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Abstract MicroRNAs (miRNAs) are a class of small,

noncoding RNAs that play crucial roles in almost all cel-

lular processes. As key post-transcriptional regulators of

gene expression, miRNAs mainly induce mRNA degrada-

tion or translational repression. Recently computational

and experimental studies have identified an abundance of

motifs involving miRNAs and transcriptional factors (TFs).

Here, we study the functional characteristics of one such

motif, a two-node miRNA-mediated double negative

feedback loop (MDNFL) in which a TF suppresses an

miRNA and the TF itself is negatively regulated by the

miRNA. Several examples of this motif are described from

the literature. We propose a general computational model

for the MDNFL based on biochemical regulations and

explore its dynamics by using bifurcation analysis. Our

results show that the MDNFL can behave as a bistable

switch. This functional feature is in agreement with

experimental observations of the widespread appearance of

miRNAs in fate decisions such as differentiation during

development. Importantly, it is found that under the inter-

play of a TF and an miRNA, the MDNFL model can

behave as switches for wide ranges of parameters even

without cooperative binding of the TF. In addition, we also

investigate how extrinsic noise affects dynamic behavior of

the MDNFL. Interestingly, it is found that when the

MDNFL is in the bistable region, by choosing the appro-

priate extrinsic noise source, the MDNFL system can

switch from one steady state to the other and meanwhile

the production of either miRNA or protein is amplified

significantly. From an engineering perspective, this noise-

based switch and amplifier for gene expression is very easy

to control. It is hoped that the results presented here would

provide a new insight on how gene expression is regulated

by miRNAs and further guidance for experiments.

Keywords MicroRNAs � Post-transcriptional regulation �
MDNFL � Bistable switch � Extrinsic noise

Introduction

Living cells can continuously react to their environment

with specific biochemical responses. At the core of this

functionality are the interaction networks of biochemical

molecules, such as genes, proteins, metabolites, and small

molecules. Over the past decade, the structures of a great

deal of such networks, including protein–protein interac-

tion, metabolic, signaling, and transcription regulatory

networks, have been mapped out. For the transcriptional

regulation networks and protein–protein interaction net-

works of different organisms, large-scale statistical analy-

sis has uncovered that these networks are far from random

and contain significantly recurring nontrivial patterns of

interconnections termed network motifs, such as negative

autoregulation, feed-forward loops, and feedback loops

(Shen-Orr et al. 2002; Lee 2002; Wuchty et al. 2003). In

addition, several motifs of mixed interaction, including two

types of interactions: those between transcription factors

and their target genes and those between proteins, have

also recently been found in integrated cellular networks of

transcription regulation and protein–protein interactions

(Yeger-Lotem and Margalit 2003; Yeger-Lotem et al. 2004).

S. Cai (&)

Faculty of Science, Jiangsu University, Zhenjiang 212013, China

e-mail: caishuiming2008@126.com

S. Cai � P. Zhou � Z. Liu (&)

Institute of Systems Biology, Shanghai University,

Shanghai 200444, China

e-mail: zrongliu@126.com

123

Cogn Neurodyn (2013) 7:417–429

DOI 10.1007/s11571-012-9236-7



Understanding the functionality of these network motifs

can help elucidate the design principle and provide insight

into the behavior of regulatory networks. Previous work in

transcriptional regulatory networks of several species has

discovered that each motif has a specified structure and

capacity to perform specific information-processing func-

tions (Alon 2007).

Gene expression is under tight regulation at many levels

(Shimoni et al. 2007). In the past, it was widely recognized

that the regulation of gene expression is a task of regulatory

proteins in all organisms. Thus, most research focused

mainly on transcriptional and post-translational regulations.

However, recent studies have implicated that microRNAs

(miRNAs), a family of about 22-nucleotide small noncoding

RNAs that regulate stability or translation of mRNA tran-

scripts at the post-transcriptional level, may play crucial

roles in modulating almost all cellular processes ranging

from development and metabolism to apoptosis, signaling

pathways, and diseases such as cancer (Ambros 2004;

Bushati and Cohen 2007; Stefani and Slack 2008). As post-

transcriptional gene suppressors, miRNAs regulate gene

expression by base pairing to target mRNA molecules at

conserved sites in the 30 untranslated regions of the mRNAs,

ultimately leading to a reduction in the levels of protein

encoded by the target mRNAs (Filipowicz et al. 2008).

Extensive evidence suggests that this suppression can

occur by either translational repression or mRNA cleavage

(Filipowicz et al. 2008; Bartel 2004; Valencia-Sanchez

et al. 2006; Guo et al. 2010). In the former, miRNAs act as

catalytic factors, preventing the initiation of translation,

suppressing the production of proteins. In the latter, miR-

NAs act in a non-catalytic fashion, leading to the degrada-

tion of the target mRNA and the miRNA itself (Wang and

Raghavachari 2011). Through either mechanism, miRNAs

can keep gene products at extremely low copy numbers.

The regulatory roles of miRNAs have been a subject of

research for the last several years, both experimentally and

theoretically (Shimoni et al. 2007; Wang and Raghavachari

2011; Levine et al. 2007; Levine and Hwa 2008; Mehta

et al. 2008; Osella et al. 2011; Mitarai et al. 2009; Bum-

garner et al. 2009; Iliopoulos et al. 2009). Although some

of the miRNAs have been well studied, the mechanisms of

various functions and biological significance of miRNAs

are still not well understood (Bumgarner et al. 2009; Ilio-

poulos et al. 2009; Tsang et al. 2007; Shalgi et al. 2007; Re

et al. 2009; Martinez et al. 2008; Martinez and Walhout

2009; Yu et al. 2008; Inui et al. 2010; Ivey and Srivastava

2010; Johnston et al. 2005; Kim 2007; Fazi 2005; Juan et al.

2009; Bracken 2008; Li and Carthew 2005; Visvanathan

et al. 2007; Xu et al. 2009; Zhao et al. 2009; Pospisil 2011).

Recently several studies have shown that the transcrip-

tional regulation by transcription factors (TFs) and post-

transcriptional regulation by miRNAs are often highly

coordinated (Shimoni et al. 2007; Tsang et al. 2007; Shalgi

et al. 2007; Re et al. 2009; Martinez et al. 2008; Martinez

and Walhout 2009; Yu et al. 2008; Inui et al. 2010; Ivey and

Srivastava 2010). Of particular relevance is the accumulat-

ing evidence that the interplay of miRNAs and transcrip-

tional regulators such as activators and repressors regulates

key developmental events and cell fate decisions (Johnston

et al. 2005; Kim 2007; Fazi 2005; Juan et al. 2009; Bracken

2008; Li and Carthew 2005; Visvanathan et al. 2007; Xu

et al. 2009; Zhao et al. 2009; Pospisil 2011). These obser-

vations imply that the existence of considerable crosstalk

between the transcriptional and post-transcriptional layers.

Therefore, miRNA functions can be fully understood only by

addressing TF and miRNA regulatory interactions together

in ‘‘mixed’’ networks. Interestingly, recently computational

and experimental studies have identified several recurrent

network motifs contained in these mixed networks (Shimoni

et al. 2007; Tsang et al. 2007; Shalgi et al. 2007; Re et al.

2009; Martinez et al. 2008; Martinez and Walhout 2009; Yu

et al. 2008; Inui et al. 2010; Ivey and Srivastava 2010), such

as miRNA-mediated single-input modules in which an

miRNA regulates a group of target genes (Shimoni et al.

2007), and miRNA-mediated feedback and feed-forward

loops (Tsang et al. 2007; Shalgi et al. 2007; Re et al. 2009;

Martinez et al. 2008), as has been observed in transcriptional

regulation networks of bacteria and yeast (Shen-Orr et al.

2002; Lee 2002). The simplest motif is a two-node miRNA-

mediated double negative feedback loop (MDNFL) in which

a TF suppresses an miRNA and the TF itself is negatively

regulated by the miRNA.

In this paper, we focus on this particular network motif,

the MDNFL. The major motivation for this studying is that

this specific motif has been reported in several recent

experimental studies (Fazi 2005; Juan et al. 2009; Bracken

2008; Li and Carthew 2005; Visvanathan et al. 2007; Xu

et al. 2009; Zhao et al. 2009; Pospisil 2011). For example,

in human hematopoietic cells, NFI-A and miR-233 function

in a double negative feedback loop to control granulocytic

differentiation (Fazi 2005; Fig. 1a). In undifferentiated

cells, miR-233 level is low and NFI-A level is high; how-

ever, upon retinoic acid signaling, miR-233 level increases

due to the activation by the TF C/EBPa and NFI-A is then

repressed, facilitating the differentiation to the myeloid

lineage. This double negative feedback loop ensures

mutually exclusive expression of miR-233 and NFI-A,

thereby generating a bistable system, i.e., undifferentiated

versus differentiated hematopoietic cells (Fazi 2005).

Similarly, during skeletal muscle development, Ezh2 and

miR-214 form a double negative feedback loop to regulate

skeletal muscle cell differentiation (Juan et al. 2009;

Fig. 1b). In undifferentiated myoblasts, Ezh2 is highly

expressed and represses miR-214. Upon differentiation,

MyoD/myogenin expression is activated and promotes
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transcription of miR-214, which in turn negatively regulates

Ezh2 by inhibiting translation of its mRNA and thus reducing

Ezh2 expression, ensuring complete differentiation of skeletal

muscle cells (Juan et al. 2009). Moreover, in embryologic

development, a double negative feedback loop between

ZEB1-SIP1 and the miRNA-200 family controls epithelial-

mesenchymal transition (Bracken 2008; Fig. 1c). In epithelial

cells, a stable state is maintained by a high miR-200 level,

which inhibits ZEB1/SIP1 and hence increases the expression

of ZEB-repressed epithelial genes. The transition to a mes-

enchymal state can be induced by TGF-h, which increases the

ZEB1-SIP1 level. A high ZEB1-SIP1 level in turn instigates

and maintains a mesenchymal state through the repression of

miR-200 by ZEB1-SIP1 (Bracken 2008). Likewise, in Dro-

sophila eye development, the reciprocal repression between

miR-7 and Yan ensures their mutually exclusive expression

pattern: Yan is expressed in progenitor cells and miR-7 is

expressed in photoreceptor cells (Li and Carthew 2005;

Fig. 1d). The transition can be induced by the EGFR signal-

ing, which transiently triggers Yan degradation. A decrease in

Yan level relieves miR-7 from transcriptional repression,

subsequently leading to the depletion of Yan in photoreceptor

cells (Li and Carthew 2005). Moreover, during embryonic

central nervous system development, a double negative

feedback loop between the anti-neural REST/SCP1 and pro-

neural miR-124 pathways contributes to a rapid and efficient

transition of cellular phenotypes between neural progenitors

and post-mitotic neurons (Visvanathan et al. 2007; Fig. 1e).

In nonneuronal cells including neural progenitors, the REST/

SCP1 complex transcriptionally represses expression of miR-

124 and other neuronal genes. As the REST level decreases

during neurogenesis, miR-124 expression is derepressed, and

subsequently, miR-124 post-transcriptionally suppresses

multiple anti-neural factors including SCP1, resulting in fur-

ther inhibition of the anti-neural pathway by REST/SCP1.

This regulatory loop may represent key mechanisms to sense

the intricate balance between proneural and anti-neural cues

during development, to coordinate robust neuronal gene

expression, and to confer neuronal identity in a timely manner

(Visvanathan et al. 2007). In addition, upon initiation of

embryonic stem cell differentiation, reciprocal inhibition

of miR-145 and OCT4 contributes to irreversible silencing of

self-renewal and pluripotency programs (Xu et al. 2009;

Fig. 1f). Similar MDNFL motifs are also found in regulating

the balance between neural stem cell proliferation and dif-

ferentiation (Zhao et al. 2009; Fig. 1g), and PU.1-directed

macrophage differentiation (Pospisil 2011; Fig. 1h). These

experimental observations imply that this basic module may

function as a bistable switch to regulate cell fate decisions

such as differentiation during development. Actually, it has

been shown that double negative feedback loops can act as

bistable switches both experimentally and theoretically

(Gardner et al. 2000; Ferrell 2002; Ferrell and Xiong 2001;

Chatterjee et al. 2008). However, it is not clear whether the

MDNFL can behave as a bistable switch. It is also not known

the possible functions and biological significance of the

miRNA in the MDNFL.

To address these questions, we propose a general com-

putational model for the MDNFL based on biochemical

regulations and explore its dynamics by using bifurcation

analysis. Our results show that the MDNFL can indeed

behave as a bistable switch. This functional feature is in

agreement with experimental observations of the wide-

spread appearance of miRNAs in fate decisions during

development. Importantly, it is found that under the inter-

play of a TF and an miRNA, the MDNFL model can

behave as switches for wide ranges of parameters even

without cooperative binding of the TF. It thus provides a

novel mechanism to induce bistability through this com-

binatorial regulation even without cooperativity in the

regulation. In addition, we also investigate how extrinsic

noise affects dynamic behavior of the MDNFL. Interest-

ingly, it is found that when the MDNFL is in the bistable

region, the MDNFL system can switch from one steady

state to the other and meanwhile the production of either

miRNA or protein is amplified significantly by choosing

the appropriate extrinsic noise source. From an engineering

perspective, this noise-based switch and amplifier for gene

expression is very easy to control because carefully tuning

noise strength is not needed.

Fig. 1 Biological examples of the MDNFL motif. a MDNFL con-

trols granulocytic differentiation in human hematopoietic cells (Fazi

2005). b MDNFL regulates skeletal muscle cell differentiation during

skeletal muscle development (Juan et al. 2009). c MDNFL regulates

epithelial-mesenchymal transition during embryological development

(Bracken 2008). d MDNFL promotes photoreceptor differentiation in

the Drosophila eye (Li and Carthew 2005). e MDNFL contributes to a

rapid and efficient transition of cellular phenotypes between neural

progenitors and post-mitotic neurons during embryonic central

nervous system development (Visvanathan et al. 2007). f MDNFL

contributes to irreversible silencing of self-renewal and pluripotency

programs upon initiation of embryonic stem cell differentiation (Xu

et al. 2009). g MDNFL controls the balance between neural stem cell

proliferation and differentiation (Zhao et al. 2009). h MDNFL

regulates PU.1-directed macrophage differentiation (Pospisil 2011).

The solid and dotted lines denote transcriptional and post-transcrip-

tional regulations, respectively
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Deterministic model and bifurcation analysis

for the MDNFL

Deterministic model for the MDNFL

In this paper, we are mainly interested in analyzing the

dynamics of the MDNFL and see what can be achieved in

the simplest setting. Thus, different cellular compartments

and separate concentrations for the nucleus and cytoplasm

are not considered and biochemical regulations are mod-

eled by simple rate equations. The proposed MDNFL

model is depicted schematically in Fig. 2. It involves two

genes ga, gs, their corresponding transcripts, mRNA,

miRNA, and a protein A encoded by ga. The protein

A regulates transcription of gene gs and the miRNA base

pairs with the mRNA to forms the complex C.

Extensive evidences suggest that the mechanisms of

microRNA-mediated gene regulation can be translational

repression or destabilization of its target mRNAs (Valencia-

Sanchez et al. 2006), i.e., miRNAs can either decrease the

rate of translation or increase the degradation of its target

mRNAs. Here, we choose to model the effect of miRNA

regulation by taking the degradation rate of the target

mRNA as a function of miRNA concentration. However,

we note that the alternative choice of a translation rate of

the target mRNAs as a function of miRNA concentration

does not qualitatively alter the results below. The time

evolution of the concentrations of the species in the

MDNFL can be described by the following four deter-

ministic rate equations:

d½gs�
dt
¼ k�h½gs : A� � kh½gs�½A�; ð1Þ

d½Ms�
dt
¼ kf ½gs� þ kb½gs : A� � ds½Ms� � c½Ma�½Ms�; ð2Þ

d½Ma�
dt
¼ ka � dm½Ma� � c½Ma�½Ms�; ð3Þ

d½A�
dt
¼ kA½Ma� � dA½A� þ k�h½gs : A� � kh½gs�½A�: ð4Þ

In the above equations, [gs], [gs : A ], [Ms], [Ma], and

[A], respectively, denote the concentration of free gene

gs, gene gs with A bound to its promoter, miRNA, mRNA,

and protein A. As in Francois and Hakim (2005), here the

cellular volume is taken as volume unit and thus the

concentrations and the number of the species are

equivalent. It is assumed that there is only a single copy

of gene gs in the cell, i.e., [gs] ? [gs : A] = 1 mol.

Therefore, [gs] can also represent the probability that gene

gs is free without A bound to its promoter. Particularly, A

proteins bind to the promoter of gene gs at a rate kh and

when bound they dissociate at a rate k-h. The miRNA Ms

is transcribed at a rate kb when A binds to gene gs or at a

rate kf otherwise. Thus, kb [ kf corresponds to

transcriptional activation by protein A and kb \ kf to

transcriptional repression, which will be focused on in this

paper. Since regulation of gene ga is not considered, it is

simply assumed that mRNA Ma is produced at a given

basal rate ka. The mRNA Ma is translated into protein A at

a rate kA. ds, dm, and dA are the degradation rates for

Ms, Ma, and A, respectively. c is the base pairing rate of

the miRNA with the mRNA. Here we assume that the base

pairing is irreversible, consistent with the fact that the

complex formed by miRNA and mRNA is extremely

stable or rapidly degraded, and thus the complex needs not

to be treated as a dynamical variable. Throughout this

paper except if otherwise stated, we fix parameters as

follows: k�h ¼ 0:04 min�1; kh ¼ 0:001 mol�1min�1; ka ¼
4 molmin�1; kf ¼ 35 mol min�1; kb ¼ 2 mol min�1; kA ¼
1 min�1; ds ¼ 0:006 min�1; dm ¼ 0:04 min�1; dA ¼ 0:01

min�1; and c ¼ 0:02 mol�1min�1: In general, the range

of each parameter value above is rather wide and here it is

chosen to be typical in vivo value. It should be noted that

all the above parameters were either directly taken from

literature or estimated based upon analogous biological

systems (Shimoni et al. 2007; Levine et al. 2007; Levine

and Hwa 2008; Francois and Hakim 2005; Khanin and

Vinciotti 2008; Aguda et al. 2008).

Steady states, bistable switches, and one-way switches

To probe the dynamics of the MDNFL, we first investigate

how the steady-state value of [A] changes as a function of

the different parameters in Eqs.(1)–(4) by performing

bifurcation analysis. In the steady state, the rates of change

of
d½gs�

dt
; d½Ms�

dt
; d½Ma�

dt
; and

d½A�
dt

are zero. A system behaves as a

bistable switch if it has two stable equilibria in the

Fig. 2 The proposed model of the MDNFL motif. The Greek letters

denote different parameters of the model and their meanings are

explained in the text
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appropriate parameter regime. Figure 3a shows the bifurca-

tion diagram of system (1)–(4) as a function of the free gs

promoter transcription rate kf. The two saddle-node bifurca-

tion points SN1ðkf � 11:828 mol min�1Þ and SN2ðkf �
67:799 mol min�1Þ enclose a bistable region. For any kf within

this region, the system has two stable equilibria and one

unstable equilibrium, which are represented by solid and dash-

dotted lines, respectively. The two stable equilibria in the bi-

stable region correspond to low and high values of

[A], respectively. For convenience, we denote the low/high

protein concentration as the off/on state. It can be seen that a

region of bistability separates two regions of monostability,

bistability exhibits only for intermediate kf values. The two

stable state branches monotonically decrease with kf because

the miRNA concentration increases with kf and thus the

unpaired mRNA concentration decreases and further the

production of the protein is reduced. At a specific value of kf in

the bistable region, the choice between the stable equilibria is

history-dependent, i.e., the final state depends on initial

conditions (Ferrell 2002). If the value of kf is initially small,

the system ends up in the on state. As kf increases along the

upper stable branch, A remains to be in the on state until the

bifurcation point SN2 is reached. When kf is further increased,

the on state vanishes, and the system moves towards the lower

stable branch, corresponding to the off state. Then, if we

decrease kf, the system proceeds along the lower stable branch

until SN1 is reached and another transition occurs, which

brings the system back to the upper stable branch, an on state.

The system therefore exhibits some hysteresis. Hysteresis is a

property of bistable systems and of the potential importance in

biological switching. First, it reduces the probability that a

switch will repeatedly flip back and forth between two states

when the bifurcation parameter is hovering near its threshold

value, thereby providing an unambiguous threshold switching

mechanism and buffering against the noise (Ferrell and Xiong

2001). Second, it provides a potential mechanism for bio-

chemical memory (Zhang et al. 2007). During the maturation

of Xenopus oocyte, for example, the p42 MAPK/Cdc2 system

can keep a long-term memory of a transient differentiation

stimulus (Xiong and Ferrell 2003). There are now several

known systems in which bistability and hysteresis have been

observed experimentally (Gardner et al. 2000; Xiong and

Ferrell 2003; Acar et al. 2005; Ozbudak et al. 2004; Sha et al.

2003; Pomerening et al. 2003).

Biologically speaking, the above results indicate that

when the free transcription rate of the miRNA lies outside

the region enclosed by the two saddle-node bifurcation

points, a smaller/larger free transcription rate will lead to a

higher/lower protein concentration. When the free tran-

scription rate lies in the region, however, a smaller/larger

free transcription rate may lead to a lower/higher protein

concentration, depending on the initial conditions. As the

free transcription rate of the miRNA increases gradually

from a small value, the protein concentration will decrease

gradually but remain in high level until SN2 is reached,

where it switches to a low level. After that, the protein

concentration will stay in the low level unless the free

transcription rate is reduced and exceeds SN1: This is

consistent with the experimental observations that in

human hematopoietic cells, the increase of miR-233 level

due to the activation by the TF C/EBPa upon retinoic acid

signaling, similar to the increase of the free transcription

rate, can facilitate undifferentiated hematopoietic cells

where miR-233 level is low and NFI-A level is high dif-

ferentiate to the myeloid lineage (Fazi 2005; Fig. 2a), and

the experimental observations that during skeletal muscle

development, the increase of miR-214 level promoted by

MyoD/myogenin which is activated upon differentiation,

ensure undifferentiated myoblasts where Ezh2 is highly

expressed complete differentiation (Juan et al. 2009;

Fig. 2b). Similarly, as the free transcription rate decreases

gradually from a large value, the protein concentration will
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Fig. 3 Bifurcation diagrams of the MDNFL model. a The bifurcation
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increase gradually but stay at low level until SN1 is

reached, where it switches to a high level. After that, the

protein concentration will remain in the high level if the

free transcription rate is not increased.

The bifurcation diagram of system (1)–(4) with kb as a

control parameter is shown in Fig. 3b. It indicates that as kb

increases along the upper stable branch, A continues to be in

the on state until some critical value, SN2 � 2:635 mol min�1;

is exceeded, at which a discontinuous jump to the off state

occurs and the system become monostable. Then, if kb

decreases, A stays at the off state indefinitely, i.e., the transi-

tion is irreversible. Such kind of switches is termed irrevers-

ible or one-way switches (Tyson et al. 2003). The one-way

switch is an extreme manifestation of hysteresis, i.e., its lower

stable solution branches into the negative domain but is

actually eliminated due to a physically meaningful restriction.
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Fig. 4 Codimension two

bifurcation diagrams of the

MDNFL model. a kf and kb as

the bifurcation parameters. b kf

and ka as the bifurcation

parameters. c kf and kA as the

bifurcation parameters. d kf and

c as the bifurcation parameters.

e kf and ds as the bifurcation

parameters. f kf and dm as the

bifurcation parameters. g kf and

dA as the bifurcation parameters.

h kf and k-h as the bifurcation

parameters. The regions

enclosed by the solid lines are

bistable regions, outside of

which the model is monostable
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Based on such hysteresis and irreversibility, bistable switches

can make a reliable decision in many physiological processes,

as in the yeast galactose-utilization network (Acar et al. 2005;

Ramsey 2006), the MAPK/PKC signaling network (Bhalla

and Iyengar 2001; Bhalla et al. 2002), and the p42 MAPK

cascade in Xenopus oocytes (Ferrell and Machleder 1998).

The effect of parameter variations on the bistable

regime

In order to see whether the MDNFL model can behave as

switches for wide ranges of parameters, the codimension

two bifurcation diagram of system (1)–(4) is constructed

for all the important parameters to determine the range of

bistable regime. Figure 4a shows the bifurcation diagram

of system (1)–(4) with kf and kb as the bifurcation param-

eters. It can be seen that the region of bistability becomes

wider and the upper threshold of kf increases as kb

decreases due to the fact that a larger kf is needed to

compensate inefficiency of the miRNA level at a smaller kb

so as to produce bistability. Figure 4b illustrates the

bifurcation diagram of system (1)–(4) with kf and ka as the

bifurcation parameters. It is shown that with increasing

ka, the region of bistability becomes wider and the lower

and upper thresholds increase moderately because a larger

kf is required to compromise efficiency of the mRNA level

at a larger ka in order to induce bistability. For a fixed

kf, when we increase the basal transcription rate ka, the

system undergoes a transition from a monomodal off state

to a bistable region and then to a monomodal on state. This

is consistent with the experimental observations that

increasing the ZEB1-SIP1 level activated by TGF-h, sim-

ilar to increasing ka, can induce a transition from a epi-

thelial state maintained by a high miR-200 level and a low

ZEB1-SIP1 level to a mesenchymal state where the ZEB1-

SIP1 level is high and the miR-200 level is low (Inui et al.

2010; Bracken 2008; Fig. 2c). The bifurcation diagram of

system (1)–(4) with kf and kA as the bifurcation parameters

is shown in Fig. 4c. It can also be seen that with increasing

kA, bistable regime becomes wider and the lower and upper

thresholds increase moderately. In addition, decreasing the

production rate kA from a large value for a fixed kf will shift

the system from a monomodal on state, across a bistable

region, to a monomodal off state. Figure 4d shows the

bifurcation diagram of system (1)–(4) with kf and c as the

bifurcation parameters. It indicates that when there is no

the negative post-transcriptional regulation, i.e., at c = 0,

the system is monostable. However, moderately increasing
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Fig. 5 Results for external noise affecting kb with parameter values

kb ¼ 2:6 mol min�1; kf ¼ 35 mol min�1; and D = 0.75. a Bifurcation

diagram for the concentration of protein A as a function of kb. The

dotted vertical line is the parameter for which stochastic simulation

was carried out. b Bifurcation diagram for the concentration of

miRNA Ms as a function of kb. The steady state with a high Ms

concentration is plotted in the dashed line and corresponds to the right

Y axis. The other two states are in the solid line and dash-dotted line,

respectively, and corresponds to the left Y axis. c The time evolution

of the concentration of protein A. d The time evolution of the

concentration of miRNA Ms. Stable and unstable states are repre-

sented by solid (or dashed) and dash-dotted lines, respectively

Cogn Neurodyn (2013) 7:417–429 423

123



c from zero can shift the system into bistable regime.

Therefore, the negative regulation mediated by the miR-

NAs can induce bistability. In addition, the region of bi-

stability becomes wider with increasing c. A larger

miRNA-mRNA base pairing strength c drives the system to

the off sate and so enlarges the bistable parameter range.

Figure 4e shows the bifurcation diagram of system (1)–(4)

with kf and ds as the bifurcation parameters. With

increasing kf, bistability emerges, depending on the values

of ds. In addition, the bistable regime becomes narrow

while the lower and upper thresholds increase moderately

with increasing ds. For a fixed ds, when we increase kf, the

system undergoes a transition from a monomodal on state

to a bistable regime and then to a monomodal off state. The

bifurcation diagram of system (1)–(4) with kf and dm as the

bifurcation parameters is shown in Fig. 4f. Since decreas-

ing the degradation rate of the mRNA dm has similar effect

with increasing the basal transcription rate of the mRNA

ka, the region of bistability becomes wider and the upper

threshold of kf increases as dm decreases. While the value

of dm is fixed, increasing the value of kf from zero will shift

the system from a monomodal on state, across a bistable

region, to a monomodal off state. The bifurcation diagram

of system (1)–(4) with kf and dA as the bifurcation

parameters is shown in Fig. 4g. By increasing the degra-

dation rate of the protein dA from a small value, the tran-

sition begins with a monomodal on state to a a bistable

region then to a monomodal off state. This is consistent

with the experimental observations that the degradation of

protein Yan transiently triggered by the EGFR signalling,

similar to the increase of dA, can induce a transition from a

progenitor cell state where Yan is expressed to a photore-

ceptor cell sate where miR-7 is expressed (Li and Carthew

2005; Fig. 2d). The parameter k-h exhibits a similar

influence as the parameter dA. When we increase k-h, the

system undergoes a transition from a monomodal on state

to a a bistable region then to a monomodal off state, as seen

in Fig. 4h.

In summary, the above codimension two bifurcation

diagrams indicate that in the MDNFL model each parameter

can be varied individually for a wide range, while preserving

bistability. This means that the MDNFL model can behave as

switches for wide ranges of parameters. Moreover, it should

be pointed out that here we assume that the production of

miRNA, Ms, is regulated by protein A, through binding of a

single protein A to its promoter, gs, that is, without cooper-

ative binding of the TF to its promoter. In this case, the

system is always monostable if the miRNA-mediated regu-

lation does not exist (Ferrell and Xiong 2001; Lipshtat et al.

2006) [ also see Fig. 4d]. On the other hand, the miRNA-

mediated regulation, if works solely, also leads to mono-

stability (Levine et al. 2007). Interestingly, under the

interplay of the TF and miRNA, it is found that the MDNFL

model can behave as switches for wide ranges of parameters

even without cooperative binding of the TF. It thus provides

a novel mechanism to induce bistability through this com-

binatorial regulation even without cooperativity in the reg-

ulation, which is fundamentally distinct from the generation

of bistability by intrinsically nonlinear positive feedback

regulation, such as protein dimerization and cooperative

formation of heterodimers (Ferrell 2002; Ferrell and Xiong

2001; Zhdanov 2009; Liu et al. 2011). The evidence for use

of the MDNFL motif as switches has been reported recently,

especially on cell fate decisions (Fazi 2005; Juan et al. 2009;

Bracken 2008; Li and Carthew 2005; Visvanathan et al.

2007; Xu et al. 2009; Zhao et al. 2009; Pospisil 2011). It is

hoped this novel mechanism can be realized in artificial

genetic networks in the future.

Stochastic model and noise-induced dynamics

for the MDNFL

The deterministic analysis above successfully demonstrates

how the steady-state values of the MDNFL system shift as

parameter values change. However, cellular processes at the

molecular level are inherently stochastic (Balàsi et al. 2011).

Numerous studies have revealed the importance of stochastic

or probabilistic effects in biological systems where the

number of molecules is low enough for noise to be important,

and the deterministic chemical kinetic descriptions are lim-

ited (Lipshtat et al. 2006; Hasty et al. 2000; Vilar et al. 2002;

Rao et al. 2002; Wang et al. 2007; Li and Li 2008). In

addition, noise can also have significant effects on the sta-

bility and synchronization of genetic regulatory networks as

well as neuronal networks (Shi et al. 2008; Wang et al. 2009;

Guo 2011; Wu et al. 2012). There are two sources of noise

in biological systems: intrinsic noise and extrinsic noise.

Intrinsic noise originates from discrete nature of biochemical

events such as transcription, translation, multimerization,

and protein/mRNA decay processes (Raj and van Oudenaarden

2008). On the other hand, extrinsic noise results from pertur-

bations in the extrinsic environment or the random variations in

one or more of the externally set control parameters, such as the

rate constant of the transcription of a specific gene (Hasty et al.

2000). In addition, extrinsic and intrinsic noise often exist in

biological system simultaneously. In this section, we mainly

focus on how extrinsic noise affects the dynamic behavior of

the MDNFL. The effect of intrinsic noise on the dynamic

behavior of the MDNFL will be analyzed systematically

elsewhere.

Stochastic model for the MDNFL

As shown in Fig. 2, the two transcription rate of gene gs, kb

and kf, influence the dynamics of the MDNFL. Although
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the transcription is described as a single biochemical

reaction in our model, it actually consists of a complex

sequence of reactions (Hasty et al. 2000). It is natural to

assume that this part of the gene regulatory sequence is

likely to be affected by fluctuations of many internal or

external parameters, and it is interesting to study the effect

of such noise on the dynamics of the MDNFL. In order to

introduce such extrinsic noise into system (1)–(4), we adapt

an approach in the spirit of Ref. (Hasty et al. 2000). We

vary the transcription rates by allowing the parameters kb

and kf in system (1)–(4) to vary stochastically, that is, kb !
kb þ n1ðtÞ and kf ! kf þ n2ðtÞ: In such a manner, we

obtain the following stochastic model:

d½gs�
dt
¼ k�h½gs : A� � kh½gs�½A�; ð5Þ

d½Ms�
dt
¼ kf ½gs� þ kb½gs : A� � ds½Ms� � c½Ma�½Ms� þ n1ðtÞ½gs

: A� þ n2ðtÞ½gs�;
ð6Þ

d½Ma�
dt
¼ ka � dm½Ma� � c½Ma�½Ms�; ð7Þ

d½A�
dt
¼ kA½Ma� � dA½A� þ k�h½gs : A� � kh½gs�½A�; ð8Þ

where n1(t) and n2(t) are random terms with zero means

hn1ðtÞi ¼ 0 and hn2ðtÞi ¼ 0: In order to encapsulate rapid

random fluctuations, we make the standard requirement

that the autocorrelation be ‘‘d-correlated’’, i.e., the statistics

of ni(t) are such that hniðtÞnjðt0Þi ¼ 2Ddijdðt � t0Þ; where dij

is the Kronecker delta, d(t - t0) is the Dirac function and D

is the constant that characterizes the strength of the per-

turbation. The above stochastic model is numerically

simulated using the Euler–Maruyama scheme with the

integration time step Dt ¼ 0:0001 (Higham 2001).

Noise-induced switching and amplifying

To obtain the qualitative effect of the external noises on the

dynamics of system (1)–(4), we first use the bifurcation

diagram to anticipate the effect of fluctuations allowed in

the transcription rates. For the deterministic system, the

steady-state values of the concentration of protein A and

miRNA Ms for different values of parameter kb are shown

in Fig. 5a and b. It can be seen that the system undergoes a

saddle-node bifurcation at kb � 2:635 mol min�1: For the

values of kb larger than the saddle-node bifurcation point,

the system has one unique stable equilibrium with low A

and high Ms concentrations, whereas for other values of

kb, the system has three equilibria: one is unstable and the

other two stable, where one stable equilibrium corresponds

to low A and high Ms concentrations, and the other corre-

sponds to high A and low Ms concentrations. In the absence

of noise, the concentrations of protein A and miRNA Ms

will converge to one of the two stable equilibria completely

determined by the initial state of the system. A comparison

of Fig. 5a and b shows that the upper stable branch in

Fig. 5a is steep, while the lower stable branch in Fig. 5b is

flat. Therefore, we can anticipate that when the system is in

the bistable region and has high A and low Ms concentra-

tions, if the parameter kb varies, the variations in the con-

centration of protein A will be notably large, while the

fluctuations in the concentrations of miRNA Ms will be

small. If the system lies in the other stable equilibrium with

low A and high Ms concentrations, however, only a mild

change in both the concentrations of A and Ms takes place

due to the flat lower stable branch in Fig. 5a and the flat

upper stable branch in Fig. 5b.

In order to verify the above observation quantitatively,

we next incorporate extrinsic noise to make kb stochasti-

cally vary and investigate the temporal behavior of the

system under the fluctuations. We simulated the stochastic

model for the MDNFL [Eqs. (5)–(8)] with a large noise

intensity, D = 0.75. Initially, we fix the parameter value

kb ¼ 2:6 mol min�1; as indicated by a broken vertical line

in Fig. 5a, such that the system is in the bistable region.

The simulation results beginning with the concentration of

protein A equal to its upper value of approximately 2,000

and miRNA Ms concentration about 0 are presented in

Fig. 5c and d. At first, the fluctuations in the concentration

of protein A are quite large while the concentration of

miRNA Ms is nearly unchanged as we expected. Then, at

around 5,500 min, the concentration of A quickly drops to

the lower value. Meanwhile, the concentration of Ms

quickly jumps to its upper value and remains in there with

quite small variations, as anticipated. This phenomenon

indicates that the extrinsic noise introduced into the tran-

scription rate is sufficient to induce the system to switch

from one stable state to the other by crossing the unstable

state. When the number of miRNA Ms is randomly fluc-

tuated to a comparable value with that of mRNA Ma, most

of the mRNA molecules are expected to base pair rapidly

with the miRNA molecules and degraded, which will result

in a low expression of protein A and thus leave the gene gs

unregulated. In this case, the concentration of miRNA Ms

will soon build up to a rather high values if kf is large

enough, i.e., the transition occurs.
On the other hand, a large fluctuation in the concentra-

tion of protein A before the switching implies that the

amount of the protein is quite sensitive to the variation in

the parameter kb if much more protein A exists in the

system than miRNA Ms. But after the fast transition occurs

at around 5,500 min, flat curves in both Fig. 5c and d

means that the other steady state is nearly unaffected by the

fluctuations in the value of kb and thus is impossible to

switch back unless noise intensity increases. This suggests
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that dynamic behavior of the MDNFL can be either sen-

sitive or robust to the same perturbation affecting kb

depending on the specific state at which the MDNFL ini-

tially stays (Stelling et al. 2004), and under such pertur-

bation with large enough strength, the MDNFL is very

likely to switch to or remain in the robust state with low A

and high Ms concentrations. It is also noticed that in the fast

transition, the concentration of miRNA Ms increases

abruptly by over three orders of magnitude in a very short

time if kf is large enough. This character suggests that the

extrinsic noise affecting kb might be used to amplify

miRNA Ms’s production.

Similar results can be obtained for the extrinsic noise

affecting kf when the value of the parameter kf is initially

set to 12 mol min�1 except that the state with high A and

low Ms concentrations that is sensitive to the fluctuations in

kb discussed above is robust to the random variation of

kf, and the other state with low A and high Ms concentra-

tions which is robust to the fluctuations in kb is sensitive to

the random variation of kf, as suggested in Fig. 2a. As a

result, if the MDNFL is affected by the perturbation

affecting kf, contrary to the above result, the MDNFL is

very likely to switch to or remain in the state with high

A and low Ms concentrations. Likewise, the concentration

of protein A may increase significantly during the switch-

ing process. This interesting feature of the MDNFL allows

us to obtain the desired state switch and amplifying in the

MDNFL easily by choosing the appropriate extrinsic noise

source. From an engineering perspective, this character

makes this type of switch easy to control because accu-

rately tuning the strength and timing of noise has been done

in Hasty et al. (2000) is not needed here.

Discussion and conclusion

The importance of post-transcriptional regulation by miRNAs

has recently been recognized in diverse biological processes in

animals and plants (Ambros 2004; Bushati and Cohen 2007;

Stefani and Slack 2008; Inui et al. 2010; Ivey and Srivastava

2010). Moreover their profiles are altered in several human

diseases (Alvarez-Garcia and Miska 2005; Esquela-Kerscher

and Slack 2006), making miRNAs a major focus of research in

nowadays molecular biology. Recently, possible functions

and biological significance of miRNAs have been the subject

of both experimental and theoretical studies (Shimoni et al.

2007; Wang and Raghavachari 2011; Levine et al. 2007;

Levine and Hwa 2008; Mehta et al. 2008; Osella et al. 2011;

Mitarai et al. 2009; Bumgarner et al. 2009; Iliopoulos et al.

2009). Some special functional features of miRNAs have

been indicated by mathematical modeling and dynamical

simulations, e.g., a tunable threshold-linear expression

pattern and repression of fluctuation in the silence regime

(Levine et al. 2007; Levine and Hwa 2008), better than

TF-based regulation at filtering input noise but suffers

higher intrinsic noise arising from transcriptional bursting

(Mehta et al. 2008), and fine-tuning of a target protein

level and an efficient noise control (Osella et al. 2011).

However, most of the previous works focus only on how

miRNAs post-transcriptionally regulate the target protein

levels, work solely, and induce monostability. Recently,

several double negative feedback loops involving miRNAs

and TFs have been found experimentally in a variety of

organisms (Martinez et al. 2008; Johnston et al. 2005; Kim

2007; Fazi 2005; Juan et al. 2009; Bracken 2008; Li and

Carthew 2005; Visvanathan et al. 2007; Xu et al. 2009;

Zhao et al. 2009; Pospisil 2011). It has been shown that

such composite double negative feedback loop (MDNFL)

occurs frequently, and hence constitutes a network motif

(Tsang et al. 2007; Martinez and Walhout 2009). To our

knowledge, the issue about possible functions of this basic

motif and the effects of combinational regulation by TFs

and miRNAs have not yet been well addressed. To better

understand the dynamical properties of this basic motif, we

have presented a general computational model for the

MDNFL and explored its dynamics by using bifurcation

analysis. Our results show that there exist wide ranges of

parameters where the MDNFL can behave as switches.

These functional features are consistent with the wide-

spread appearance of miRNAs in fate decisions such as

differentiation during development. In addition, positive

feedback and cooperativity in the regulation of gene

expression are generally considered to be necessary for

obtaining bistable expression states (Ferrell and Xiong

2001; Lipshtat et al. 2006). Interestingly, here it is found

that under the combinatorial regulation by a TF and an

miRNA, the MDNFL model can behave as switches for

wide ranges of parameters even without cooperative

binding of the TF. It thus provides a novel mechanism to

induce bistability through this combinatorial regulation

even without cooperativity in the regulation. We hope this

mechanism can be realized in artificial genetic networks in

the future.

On the other hand, cellular processes at the molecular

level are inherently stochastic (Balàsi et al. 2011). The

origin of stochasticity can be attributed to internal and

external noises. It is well known that noise can have great

impacts on biological systems’ dynamical properties

(Lipshtat et al. 2006; Hasty et al. 2000; Vilar et al. 2002;

Rao et al. 2002; Wang et al. 2007; Li and Li 2008), for

example, noise can induce sustained stochastic oscillation

even though the corresponding deterministic system only

yields steady state (Li and Li 2008). In this paper, we have

also studied the effect of extrinsic noise on the dynamic

behavior of the MDNFL. It is found that if the noise is
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considered, the MDNFL system can generate some dif-

ferent phenomena not observed in the corresponding

deterministic model. More specifically, when the MDNFL

system is in the bistable region, extrinsic noise fluctuating

the two transcription rates of the miRNAs gene can induce

the system quickly switch from one steady state to the

other. In addition, any one of the two steady states is robust

to one type of the two different extrinsic noises but sen-

sitive to the other. This feature makes this type of switch

easy to control because the requirement of carefully tuning

noise strength is not considered. Moreover, during the

transition process, the concentration of the miRNA (or the

protein) is quite low before the switch can be amplified

significantly.

The control of cellular functions through the design and

manipulation of gene regulatory networks is an intriguing

perspective in applications (Wang et al. 2007). Current gene

therapy techniques are limited in that transfected genes are

typically either in an ‘‘on’’ or ‘‘off’’ state (Hasty et al. 2000).

For the effective treatment of many diseases, however, the

expression of a transfected gene needs to be regulated in a

systematic fashion. Thus, the development of extrinsically

controllable noise-based switches and amplifiers for gene

expression could have significant clinical implications and the

results in this paper suggest that the MDNFL might be quite

useful for that. To make this feature of MDNFL clinically

applicable, it is important to look for an appropriate noise

source. Sets of chemical reactions that affect the transcription

of gene gs might be used as the noise input of this switch.

Moreover, it has recently been shown that manipulation of

miRNAs is readily achievable in vivo and thus holds exciting

promise for potential therapeutic applications for diseases

associated miRNAs (krützfelt 2005; Elmèn 2008).

It has been widely recognized that a complicated living

organism cannot be fully understood by merely analyzing

individual components, and that interactions of those com-

ponents or biomolecular networks in terms of structures and

dynamics are ultimately responsible for an organism’s form,

rhythms, and functions (Wang et al. 2008). But the intrinsic

complexity of biomolecular networks inhibits us to under-

stand them as a whole. Instead, researchers turn to study the

building block, or motif, of these networks. Elucidating these

motifs’ dynamics and functions would shed light on the whole

networks’ behaviors. Computational models based on exper-

imental data have been proven to be quite useful to solve these

problems (Alon 2007). In this paper, we have proposed a

simple computational model for the miRNA-mediated double

negative feedback loop (MDNFL) motif and studied its

functional characteristic motivated by this motif appears in

regulation fate decisions in a variety of organisms (Martinez

et al. 2008; Johnston et al. 2005; Kim 2007; Fazi 2005; Juan

et al. 2009; Bracken 2008; Li and Carthew 2005; Visvanathan

et al. 2007; Xu et al. 2009; Zhao et al. 2009; Pospisil 2011).

Besides the minimal architecture discussed here, miRNA-

mediated network motifs with other architectures can be

similarly analyzed, such as miRNA-mediated feed-forward

loops (Tsang et al. 2007; Shalgi et al. 2007; Re et al. 2009). It

is expected that the insight gained from the study of these

simple motifs could provide a basis for investigation of more

complex networks assembled by simple building blocks. A

more clear understanding of the miRNA-mediated motifs is

also important for bio-engineering or artificial control of

specified components, interactions, and even network func-

tions. It is hoped that the results presented here could provide a

new view on how gene expression is regulated and further

guidance for experiments.

Finally, it is worth mentioning that a plausible method

whereby a system may be experimentally probed for bi-

stability has been proposed in (Hasty et al. 2000). The

main idea is that in a bistable system, the threshold value of

the control parameter required for the system to be swit-

ched from off to on state is different from that for transi-

tioning in the reverse direction [also see Fig. 2]. Since the

degradation parameter dA is easier to manipulate externally

(Hasty et al. 2000), according to the suggestion given in

(Hasty et al. 2000), one can perform an experiment for the

MDNFL system by slowly increasing the degradation rate

dA from a low initial value to see whether the concentration

of protein A can abruptly jump to a lower value at some

moment after a slow decrease. If so, one then reverses the

direction of the experiment to observe whether the con-

centration of protein A can suddenly switch to a higher

value at some point after a slow increase. If it occurs and

the downward threshold value differs from that of the

upward, then one can conclude that the MDNFL system is

a bistable system. Similar methods have been used to probe

for bistability in previous experimental studies (Gardner

et al. 2000; Xiong and Ferrell 2003; Ozbudak et al. 2004).

In addition, it should be pointed out that simple genetic

network motifs are always embedded in a larger and more

complex network, under some circumstances, it thus might

be not easy for us to observe in vivo the phenomena pre-

dicted here due to the fact that the MDNFL no longer

functions independently, but as pointed out in (Alon 2007)

in many cases the functions can be preserved.
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