhang and Lee 2012). Due to their high bandwidth and fast

and reliable responses, the physiological measures of the

autonomic and central nervous systems are major OFS

features (Hockey et al. 1998).

As an example, heart rate (HR) was found to be closely

linked to the overall task engagement of the operator and the

blink rate implies the visual demand imposed on the oper-

ator (Wilson and Fisher 1991, 1995; Gevins et al. 1998;

Russell and Wilson 1998; Wilson and Eggemerier 1991). It

was found in Fahrenberg and Wientjes (2000) that cardio-

vascular indices (in particular HR and HRV) respond reli-

ably to the changes in workload and mental effort, especially

in the operational settings involving problem solving (Tat-

tersall and Hockey 1995). The current HRV analysis uses

the spectral analysis of the cardiac interval signals to sepa-

rate the effects mental or psychological effort on different

components, although the concomitant measurement of the

respiration is necessary to find the artifacts caused by the

respiration (Tattersall and Hockey 1995).

Analogous to the HRV, it is usually necessary to make

EEG spectral analysis in order to reveal the effects of mental

state (Chen et al. 2008; Pockett et al. 2007). The EEG spec-

trum is typically divided into 4 frequency bands: delta

(1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz) and beta

(13–30 Hz). The most sensitive index to the overall vigilance

(or alertness) is based on the ratio between the higher and

lower frequency power (Helton et al. 2010; Parasuraman et al.

2009; Lin et al. 2006, 2007, 2009). For example, the Langley

group in NASA proposed an engagement index (EI) [beta/

(alpha ? theta)] based on the relative predominance of the

higher frequency brain activity and they have successfully

used the change in EI to switch between manual and com-

puter-based aiding modes of laboratory tracking and vigilance

tasks (Pope et al. 1995; Scerbo et al. 2003). EI has potential

for use in adaptive automation (AA). However, it has several

limitations and may be of limited value for application to the

safety–critical systems, in which the relationship between

operator and tasks is more complicated and dynamical. First,

it is based on the principle of stabilizing the mental engage-

ment on a moderate level during the whole task experiment.

The logic of negative feedback in the simple task used is

strong such that the operator assumes control when disen-

gaged or abandon the control task when highly strained.

Nevertheless, this is not suitable for the real-world tasks. In

particular, this is of limited application value for the safety–

critical systems since in these systems the relationship

between operator and tasks is more complicated and often

vary dynamically. In these cases, AA should allow the

operator to have a period of rest from continuous executive

(working-memory-based) decision-making, but not interrupt

him unnecessarily (when he is engaged with the task, but does

not show any sign of deleterious effect of stress or strain).

Another possible limitation is that the EI index seems to be

the measure of generalized vigilance (Jung et al. 1997;

Kristjansson et al. 2009; Pattyn et al. 2008), instead of the

engagement in the sense of task engagement orientation

(Hockey et al. 2009). On the contrary, the EEG-based task

load index (TLI) was found to be very sensitive to the mental

stress of the operator (Nickel et al. 2005, 2006).

In some studies (e.g., Comstock and Arnegard 1992;

Pope et al. 1995; Freedman et al. 1999), the physiological-
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measures-based adaptive aiding systems were developed in

laboratory settings and the results showed that the system

can adjust task allocation to improve the level of operator’s

task engagement and thus to enhance the system perfor-

mance. Apart from the electrophysiological measures, the

operator’s task performance, which can be derived based on

how effectively the operator has accomplished the tasks, can

also be used to evaluate the OFS. For instance, the criteria of

performance data can be the percentage of duration when

the manually controlled system variables are within the

target ranges in process control operations, or degrees of

deviation from sliding slope during landing phase of an

aircraft. In order to assess the OFS accurately enough, the

electrophysiological and performance data can also be

combined. Wilson (1999) used artificial neural network

(ANN) technique to classify the OFS with 3 levels of task

difficulty (i.e., low, middle, and high) and achieved a

correct classification rate of 86.8 % on the test data. This

work has shown the efficacy of hybrid physiological and

performance measures for the OFS classification problem.

However, the disadvantages of the work mainly include:

(1) the real-time performance of the OFS assessment

algorithm was not considered; (2) the classification method

developed is fully deterministic; and (3) No physiological

interpretations of the classification results are possible (i.e.,

the ANN method is a kind of opaque black-box for the

users).

From the above short literature survey, it can be observed

that most work in relation to observed OFS data were focused

on single type of physiological data, such as electroenceph-

alographic (EEG), electrocardiographic (ECG), electroocu-

largraphic (EOG), and electromusculargraphic (EMG). The

existing OFS work has such common deficiencies as either

too simple task used or too few physiological variables

recorded (Wilson and Fisher 1995; Gevins et al. 1998; Russell

and Wilson 1998; Gevins and Smith 1999; Nikolaev et al.

1998). While most previous work relied on either perfor-

mance or psychophysiological measures, a hybrid data

approach is seen as most appropriate and promising for

executive control processes underlying the regulation of

human performance in complex dynamical task environ-

ments. As the executive control processes [i.e., the cognitive

processes such as flexible use of attentional and planning

strategies, problem-solving, reasoning and decision making

(Royall et al. 2002)] are mediated by the prefrontal cortex,

measures of central nervous system, such as frontal midline

theta activity and TLI (Gevins and Smith 2003; Gevins et al.

1997), have been found to better reflect load manipulations in

complex task environments (Smith et al. 2001; Lorenz and

Parasuraman 2003). The existing OFS assessment techniques

are also not sufficiently accurate due to a lack of the data-

based OFS temporal analysis and hence have met difficulties

for real-world applications under operational settings.

Objectives and overview of the present work

The primary goal of the present study is to establish the

proper experimental task parameters and to develop the OFS

data analysis, feature extraction and pattern classification

methods. We used the automation-enhanced cabin air

management system (AUTO-CAMS) developed originally

by Hockey et al. (1998) and later modified in Lorenz (2002)

to simultaneously record multiple types of psychophysio-

logical data (including EEG and ECG) as well as the

operator performance data under operational risks and cog-

nitive stress which were induced by stepwise increment of

task load imposed on the operator. A total of 22 experi-

mental sessions on 11 healthy male subjects (each partici-

pated in 2 sessions with exactly the same experimental

procedures) was performed in laboratory settings in order to

obtain the data-based evidence of detecting the vulnerable

operator state. Differing from the tracking and vigilance task

used by NASA/Langley group, AUTO-CAMS makes more

executive demands on operator’s mental or psychological

resources. In order to induce high-risk operator state, we

adopt a novel cyclical loading method, similar to the strain

testing method used in the field of mechanical engineering.

The workload is heightened in a stepwise fashion until the

compensatory limit is reached and the primary performance

starts to break down, then the workload is gradually reduced

until the performance is recovered to the normal range. This

experimental design enables use to detect the effect of

workload increment (loading) as well as the hysteresis effect

of unloading phase (caused by accumulative fatigue).

The most important OFS features were selected. In this

regard, we adopted the EEG-based task load index (TLI)

proposed by Gevins and his group (Gevins and Smith 1999,

2003; Smith et al. 2001). TLI defined as the ratio of theta

activity at the frontal midline region to alpha at parietal sites

[theta/alpha]. Whereas theta (5–8 Hz) at central or parietal

sites is typically a marker of drowsiness, its occurrence in

frontal midline sites is not known to be correlated with the

executive control activity and effective use of working

memory (Gevins and Smith 2003; Scerbo et al. 2003; Sch-

acter 1977). The reduction of the theta power at the frontal

midline region may reflect the strategic disengagement from

the usual executive demand of task management (i.e., AUTO-

CAMS) (Lorenz 2002; Lorenz and Parasuraman 2003). Since

frontal theta activity is generated by brain regions that are

strongly implicated in executive control (Miller and Cohen

2001; Onton et al. 2005), TLI is a saliently useful candidate

marker for mental strain. Therefore, it would be expected that

the theta activity (and TLI) somehow increases with load.

While performance may be well protected under such con-

ditions, psychophysiological features are expected to reflect

the costs of sustained mental effort. Given the basis of

executive activity in frontal brain areas, this expectation
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should be strongly supported by the variations in TLI, where

reduced use of executive control under fatigued state may

generate lower level of theta activity.

As the OFS pattern classification problem is fuzzy in

nature (i.e., the practical OFS at certain time instant may

fall within a few different classes or categories), a proper

tool to deal with this possibility is fuzzy logic (FL) theory

(Zadeh 1973). In the past decades the FL-based methods

have been successfully applied to a multitude of engi-

neering and biomedical fields. Nevertheless its application

in quantitative OFS recognition and prediction has been

still rare except for a few work, such as Parsuraman et al.

(2000), Zhang et al. (2007), (2008a), and Qin and Zhang

(2012). Considering the inherent fuzziness and uncertainty

of OFS assessment (either modeling or classification),

naturally an effective tool for addressing the problem is

fuzzy systems theory. In this work the fuzzy c-means

(FCM) algorithm was employed to classify the OFS time-

series data and both the instantaneous OFS class label and

maximum degree of membership of that class were given.

In comparison with the ANN method, the advantages of the

fuzzy OFS recognition method proposed in this work are as

follows: (1) the fuzzy methodology allows for the over-

lapped classes to which certain momentary OFS belongs,

which naturally accommodates the fuzziness and uncer-

tainty characteristics of the OFS pattern classification

problem under our study. (2) In addition to the specific

OFS class labels, the fuzzy method also produces the

membership grades (in the interval [0, 1]) which can be

considered as a confidence measure or estimate of the OFS

category decision results.

Experimental data acquisition and analysis

The process control experiments were performed to make

OFS pattern recognition based on the measured heteroge-

neous (or hybrid) data from multiple sources. The AUTO-

CAMS software was utilized to simulate a highly complex

safety–critical process control task environment. Under

different task-load conditions, the operator was required to

manually control different number of system variables,

which overcome the disadvantage of too simple tasks usu-

ally adopted in previous OFS experimental studies. Each

experimental session consists of 9 task-load conditions, each

requiring different number of control subsystems to be

manually controlled. The recorded data include EEG, ECG,

performance and subjective data. Then several effective

OFS-related EEG and ECG temporal features are extracted.

All features are normalized to the interval [0, 1] before

classification. In the following the experimental task envi-

ronment and design, data acquisition and preprocessing, and

feature extraction methods will be introduced in detail.

Subjects

11 healthy male graduate students (A, B, C, D, E, F, G, H,

J, K, L respectively), aged between 23 and 29 years old,

voluntarily participated in our experiments. All subjects

have normal visual acuity or normal one after correction,

have no diseases, and did not take any medications which

may influence their task performance. The subject was

informed that the experiment is concerned with the OFS

test during simulated process control. Prior to the experi-

ment, each subject had took part in a long-term ([10 h)

training and testing program, consisting of at least 3 ses-

sions, to ensure his familiarity with the experimental

environment and the manual control tasks. The training

sessions were evaluated based on the level (performance)

of training on AUTO-CAMS and relevant process control

expertise. After those, each subject underwent 2 experi-

mental sessions, each arranged at the same time period of

two different days in order to avoid the effects of circadian

rhythms.

Task environment and measurement equipments

The process control software AUTO-CAMS was run on a

PC and the subject was asked to monitor (or supervise) in

real time the system operation on a 19 inch monitor (with a

distance of about 50 cm) and to manually control the

system by using keyboard or mouse. The subjective ratings

and performance parameters were recorded on the process

control PC, while the psychophysiological data recorded

by another experimenter PC. The Activ Two System

(BioSemi, The Netherlands) was used to continuously

record 45-channel psychophysiological data, including

ECG (Nehb’s triangle), respiration (nosal/mouth thermistor

for 3 point measurement), EMG (muscle activity from the

dominant forearms), EOG (vertical and horizontal electri-

cal ocular activity), and EEG (electrode cap, 32 sites in

modified 10–20 system with FC5, T7, T8 and FC6 replaced

by FPz, AFz, CPz, and POz respectively) with the refer-

ence electrodes placed at the left and right mastoids. All

psychophysiological signals were sampled at a rate of

2,048 Hz. The ActiView interface (BioSemi, The Nether-

lands) was used to monitor signal preprocessing, mark

specific events (disturbances or artefacts), and to store the

psychophysiological data in the BDF format of BioSemi-

Data-Files on the experimenter PC.

Experimental tasks

Our experiments used AUTO-CAMS, shown in Fig. 1, to

simulate with high fidelity a highly complex and safety–

critical process control environment, which overcomes a

major weakness of most previous studies, namely too
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simple task used. The AUTO-CAMS was initially designed

for the European Space Agency (ESA) to investigate the

stressors of the space crewmembers under highly isolated

and confined environment (Hockey et al. 1998). The pri-

mary task of the operator was to manage a semi-automatic

system in order to control the atmospheric environment

(such as air quality, temperature and air pressure, etc.) of a

closed system, such as a space capsule or submersible. The

manual control task is to regulate the five key variables

(i.e., temperature, humidity, pressure, oxygen concentra-

tion and CO2 concentration) within normal ranges. Once

some automatic controller malfunctions, the operator will

have to assume manual control to maintain the normal

operation of the system.

In addition to the primary task, other two secondary

tasks, namely tank level recording (TLR) and alarm

acknowledgement response, were also designed. The TLR

is basically a prospective memory task (i.e., remembering

to perform an action at a given time), which requires the

operator to make precise electronic recording of the current

level of the oxygen tank every minute. During the exper-

imental session, the system would issue an alarm signal

irregularly to the operator. After receiving the alarm, the

operator was required to give a reaction (i.e., by clicking

the mouse) as quickly as possible. Thus this secondary task

provides a measure of the alarm reaction time (ART). The

reaction time is defined as the duration from the presen-

tation of alarm signal to the completion of reaction. The

shorter the reaction time, the better the operator state; and

vice versa. Furthermore, right before the onset of each load

condition, the operator was asked to subjectively report

several subjective measures (such as fatigue, mental effort,

and anxiety) on a set of 1-D rating scales in 20 s.

Experimental procedure

Each subject participated in 2 experimental sessions which

were arranged during the same period of time to avoid the

unwanted effect of circadian rhythms on two different days.

Each session was divided into two phases: loading phase

with stepwise (graded) increment of task-load followed by

an unloading phase with gradual reduction in task-load, and

consisted of 9 task-load conditions (each lasting for 15 min

and hence each session lasts for 9 9 15 = 135 min). The

number of variables to be manually controlled was varied

across load conditions (level 1, 2, 3, 4, 5, 4, 3, 2, and 1) to

simulate different levels of task load (or difficulty). For

example, the workload during the loading phase (C1–C5)

was stepwise (monotonically) increased according to chan-

ges in manual control load (i.e., 1, 2, 3, 4, 5), while the

workload during the unloading phase (C6–C9) was stepwise

(monotonically) reduced according to changes in manual

control load (i.e., 4, 3, 2, 1). The variations in the level of

manual control load are likely due to the practical occur-

rence of fault, failure or malfunction in some of the five

automatic key parameters (O2 flow, nitrogen flow, CO2,

humidity, and temperature) controller.

For each session, this ‘cyclical loading’ method,

inspired by the stress–strain testing method commonly used

in the field of mechanical engineering and successfully

applied to detect compensatory control strategies using

subjective and performance measures (Conway 2006;

Hockey 2005), would result in a loading phase (the first 5

task-load conditions, C1–C5) and an unloading phase (the

following 4 task-load conditions, C6–C9) as shown sche-

matically in Fig. 2. The purpose of the cyclical changes in

manual control load is to induce the operator’s perfor-

mance breakdown with an aim to detect when it occurs.

The use of the cyclical loading procedure also allows us to

investigate how the psychophysiological features respond

to the accumulation of fatigued state. It is assumed that the

psychophysiological responses under mental effort and

stress during unloading phase will be affected by fatigue

accumulated during the loading phase (Conway 2005;

Hockey 2005).

When each session of psychophysiological data acqui-

sition experiment started, the subject was asked to move

eyeball first and then close his eyes while calmly sitting on

the chair for about 5 min to acquire the range of the indi-

vidual EOG activity. The process control operation would

start right after the operator completed the health ques-

tionnaire and subjective ratings. After the EOG baseline

was established, the sequence of cyclical loading was

presented to the operator. Each task-load condition lasted

for 15 min and was interrupted by completing subjective

ratings for about 20 s. The performance data was simul-

taneously recorded during the process control operations.
Fig. 1 The schematic functional configuration of the Auto-CAMS

system
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Data acquisition and preprocessing

In each experimental session (lasting 135 min), the recor-

ded data include the EEG, ECG and the operator perfor-

mance data. OFS classification was based on data segments

of 9 9 14 min, among which the first 5 manual control

load conditions had incremental levels (level 1, 2, 3, 4, and

5) followed by 4 load conditions with decremental levels

(level 4, 3, 2, and 1). The number associated to the taskload

level denotes the number of variables to be manually

controlled by the operator in a certain taskload condition.

AUTO-CAMS data acquisition

The levels of key performance parameters were sampled at

1 Hz by AUTO-CAMS, logged into a data file and clas-

sified as system parameters either within or out of normal

range [TIR] according to the AUTO-CAMS simulation

software and the requirements of cabin air quality. During

the experiment, we also recorded in real time the values of

the five controlled variables (i.e., temperature, humidity,

pressure, oxygen concentration and CO2 concentration)

which will be used to calculate the performance measure

TIR, the percentage of time when any of the five key

controlled parameters was in normal range. Primary task

performance parameters were extracted from the log files

and analyzed offline using special-purpose softwares to

compute the corresponding scores of the TIR index.

Psychophysiological data acquisition

The Active Two System (BioSemi, The Netherlands) was

used to continuously record psychophysiological (EEG,

ECG and EOG) signals. The EEG electrodes were placed

according to the international standard 10–20 system

(Jasper 1958) including 32 scalp sites shown in Fig. 3.

Four electrodes in the original 10–20 system, namely

FC5, T7, T8, and FC6, were replaced by FPz, AFz, CPz,

and POz in our modified version. The EEG reference was

at the left and right mastoids. The multichannel electro-

physiological data (including EEG and ECG activities)

were sampled at a rate of 2,048 Hz and controlled via

ActiView 5.33 software (BioSemi, The Netherlands),

which enabled the experimenter to monitor signal acqui-

sition, to save psychophysiological and marker data in

Biosemi-data-files (*.BDF) and to allow for setting up data

transmission via TCP/IP.

Psychophysiological data were analyzed by using Brain

Vision Analyzer (Brain Products, Germany). We used the

LabVIEW (NI, USA) virtual instruments to automatically

compute the instantaneous heart rate (HR) and the 0.1 Hz

component of the heart rate variability (HRV) based on the

procedure given in Nickel and Nachreiner (2003). The

psychophysiological measures were further processed for

statistical analysis by using MS Excel program (Microsoft,

USA). The EEG spectral power in three EEG frequency

bands, namely theta (4–8 Hz), alpha (8–13 Hz), and beta

(13–22 Hz), were calculated at each selected spatial site on

the scalp of the subject. The ECG signals were recorded at

the Nehb’s triangle and segmented every 10 s. After

baseline correction, the R peaks in the ECG signal were

triggered by a level indicator (1 mV) and marked with the

time of their appearance. The artifact correction was also

performed by visually examining the detected R waves.

After down-sampling the original very large time-series

data, there is an EEG or HR data sample every minute as

Time (min) 

1356030 90 120 0

Loading 
Unloading 

C1 C2 C3 C4 C5 C6 C7 C8 C9 

1 

2 

3 

4 

5 

N
O

V

Fig. 2 The schematic of cyclical changes in manual control load

resulted from the cyclical loading scheme during a session of

simulated process control experiment of about 2 h, where the y axis

stands for NOV (number of manually controlled variables), an

indication of the discrete (graded) level of workload in each task-load

condition and there are 2 phases: loading (load conditions C1 ? C5)

and unloading (C5 ? C9) Fig. 3 International standard 10–20 EEG electrode placement system
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we want to recognize the operator state from moment to

moment (with 1 min level of temporal resolution). The

vertical and horizontal EOGs were used for removal of

ocular artifacts from the EEG recordings. For EEG and

electrooculographic (EOG) activities, the passing band of

the band-pass filter was preset between 1.6 and 55 Hz. Based

on the segmented data (one segment every 2 s), the EOG

correction, baseline correction and automatic artifact

detection were carried out sequentially. Then the FFT (with

10 % Hamming window) was performed on each EEG

segment to obtain its power spectrum with a spectral reso-

lution of 0.5 Hz. Therefore, based on a combination of

psychophysiological and performance features, we can make

more accurate OFS classification by making full use of the

physiological response and task performance data. Due to the

period of time (about 20 s) during which the operator was

asked to provide subjective ratings by filling in the corre-

sponding rating scales, the data for the first and last 30 s.

under each task-load condition of 15 min were removed to

constitute the data of 14 min for each condition. In this way,

each session finally contains 9 9 14 = 126 data points.

OFS feature extraction

The OFS analysis framework predicts that, in combination

with performance measures, TLI will provide the influen-

tial feature of mental effort/fatigue with increased work-

load. Along with measures of primary task performance, all

the following three candidate features of mental workload

are considered. More specifically, the EEG and HRV

indices, which characterize the generalized cortical acti-

vation (vigilance), whose most sensitive markers are based

on rations between the power in higher and lower EEG

frequency bands [for example, in Pope et al. (1995)], and

specific frontal executive control (mental effort) and the

cardiovascular activity, respectively, will be derived.

Based on the preprocessed ECG data, we can obtain the

R peak interval between successive heart beats, then HRV

data every second through linear regression technique.

Much information about the equilibrium of the nervous

system can be obtained by examining the HR data which

has found many applications in medicine and mental

workload assessment. In terms of autonomic markers of

effort, HRV has been found to respond reliably to changes

in workload and mental effort (Mulder et al. 2000), espe-

cially in operational settings where executive problem-

solving is involved (Tattersall and Hockey 1995; de Waard

1996; Izso and Lang 2000). As with EEG measures, current

HRV analysis often makes use of spectral analysis of the

cardiac interval signal to separate effects of mental effort

on different components, with HRV1 (the mid-frequency

(0.1 Hz) band) strongly linked with effort manipulations.

Despite its success in a range of studies, HRV may have

limited value of being used as an index of mental stress (or

strain) under our taskload environment with cyclical

loading procedure. In Nickel and Nachreiner (2003), the

authors found that HRV discriminated well between loaded

(task) and unloaded (corresponding to resting or back-

ground state of the operator) conditions, but not between

tasks with different levels of difficulty. If HRV1 is to be

effective as a marker of mental effort, stress or strain, it is

expected that it shows a progressive reduction with the

increment of workload. Here the HR is taken as the average

of heart rate every minute, while HRV2 is defined as the

ratio between the standard deviation and mean value of HR

data segment of 1 min (Wilson 1999; Zhang et al. 2008b):

HRV2 ¼
rHRV

lHRV

ð1Þ

where rHRV and HRV are the standard deviation and mean of

HR data, respectively.

Based on the spectral analysis method given in Zhang

et al. (2008a), the index LF/HF is defined and calculated as

the ratio between the lower (0.03–0.15 Hz) and higher

frequency (0.18–0.4 Hz) power.

The EEG-based TLI may be defined by using different

EEG sites and frequency bands (Gevins et al. 1997, 1998;

Smith et al. 2001; Gevins and Smith 2003). Here we cal-

culate the two indices, TLI1 and TLI2, as follows:

TLI1 ¼ Ph;Fz

Pa;Pz

TLI2 ¼ Ph;AFz

Pa;CPzþPa;POz

(
ð2Þ

where Ph and Pa represent the theta and alpha power,

respectively. The EEG frequency bands are defined as: h,

Fz: 6–7 Hz; a, Pz: 10–12 Hz; h, AFz: 5–7 Hz; a, CPz:

8–10.5 Hz; and a, POz: 10–13.5 Hz, where Fz (frontal), Pz

(parietal), AFz, CPz and POz are the five EEG sites in the

modified 10–20 system.

Another OFS assessment index is the operator perfor-

mance when he is carrying out the main tasks. The TIR

(Time-In-Range) index (variable), the percentage of the

controlled variables within the target range, is derived to

measure the momentary primary task performance (i.e.,

essentially an overall measure of the error rate of the

operator-machine system). In the experiment, it is required

that the five controlled system variables be maintained

within the normal (or target) range cooperatively by the

operator (in manual mode of operation) and the control

computer (in automatic mode of operation). TIR refers to

the percentage of the duration when the five controlled

variables fall within the target range within a given period

of time (i.e., 1 min). Moreover, another variable NOV

(Number Of Variables requiring manual control), which is

used to quantify the level of task difficulty and defined as
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the number of manually controlled system variables, is also

considered in the work.

All the above-mentioned candidate features are nor-

malized as follows:

z0 ¼ z�zmin

Lz

Lz ¼ zmax � zmin

�
ð3Þ

where z0 2 [0,1] stands for the normalized data, z the ori-

ginal data, and zmax and zmin the maximal and minimal

value of z respectively.

OFS pattern classification based on FCM algorithm

In this section, the FCM algorithm will be first reviewed

and then be applied to the problem of fuzzy OFS classi-

fication.

FCM algorithm

The FCM (Fuzzy C-Means) algorithm is a sort of fuzzy-

partition-based clustering method based fully on the interre-

lationship in the data set without requiring the information

about the target classes. The basic idea is to maximize the

similarity between the objects in a certain cluster while

minimizing the inter-cluster similarity. The FCM algorithm is

a modified version of the standard c-means algorithm. For the

latter, either ‘‘belonging to’’ or ‘‘not belonging to’’ is possible

for a certain data clustering outcome, while in addition to the

recognized clusters the degrees of membership (in the range

of [0, 1]) to which a data point partially belongs to the several

clusters are also produced by the former. The closer the

membership grade is to 1, the more significant the member-

ship to the given cluster. Note that the summation of the

grades of membership to all possible clusters is 1.

Crisp (hard) c-partition and fuzzy (soft) c-partition

Given a dataset X ¼ x1; x2; . . .; xnf g with xk 2 R
p; k ¼

1; 2; . . .; n and let P(X) to be the power set of X (i.e., the set

of all subsets of X), then the crisp c-partition of X is a

family of sets Ai 2 P Xð Þj1� i� cf g which satisfies

[c
i¼1Ai ¼ X and Ai \ Aj ¼ ; 1� i 6¼ j� cð Þ. Each Ai is a

cluster, thus it is said that X is partitioned into c clusters

A1; . . .;Acf g.
The crisp partition can be described by the characteristic

(or membership) function of the element xk in Ai as follows:

uik ¼
1; xk 2 Ai

0; xk 62 Ai

(
ð4Þ

where xk 2 X, Ai 2 P Xð Þ, i ¼ 1; 2; . . .; c, k ¼ 1; 2; . . .; n.

Evidently xk belongs to Ai if uik = 1. As a result, when uik

is given, a unique crisp c-partition of X can be determined,

and vice versa. The uik must satisfy the following three

conditions:

uik 2 0; 1f g; 1� i� c; 1� k� n ð5Þ
Xc

i¼1

uik ¼ 1; 8k 2 1; 2; . . .; nf g ð6Þ

0\
Xn

k¼1

uik\n; 8i 2 1; 2; . . .; cf g ð7Þ

.

The Eqs. (5) and (6) imply that any xk 2 X belongs to

one and only cluster, while Eq. (7) shows that any Ai

contains at least 1 and at most n - 1 data points. All the

elements uik 1� i� c; 1� k� nð Þ are used to constitute a

(c 9 n) matrix Uc9n. Thus the crisp c-partition can be

defined in matrix form as follows.

Definition 1 Let X ¼ x1; x2; . . .; xnf g to be any set and

Vcn be the set of all real-valued c 9 n matrix U = [uik]. If

c is an integer and 2 B c \ n, the crisp c-partition of

X results in the set:

Mc ¼ U 2 Vcnjeqn: (5)-(7) are validf g ð8Þ

Unfortunately, in many practical classification problems

the boundaries between the clusters are not well-defined.

Furthermore, the discrete (binary) characteristic function

uik makes it impossible to perform gradient-descent-based

optimization. Therefore, it is necessary to introduce the

fuzzy c-partition (Bezdek 1981) defined below.

Definition 2 Assume that X, Vcn and c are introduced in

Def. 1, then the fuzzy c-partition of X results in the set:

Mfc ¼ U 2 Vcnjuik 2 0; 1½ �; 1� i� c; 1� k� n; eqn:f
(6) is validg ð9Þ

where uik represents the degree of membership to the

cluster Ai.

Crisp c-means and fuzzy c-means algorithms

From the above section it is seen that the essence of the

c-means algorithm is to find an optimal partition of the dataset

from the set Mc (or Mfc). The most common method for

measuring the quality of partition is based on a predefined

objective function. The most widely-used objective function for

the FCM algorithm is defined as the sum of the squared errors:

Jw U;Vð Þ ¼
Xn

k¼1

Xc

i¼1

uik xk � vik k2 ð10Þ

where U ¼ uik½ � 2 Mc (or Mfc) and V ¼ v1; v2; . . .; vcð Þ
with vi being the center of the cluster Ai defined by:
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vi ¼
Pn

k¼1 uikxkPn
k¼1 uik

: ð11Þ

Obviously vi is the average of all data points (in the case

of crisp c-partition) or weighted average (in the case of

fuzzy c-partition). The task of the FCM algorithm is to find

U ¼ uik½ � 2 Mfc and V ¼ v1; v2; . . .; vcð Þ; vi 2 R
p such that

Jm U;Vð Þ ¼
Xn

k¼1

Xc

i¼1

uikð Þm xk � vik k2 ð12Þ

is minimized, where m 2 1;1ð Þ is a weighting exponent.

It can be shown that only when

uik ¼
1

Pc
j¼1

xk�vik k
xk�vjk k

� � 2
m�1

; 1� i� c; 1� k� n ð13Þ

and

vi ¼
Pn

k¼1 uikð ÞmxkPn
k¼1 uikð Þm

; 1� i� c ð14Þ

U ¼ uik½ � and V ¼ v1; v2; . . .; vcð Þ locally minimize the

objective function Jm U;Vð Þ.

FCM computational procedure

The flowchart of FCM algorithm is shown in Fig. 4, which

includes the computational steps:

Step 1 Given the data set X ¼ x1; x2. . .; xnf g; xk 2 R
p.

Preset the number of possible clusters c 2 2; 3; . . .; n� 1f g
and weighting exponent m 2 1;1ð Þ and initialize all the

elements of the membership degree matrix U
ð0Þ 2 Mfc

randomly, where Mfc is the fuzzy c-partitioned set of X.

Step 2 At the l-th iteration, compute the c-means cluster

center (vector) by:

v
lð Þ

i ¼
Pn

k¼1 u
lð Þ

ik

� �m

xkPn
k¼1 u

lð Þ
ik

� �m ; 1� i� c; l ¼ 0; 1 � � � ð15Þ

Step 3 Update U lð Þ ¼ u
lð Þ

ik

h i
to U lþ1ð Þ ¼ u

lþ1ð Þ
ik

h i
by:

u
lþ1ð Þ

ik ¼ 1

Pc
j¼1

xk�v
lð Þ

ik k
xk�v

lð Þ
jk k

� � 2
m�1

; 1� i� c; 1� k� n ð16Þ

Step 4 If U lþ1ð Þ � U lð Þ�� ��\e (e is a small positive

constant) or the iteration number l reaches its maximum

value, stop the algorithm and output the clustering

outcome; Otherwise, Let l = l ? 1, return to Step 2 to

continue the iterative procedure.

OFS feature selection

The FCM algorithm introduced above produces the center

vector of each possible cluster after the iterative procedure

stops. The difference (or dissimilarity) of these center

points in the feature space may reflect the relative sensi-

tivity of each feature vector to the variation in OFS.

Therefore, in order to reduce the computational complexity

of the OFS classification algorithm and in turn to meet the

future requirement of real-time OFS classification, we

eliminate the less sensitive features from the candidate

feature set based on the criterion of differences of cluster

centers. The benefit of this method is to reduce the com-

putational burden without discernible sacrifice of classifi-

cation accuracy. Specifically, we preset the threshold of the

inter-cluster distance to be 0.1, then those features resulted

in inter-cluster distance \0.1 would be considered as not

sensitive to the changes in OFS and thus eliminated from

the candidate feature set. In this way, the most influential

features of the OFS would be eventually selected.

OFS classification results

As introduced in the Introduction section, the OFS refers to

the current cognitive, psychological or mental state (status)

of the human operator, whose assessment is determined by

many different factors, including the current physiological

and psychological condition, current task demand, ambient

environment stressors, etc. Consequently, in practical

applications it is usually rather difficult to quantify the OFS

with crisp parameters. In this case, very accurate quanti-

tative estimation of the OFS is normally not required and it

can be thus characterized or delineated by the notion of

Step 1: Initialization (preset 
parameters, load dataset, etc.) 

Step 2: based on the current 
membership degree matrix, 

compute the c-means 
vector v according to eqn, (15).

Step 3: Update the membership degree 
matrixU according to eqn. (16) 

N

Y

Step 4: Check the 
termination condition?

STOP

Fig. 4 Flowchart of the FCM algorithm
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linguistic variable (with a limited discrete number of lin-

guistic values such as Good, Average, and Poor) in fuzzy

set theory. More importantly, it is crucial to recognize or

identify the redline beyond which the operator would be

unable to complete the current task demand so as to prevent

the operational incidents or accidents caused by the OFS

impairment or breakdown. It is obvious that the classifi-

cation of the OFS into a few discrete categories has become

a central problem. In this work we employ the FCM

algorithm to make OFS classification for the following

reasons: (1) The nature of the OFS pattern recognition

problem requires the use of fuzzy models. The use of the

concept of fuzzy membership degree allows for the pos-

sible overlapped OFS class (i.e., it is possible that the OFS

at a certain moment (time instant) may belong to several

different classes but with different degree of membership)

and more flexible classification; (2) The use of fuzzy

models makes the solution of the pattern recognition

problem faster as gradient-based optimization can be con-

ducted on the continuous variables in fuzzy models

whereas it normally demands brutal force search on the

whole state space if a non-fuzzy model is used. The OFS

classification via the FCM algorithm would result in the

information about the specific class labels, the cluster

centers, as well as the respective membership grades.

Finally we can simply select the class with maximal

membership as the defuzzified category of the OFS data at

a certain moment.

As mentioned before, from the measured physiological

data we derived five OFS features, namely HRV2, LF/HF,

TLI1, TLI2, and HR. For two sessions of dataset (denoted

by s1 and s2 respectively, each containing a temporal

sequence of 126 data points) of a particular subject, the

dynamic OFS is classified into three distinct state: Good

(with class label 1), Average (with class label 2), and Risky

(with class label 3) based on the features examined by

using the FCM algorithm. As a result, for the FCM algo-

rithm we preset c = 3 and m = 2. First we randomly ini-

tialize all entries in the membership degree matrix in the

range of [0, 1] with the constraint of the sum of the three

elements in each column equal to 1, then the iterative

procedure, given in subsect. 3.1.3, is carried out step by

step.

In the selected examples of the OFS classification results

for some subjects, all features are normalized to a dimen-

sionless quantity in the range of [0, 1]. The horizontal axis

of the OFS feature time-series (or time history) is time

index with a sampling interval of 1 min and thus the unit of

x-axis is min. The following figures illustrate the dynamic

discrete (three-level) change in the OFS over time (minute-

to-minute). In other words, based on the measured psy-

chophysiological and performance time-series data, the

momentary (or instantaneous) OFS (i.e., the operator state

at a certain moment is good, average or vulnerable?) can be

identified by using the method proposed in this paper.

Figure 5 shows the OFS classification result using the

2nd session of dataset from subject B (dataset B-s2 for

short. The same shorthand for designating a certain dataset

for a subject will be used in the following). Figure 4a)

shows the time history of the performance feature TIR,

from which it can be observed that the TIR under low

workload conditions (i.e., C1 and C9 with the lightest task-

difficulty 1) is close to 1 (exhibiting almost perfect control

task performance) and begins to show clear decrement

under higher workload conditions (e.g., C3 and C7 with

mild to highest task difficulty 3, 4, 5). The maximum

membership degrees are shown in Fig. 4c). For each data

point, the sum of its degrees of membership to three OFS

classes should be 1. It can also be seen from Fig. 4b) that

OFS remains satisfactory at most of experimental time

(cf. Fig. 4c), also with the highest membership degrees or

confidence belief). From Fig. 4c), it can be observed that

there are only 4 moments when the maximum degrees of

membership to the corresponding classes are \60 % and

that most maximal degrees of membership to class1

(‘‘Good’’ state) are closer to 100 % (which implies that the

OFS at those moments belongs to ‘‘Good’’ almost with full

certainty). After the iteration of the FCM algorithm stops,

we also obtain the three cluster centers: 0.9433, 0.5523,

and 0.0859, respectively.

For dataset B-s2, the five candidate features and the

corresponding OFS classification result are shown in

Fig. 6a, b, respectively. To evaluate the validness and

relative accuracy of the OFS classification results, the task-

difficulty variable NOV is also show in solid line. As

mentioned earlier, the NOV is used to quantify the varying

levels of task difficulty under different load conditions.

From Fig. 6b, it is seen that the OFS classification result

captures well the following characteristics of real OFS

variations by our experimental design: (1) During the

loading phase the OFS is gradually impaired with height-

ened task-load; (2) The OFS gradually recovers to normal

range with the reduction in task-load during the unloading

phase of our experiment. For dataset D-s2, K-s1, and L-s1,

the five candidate psychophysioloigcal features and the

corresponding OFS classification results are presented in

Figs. 8, 10, and 12, respectively. From these results, it is

found that the dynamic OFS classification results for sub-

ject D, K and L are also in good agreement with the real

change in the workload due to the cyclical loading method

used in our experiment. Therefore, the effectiveness of

using the five features and the FCM algorithm for OFS

classification is demonstrated by the obtained results on all

11 subjects. For dataset B-s2, D-s2, K-s1, and L-s1, the

distribution of the sample OFS data points in the reduced

feature space (or plane) is shown in Fig. 7a, 9a, 11a, 13a),
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respectively. The respective momentary OFS classification

results are shown in Figs. 7b, 9b, 11b, 13b. It is easy to

observe that the OFS classification results based on feature

selection are well consistent with the actual workload

variations across task-load conditions in the experiment.

Results analysis and discussion

In this subsection, we will make some comparative analysis

on the OFS classification results based on two different

datasets measured from each subject. The OFS feature

selection and classification results for all 11 subjects are

summarized in Table 1 with the last three columns repre-

senting the correlation between the classified OFS states

with variable NOV and the percentage of consistent OFS

classification before and after feature selection. In Table 1,

the symbols H stands for the selected features, s1 and s2

represent the 1st and 2nd experimental session, respec-

tively. From the last row of Table 1, the importance (or

sensitivity) ranking of all five candidate features in descent

order is TLI2 [ HR = HRV2 [ TLI1 [ LF/HF. The indi-

vidual difference across subjects clearly exists in terms of

their dominant OFS feature patterns. By analysis of the

(linear) correlation between the OFS class output (valued
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Fig. 5 Dataset B-s2: a The time series of the performance feature TIR; b The momentary OFS classification results; c The maximum OFS

category membership grades corresponding to (b)
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in the finite discrete set {1, 2, 3}) and the variable NOV

(valued in the finite discrete set {1, 2, 3, 4, 5}), significant

correlation between the OFS and the task difficulty can be

found. The OFS classification results from all 11 subjects

reflect the real task-load variations due to the cyclical

loading paradigm used in the experiment, especially for 6

particular subjects B, C, D, J, K and L. Furthermore, the

results of classification consistency rate before and after

feature selection also show little effect of the use of feature

selection procedure on the OFS classification accuracy.

The benefit brought by the feature selection is the reduction

of the computational overhead and accordingly the

enhancement of the real-time performance of the OFS

classification method.

In summary, based on the measured objective physio-

logical and performance data, this work investigated three-

state (corresponding to Good, Average and Risky operator

state) classification of the time-varying OFS. By selecting

the proper OFS feature vector tailored to individual sub-

jects, the momentary OFS classification is performed by
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Fig. 6 Dataset B-s2: a The time history of the five physiological features; b The instantaneous OFS classification result
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Fig. 7 Dataset B-s2 with feature selection: a The data distribution in the reduced 3D feature space; b The instantaneous OFS classification result
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using the FCM algorithm, which gives the maximal

degrees of membership (it can be considered as a measure

or estimate of the confidence on the classification result) to

the assigned classes in addition to the class labels. The

results have shown that the method proposed can lead to

satisfactory classification performance in terms of both

accuracy and computational efficiency if the proper indi-

vidual-specific OFS features are selected. Based on a

comparative analysis of the results across 11 subjects,

significant individual differences were also observed.

Conclusions and future work

In practical OFS assessment situations, the information

about which discrete category a momentary OFS belongs

to is usually desired. Based on a series of electrophysio-

logical data measured from 11 subjects in laboratory-based

human–machine cooperative process control experiments,

five candidate OFS features were derived first and then the

FCM algorithm was utilized to perform fuzzy classification

of the OFS at each moment (with a temporal resolution of
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Fig. 8 Dataset D-s2: a The time history of the five features; b The corresponding OFS classification result
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Fig. 9 Dataset D-s2 with feature selection: a 3-D feature space after eliminating 2 other features; b Data clustering result
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1 min). The selection of most important features (or called

data dimensionality reduction) is further conducted based

on the obtained cluster centers by the FCM algorithm. Due

to the fact that the target OFS class is often unknown, it is

hard to evaluate the classification accuracy (i.e., the correct

classification rate). The cyclical loading method used in

our experiments helps alleviate this difficulty. From the

correlation analysis between the OFS classification deci-

sion and the variable NOV, which is used to quantitatively

characterize the varying levels of task difficulty manipu-

lated by the cyclical loading experimental paradigm, the

physiological-data-based OFS classification results clearly

reflect the stepwise change in the OFS with the workload

and task-difficulty variations. The results have also con-

firmed that the selected salient OFS features differ from

subject to subject reflecting the expected individual dif-

ferences. It was also shown that the feature selection highly

improves the computational efficiency of the classification
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Fig. 10 Dataset K-s1: a Time history of the five features; b Instantaneous OFS classification result
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Fig. 11 Dataset K-s1 with feature selection: a Data distribution in the reduced 2D feature plane; b Instantaneous OFS classification result
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algorithm with no obvious cost of classification accuracy,

which makes the online real-time classification of massive

OFS data possible in the future. Based on accurate and

dynamic recognition of the OFS, adaptive task allocation

between human and machine (or computer) can be trig-

gered with an aim to enhance the overall performance of

human–machine cooperative systems. In this regard, our

simulation work on adaptive control of human–machine

cooperative systems has been reported recently [refer to

Yang and Zhang (2012)].

As the interactive mechanism between the OFS and

electrophysiological measures is generally very complex

and unknown, we can only examine it based solely on a

combination of the measured physiological and perfor-

mance data using hybrid data approach. Although the fuzzy

classification method yielded promising and encouraging

results, it is still necessary to make further investigation on

experimental studies as well as methodological algorithms.

For instance, the necessary further work along these two

lines of research may include: (1) OFS feature extraction:

we are considering to use Principal Component Analysis

(PCA) and other nonlinear analysis methods (Schiff 2011)

to better extract the individualized optimal OFS features;

(2) Development of novel EEG pattern recognition (PR)
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method: in future work we will compare the FCM algo-

rithm with other popular PR methods, such as recurrent

neural networks and support vector machine (Qin and

Zhang 2012), in terms of multiclass OFS classification

performance; (3) Fine-grained and real-time OFS analysis:

In the present work only three operator cognitive state is

differentiated, as a natural complement to the obtained

results finer-grained analysis (corresponding to finer grid in

OFS state-space) based on dynamical variations in work-

load during the online process control operations may be

also necessary, which necessitates the future development

of real-time and accurate OFS estimator for real-life

operational applications.
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