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Abstract We treated the interactions between two non-

equilibrium neural networks, each of which possesses

memories that are different from those of the other. In this

respect, we developed a kind of hetero interaction that is a

crucial ingredient for assuring communication.We propose

a new learning algorithm for assuring different neural

activity in both the maintenance of own memories and the

learning of other memories (which are different from own

memories). We call it novelty-induced learning.

Keywords Novelty-induced learning � Memory

transmission � Chaotic dynamics � Mutual understanding �
Nonequilibrium neural network

Introduction

The rapid development of modern neuroscience have

brought us enormously unprecedented knowledge about the

brain and neural system, but the understanding of higher

brain functions such as cognition, memory and communi-

cation, remains shallow partly due to the extremely struc-

tural and functional complexity of the brain. Faced with the

observation of a large number of complex spatiotemporal

dynamics in the brain, ranging from the microscopic to the

macroscopic level, the conventional approach tends to find

the direct correspondence between some specified areas and

their functions. This approach could immediately facilitate

the clinical application, but it is evidently restricted or

incomplete, as spatiotemporal dynamics in neural systems

could emerge over multiple scales of space and time. In

contrast, another approach favors the investigation of the

relationship between spatiotemporal dynamics and brain

functions systematically using heuristic dynamical models.

In the last few decades, the latter method has attracted

attention and many dynamical models have been proposed

and studied extensively, such as various network models of

neurons (Hopfield 1982; Wilson and Cowan 1972; Tsuda

et al. 1987; Skarda and Freeman 1987; Arbib 2003).

However, the object treated in the models proposed to

date was a single brain, or a single neural network module.

As well known, each brain is not merely an isolated exis-

tence in the world, but an open one that keeps communi-

cating with ever-changing environment. Therefore, it is

crucial to understand the neural mechanism of the inter-

action between multiple brains from experimental and

theoretical aspects. Remarkably, the experimental discov-

ery of mirror neurons in nonhuman primates (Rizzolatti

and Craighero 2004; Arbib 2006), humans (Keysers and

Gazzola 2010), and other species, including birds (Prather

et al. 2008), suggests that mirror neurons are involved in

mutual understanding (Keysers and Gazzola 2010). In

particular, recent experiments using fMRI have shown

synchronized firing phenomena in communicating subjects

when a guesser observed the gesture of a gesture who is

another individual (Schippers et al. 2010) and when a lis-

tener understood a story told by a speaker (Stephens et al.

2010). These findings provided the important implication

that similar spatiotemporal dynamics could emerge in het-

erogeneous brains when two people understand each other.

Thus, it is reasonable to assume that mutual understanding

could be realized by a learning process that involves memory
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transmission between different brains. In order to verify the

assumption theoretically, we try to construct a heuristic

model by which a communicating process between two

brains can be emulated. Before illustrating the model in

detail, we first consider the following typical communication

scenario.

Two individuals, here named agent A and agent B, are

communicating. A is introducing new things to B, who has

no prior knowledge about these things. Finally, agent

B understands A.

In this case, the dynamics emerging in the brain of agent

B would show a transitory character, such as a state transition

from an ‘‘I do not know’’ state to an ‘‘I know’’ state, via

learning. The problem resides in how to describe these

dynamics, which are associated with the proceeding of

adaptive learning. Remarkably, various experiments and

theories have suggested that chaos is crucial for learning

(Tsuda et al. 1987; Skarda and Freeman 1987; Tsuda 1991,

1992; Nara and Davis 1992; Sano 2000; Tsuda 2001; Kay

2003; Kozma and Freeman 2001; Raffone and van Leeuwen

2003), and recent studies on autonomous robots have shown

that chaotic neural dynamics could be potentially useful to

solve complex ill-posed problems via simple rule(s) (Li et al.

2007; Li and Nara 2008a, b; Yoshida et al. 2010; Li and Nara

2012). These studies implied that chaotic neural dynamics

could play an important role in adaptively coping with the

onset of uncertainty from the ever-changing environment.

Thus, we have been interested in understanding the relation

between chaotic neural dynamics and communication. In

particular, Freeman’s experimental works showed that cha-

otic activity works as a novelty filter, namely an ‘‘I do not

know’’ state. Interestingly, Sano showed that the interac-

tion of two chaotic neural network modules can produce not

only embedded memory representations, but also novel

memories, and argued that those memory representations

correspond to an ‘‘I know’’ state (Sano 2000). Therefore, we

elaborated the following working hypotheses for the

dynamics that emerge in the course of communication. First,

valid information about introduced things is transmitted to

B when A is retrieving a relevant memory, i.e., when attractor

dynamics is emerging in the brain of A. Second, when B is in

the ‘‘I do not know’’ state, chaotic dynamics is emerging in

the brain of agent B because B has no prior knowledge about

the thing. In particular, chaotic itinerancy can appear as the

chaotic transitions among memories (Tsuda et al. 1987;

Tsuda 1991, 1992, 2001). Third, when agent B understands

such things, attractor dynamics similar to those of agent

A should emerge in the brain of agent B because the mem-

ories in A about those things have been transmitted into the

brain of agent B, which implicitly suggests that these

dynamical processes include an additional learning in which

the storing of new memories is required without the

destruction of any old memories.

Based on these working hypotheses, we propose a pre-

liminary idea to emulate the process of memory transmis-

sion via which two neural networks with different

memories learn from each other through a communicating

process between them. One important problem is how to

choose a neural network model to implement this process.

Obviously, the memory transmission in communicating

actions is a dynamical process, thus, intermittent memory

retrieval is required for the emulation of the process of

memory transmission. In this respect, the nonequilibrium

neural network model proposed by Tsuda et al. (1987)

could be a good candidate because it is easy to produce a

dynamical process of intermittent memory retrieval

expressed by chaotic itinerancy (Tsuda 1991; Kaneko and

Tsuda 2003). Previous studies of chaos in the nonequilib-

rium neural network suggest that cortical chaos may serve

for dynamically linking true memories, as well as for

memory search (Tsuda et al. 1987; Nara and Davis 1992).

Furthermore, there exists an area of additional learning in

parameter space (Tsuda 1992). Thus, to investigate the

communicating process, we construct a model consisting of

two nonequilibrium neural networks. Regarding learning,

here we propose a learning algorithm called novelty-

induced learning. The term ‘‘novelty-induced learning’’

implies that communicating individuals do not learn all

incoming information but may prefer to learn new or novel

information that concerns them. Many experimental find-

ings related to this type of learning have been reported; for

instance, novelty information enhances learning and the

hippocampus is regarded as a novelty detector (Meeter

et al. 2004; Jenkins et al. 2004; Yamaguchi et al. 2004;

Bunzeck and Duzel 2006; Axmacher et al. 2010). In the

present paper, we showed that computer experiments with

novelty-induced learning assure the simultaneous process-

ing of the maintenance of own memories and of the

learning of new memories.

The organization of the paper is as follows. In the next

section , a brief introduction to the nonequilibrium neural

network model is provided. After that section, we describe

the construction of a communicating model and of a nov-

elty-induced learning process to implement memory

transmission. In the subsequent section, the simulation

results are presented. The final section is devoted to the

summary of results and discussion.

Nonequilibrium neural networks

Network construction

The nonequilibrium neural network model adopted here,

which was based on the model proposed by Tsuda (1987,

1992), is shown in Fig. 1. The network consists of two
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kinds of probabilistic neurons: N pyramidal neurons

(denoted by S) and N stellate neurons (denoted by R),

which are the most important types of neurons in neocor-

tical columns. All pyramidal neurons are supposed to form

a fully interconnected recurrent neural network, whereas

each stellate neuron is supposed to receive input from all

pyramidal neurons and send output to only one corre-

sponding pyramidal neuron. We assumed that memories

are embedded in synaptic connections between pyramidal

neurons. Each memory is an N-dimensional vector con-

sisting of firing states of pyramidal neurons, each of which

is encoded into two values: ?1 (when firing) or -1 (when

not firing). The state of each neuron has analog values,

from -1.0 to ?1.0. The neural dynamics of each neuron is

defined as follows.

Siðt þ 1Þ ¼ f p
XN

j¼1

WijSjðtÞ þ diRiðtÞ � diUiðtÞ
 !

; ð1Þ

Riðt þ 1Þ ¼ f p
XN

j¼1

ejSjðtÞ
 !

; ð2Þ

where UðtÞ ¼ xðt1Þ; t1 ¼ maxt [ sfsjxðsÞ ¼ xðs� 1Þg, where

x(t) is given by

xðtÞ ¼
XN

j¼1

WijSjðtÞ;

and di = 1.0. The activation functions of pyramidal neurons

Si and those of stellate neurons Ri are independently

determined by the following probabilistic law.

yðt þ 1Þ ¼ f pðzÞ ¼ tanhðczÞ with probability p;
yðtÞ with probability 1� p;

�

where y denotes the activity of S or R, z represents each

membrane potential, and the parameter c describes the

steepness of the function. The results of our simulation

showed that larger c values favor the production of

dynamical associative process in the network. We have

used c = 10.

M memories are initially embedded in the network by

the following well-known Hebbian algorithm,

Wijð0Þ ¼
XM

l¼1

nðlÞi nðlÞj ; ð3Þ

where 1 B i, j B N and N-dimensional vector nl

(1 B l B M) denotes the l-th memory of M embedded

memories.

The synaptic connections from Si to Ri are denoted by ei,

which is supposed to stem from axon collaterals of pyra-

midal neurons. As the distribution of axon collaterals is

random (Szentágothai 1975) and there are intervenient

inhibitory neurons, such as basket cells, we assumed that

the values of ei take a quasi-random numbers distributed

uniformly over [ -a, a]. The synaptic connections di from

the R units to the S units are more specific, but are similarly

assumed to take a quasi-random numbers distributed uni-

formly over [ -b, b], as a stellate cell establishes a syn-

aptic contact with a basal dendrite of the pyramidal cell via

spines, which exhibit variable distribution in their loca-

tion on the pyramidal dendrite (Crick and Asanuma

1987), and via the intervenient inhibitory small basket cells

(Szentágothai 1975).

In contrast with the typical Hopfield neural network, the

nonequilibrium neural network includes two subsystems that

can lead the system either to convergent dynamics or to

divergent dynamics. First, recurrent connections Wij of

pyramidal neurons S(t) enable the network to perform

attractor dynamics, like a Hopfield network, whereas the

presence of the feedback /i(t) leads to the instability of the

network. The feedback /i(t) originates from the temporal

states of pyramidal neurons and works only when pyramidal

neurons reach a steady state, namely S(t) = S(t - 1), the

two-step steady state form of which is not essential, and a

k-step steady state may be applicable. Thus, the network

shows a successive retrieval of embedded memories instead

of a gradually converging dynamics. In previous work,

Tsuda and his colleagues found a quasi-deterministic law at

the level of a macro variable that suggests that the successive

retrievals of embedded memories are not random dynamics

but deterministic chaos, which can be called chaotic itiner-

ancy (Tsuda et al. 1987, 1991, 1992, 2001; Kaneko

and Tsuda 2003). Referring to the working hypothesesFig. 1 A nonequilibrium neural network model
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mentioned in Section ‘‘Introduction’’, the nonequilibrium

neural network is undoubtedly a model that is suitable for

emulating communicating processes.

Dynamics measure: direction cosine

As evolutionary dynamics of the nonequilibrium neural

network show a successive retrieval of embedded memo-

ries, a direction cosine is required as an appropriate

dynamics measure and is defined as follows.

DlðtÞ ¼ SðtÞ � nl

k SðtÞ k � k nl k ; ð4Þ

where memories fnlgð1� l�MÞ are equivalent to the

coordinates of the state pattern SðtÞ in the state space and

Dl(t) is a temporal variable with values ranging from -1.0

to ?1.0. When Dl(t) of SðtÞ is -1.0 or ?1.0, a memory or

its negative pattern is retrieved. We identified these two

patterns. By virtue of this measure, we were able to trace

clearly the dynamical processes of the nonequilibrium

neural network. An example is provided in Fig. 4a, where

the number of embedded memories is M = 2 and each

memory is represented by a specific color. Evolutionary

dynamics exhibits a successive retrieval of embedded

memories. These intermittent behaviors can provide the

basis for a communication model, which is described in the

next section.

Communication model

Construction and embedded memories

Communication has become one of the central topics in

scientific research because of the rapid development of

techniques that allow simultaneous measurements in dif-

ferent brains. Although many models have been proposed

to interpret various communication behaviors, no neural-

based model has been proposed to date. Here, a commu-

nication model consisting of two nonequilibrium neural

networks was constructed and is shown in Fig. 2.

In this model, dynamical behaviors produced by two

coupled nonequilibrium neural networks were adopted to

emulate the complex dynamics emerging in communicat-

ing brains. The state patterns of the two networks at time

t are denoted by SAðtÞ and SBðtÞ, respectively.

According to Eq. 1, the neural dynamics of the state

pattern SAðtÞ is defined by

SA;iðt þ 1Þ ¼ f p
XN

j¼1

WA;ijSA;jðtÞ þ diRA;iðtÞ � diUA;iðtÞ
 

þ rA;iðtÞIA;iðtÞ
�
; ð5Þ

RA;iðt þ 1Þ ¼ f p
XN

j¼1

ejSA;jðtÞ
 !

; ð6Þ

IA;iðtÞ ¼
XN

j¼1

CA;ijSB;jðtÞ; ð7Þ

where CA;ij is the coupling strength from the j-th neuron in

B to the i-th neuron in A. In terms of the coupling item in

Eq. 5, rA,i(t) is a temporal variable to enable the coupling

from B to A to switch on/off intermittently. According to

the above hypothesis that an effective message forms when

a certain memory is retrieved, we assumed that the state of

rA,i(t) depends on whether or not the state pattern SBðtÞ
reaches a steady state, so that rA,i is defined by

rA;iðtÞ ¼
1 if SBðtÞ ¼ SBðt � 1Þ;
0 otherwise.

�

Under this condition, our model can realize a dynamic,

intermittent communication between agent A and B instead

of conventional continued couplings. This enables us to

emulate the communication scenario proposed above more

objectively. Similar to Eq.5, we can define the neural

dynamics of the state pattern SBðtÞ

SB;iðt þ 1Þ ¼ f p
XN

j¼1

WB;ijSB;jðtÞ þ diRB;iðtÞ � diUB;iðtÞ
 

þ rB;iðtÞIB;iðtÞ
�
; ð8Þ

RB;iðt þ 1Þ ¼ f p
XN

j¼1

ejSB;jðtÞ
 !

; ð9Þ

IB;iðtÞ ¼
XN

j¼1

CB;ijSA;jðtÞ: ð10Þ

Fig. 2 Communication model consisting of two nonequilibrium neural

networks

228 Cogn Neurodyn (2013) 7:225–236

123



Generally, communicating individuals always have

different experiences and learning tends to occur only

when messages from a sender are new for a receiver. Thus,

it is reasonable to consider that they have different old

memories at the beginning of communication and try to

learn new information. In Eq. 3, different memories are

embedded into the two networks. If we take nðlÞA as a

column vector and ðnðlÞA Þ
T

as its transpose, the initial

synaptic connections of the two networks are defined by:

WAð0Þ ¼
XMA

l¼1

nðlÞA � ðn
ðlÞ
A Þ

T ; ð11Þ

WBð0Þ ¼
XMB

m¼1

nðmÞB � ðn
ðmÞ
B Þ

T ; ð12Þ

where MA and MB are the number of embedded memories

in the two networks, respectively. As memories can be

represented by vectors, their relations are naturally classi-

fied by uncorrelated or correlated vectors. First, we con-

sidered the special case in which they are uncorrelated,

namely they are pairwise orthogonal.

For the sake of tracing the evolutionary dynamics of the

two networks, we can calculate direction cosines of SAðtÞ
and SBðtÞ using Eq. 4. In the communication model, we are

concerned with not only old memories, but also new

memories learned from the information sent by the coun-

terpart through communication behaviors; thus, all mem-

ories embedded in the two networks are regarded as

‘‘coordinates’’, which can be defined as follows.

Dl
A AðtÞ ¼

SAðtÞ � nl
A

k SAðtÞ k � k nn
A k

; ð13Þ

Dm
A BðtÞ ¼

SAðtÞ � nm
B

k SAðtÞ k � k nm
B k

; ð14Þ

Dl
B AðtÞ ¼

SBðtÞ � nl
A

k SBðtÞ k � k nn
A k

; ð15Þ

Dm
B BðtÞ ¼

SBðtÞ � nm
B

k SBðtÞ k � k nm
B k

; ð16Þ

where Dm
A BðtÞ means the direction cosine of SA with

memory nm
B embedded in the network B. Similarly,

Dl
A AðtÞ;D

l
B AðtÞ, and Dm

B BðtÞ are defined. To observe

the dynamical process clearly, we represented these four

types of dynamics measures in four different figures, where

the evolution of the dynamics in one network is the com-

bination of two figures. For example, the evolution of the

dynamics of SAðtÞ consists of Dl
A AðtÞ and Dm

A BðtÞ. For

the memories shown in Fig. 3, in which these two networks

do not communicate with each other, their evolution of the

dynamics are represented in Fig. 4. Both the top two panels

represent the evolution of the dynamics of SAðtÞ. Due to no

learning effect in this case, agent A and B are independent

each other. Thus itinerant dynamics of memory retrieval

only emerges in their own memories, as is shown in the top

and bottom panels which represent Dl
A AðtÞ and Dm

B BðtÞ,
respectively. However, the middle two panels, which rep-

resent Dm
A BðtÞ and Dl

B AðtÞ, show the learning effect from

the communicating counterpart. In this case, neither A nor

B retrieved any new memory because they do not learn

each other.

Novelty-induced learning

Communication is not simply a process of retrieval of old

memories; rather, it is a creative process that involves the

coexistence of old and new memories. Many studies in the

fields of sociology, psychology, and linguistics have sug-

gested that communication behaviors are realized by a

selective learning process. In psychology, selective learn-

ing is defined by the ability to select and learn particular

items of higher value from a broader array of available

information (Adler and Rodman 2009). This definition

implies that one does not learn all available information,

but only a particular part with higher value. Thus, one

question arises: ‘‘What is this particular part with higher

value in communication behaviors?’’ As is well known,

novel information can often attract more attention and can

be more easily remembered. Interestingly, several recent

experiments from behavioral to molecular levels have

shown that novel stimuli facilitate synaptic plasticity and

learning (Gu 2002; Li et al. 2003; Otani et al. 2003). These

results provide the important biological implication that a

novelty detector must be activated in the neural system

when a novel stimulus is presented. Thus, in the commu-

nication model, it is desirable that novelty be regarded as a

signal that facilitates synaptic plasticity and learning.

In our communication model, novelty was introduced to

implement the process of selective learning. Generally, the

extent of the novelty of an incoming pattern can be esti-

mated using a measure of the extent to which the pattern

mismatches the memories, which can be calculated based

on the Hamming distances between the incoming pattern

Fig. 3 Four pairwise orthogonal memories
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and the memories. For a message sent by a sender at time s,

the message is denoted as one incoming pattern by SIðsÞ. If

we assume that the receiver has M memories gað1� a�MÞ
at that time, the novelty measure H(s) for the incoming

pattern is defined by

HðsÞ
0:0 if exists 1:02fFaðsÞj1�a�Mg;
1:0�min FaðsÞj1�a�Mf g otherwise,

�

ð17Þ

where

FaðsÞ ¼
SIðsÞ � ga

k SIðsÞ k � k ga k

����

����: ð18Þ

Note that 0.0 B H(s) B 1.0. Using the novelty measure

H(s), we replaced the Hebbian learning rule by the following

modified one, which we termed novelty-induced learning.

Wijðt þ 1Þ ¼ WijðtÞ þ DWijðtÞ; ð19Þ

DWijðtÞ ¼ �SiðtÞSjðtÞHðtÞ: ð20Þ

When the incoming pattern is quite novel, the novelty

measure H(t) gives a value approximating 1.0, so that the

learning rate is nearly kept. Conversely, when the incoming

pattern is not too novel, the novelty measure gives a value

approximating 0.0, which can weaken the learning rate. In

particular, when the incoming pattern SIðsÞ is the same as

one of the receiver’s memories, there exists 1.0 in the set

{Fa(s)|1 B a B M}. According to the definition of novelty,

H(t) = 0.0 which means that the only thing the receiver

needs to do is to retrieve the relevant memory and thus

learning of the incoming pattern becomes unnecessary,

then the learning process is terminated. Using this novelty-

induced learning rule, a selective learning process can be

implemented in our model.

Simulation and results

Using novelty-induced learning, an additional learning can

be accomplished successfully without destroying all own

memories. In the following subsections, we will present the

simulation results.

Unidirectional and bidirectional memory transmission

Unidirectional memory transmission is a particular case of

communication in which the learning process is imple-

mented only in the receiver. Here, we take agent B as a

receiver and agent A as a sender. The information only

flows from agent A to agent B. In other words, the mem-

ories of agent B should be expanded, but his own memories

should be kept unchanged. Specifically, when a steady state

occurs in agent A, agent A sends the message to agent

B. Then, the novelty of the message is measured using

Eq. 17 so as to determine how much of the system

B should learn from agent A. With the passing of time,

once agent A has sent sufficient message to agent B, agent

B can also retrieve memories that formerly belonged to

agent A, which can be thought of as ‘‘understanding’’.

Figure 5 shows an example of this kind of unidirectional

learning. A comparison of these results with those obtained

without learning, shown in Fig. 4, indicates that new

learned memories from agent A are itinerantly retrieved by

Fig. 4 Dynamics measure of

two nonequilibrium networks in

the case in which they do not

learn from each other, namely

they are independent: (a) and

(b) represent evolutionary

dynamics of SAðtÞ. Dl
A AðtÞ

exhibits a successive memory

retrieval, but Dm
A BðtÞ does not

show any memory retrieval

because A does not learn

B. Different colors of lines

correspond to different

embedded memories: n1
A(red),

n2
A(green), n1

B(blue), n2
B(violet).

c and d Represent the

evolutionary dynamics of SBðtÞ.
Similar results can be observed

clearly. (Color figure online)
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agent B, as shown in Fig. 5c. Concomitantly, old memories

in agent B are not destroyed and their retrieval is main-

tained, which is shown in Fig. 5d. Obviously, the new and

old memories of agent B coexist to form successive retri-

evals after agent B has accomplished an additional learning

successfully.

Bidirectional memory transmission is essential for

interpersonal communication because of the requirement of

the exchange of information. Here, agent A or agent B may

become either a sender or a receiver, depending on their

states. Once a steady state occurs in one of the two agents,

the agent is a sender and the other is a receiver. When agent

A and B communicate with each other, novelty-induced

learning is implemented in these two agents. Although they

have different memories before communication, both agent

A and agent B show successive retrieval of memories,

including new ones, after learning. A bidirectional learning

example is shown in Fig. 6, in which b and c show itinerant

retrieval of new learned memories of agent A and agent B,

respectively. In Fig. 6a and d, itinerant retrievals of their

old memories are still going, which means that old mem-

ories are not yet destroyed by the formation of new

memories.

Basin visiting measure

The above results show that novelty-induced learning

enables the two networks not only to learn from each other,

but also to maintain old memories. If we conceive the

phase space as a memory landscape, memory transmissions

result in the formation of a new landscape in which

new and old memories can coexist. In the landscape, each

memory can often be regarded as an attractor or, more

precisely, as an attractor in a geometric sense with a basin

in which any initial state will asymptotically converge to

the attractor. The previous works of Tsuda and his col-

leagues indicate that chaotic itinerancy in nonequilibrium

neural networks cannot be represented by such an attractor

because dynamical behaviors in the network do not show a

convergent process; rather, they exhibit an itinerant process

among attractor ruins or quasi attractors (Tsuda 1991,

1992, 2001). Attractor ruins are defined in the theory of

chaotic itinerancy proposed by Ikeda (1989), Kaneko

(1990), Tsuda (1991). An attractor ruin is a weakly

destabilized Milnor attractor (Milnor 1985), which can be a

fixed point, a limit cycle, a torus or a strange attractor that

possesses unstable directions. Dynamical orbits are

attracted to a certain attractor ruin, but they leave via an

unstable manifold after a short or long stay around it and

move toward another attractor ruin. This successive chaotic

transition continues unless a strong input is received. More

detailed illustrations and examples can be found in

(Kaneko and Tsuda 2003) and recent reports also suggested

that chaotic transient dynamics can be generated in a chain

of neurons with gap junction, and clear attractor ruins were

shown via pioncáre map (Tsuda et al. 2004; Tadokoro

et al. 2011). In this model, memory patterns perform as

attractor ruins. As we observed a similar itinerant behavior

among attractor ruins, we cannot simply evaluate the

memory landscape. However, the dynamical trajectory in

the phase space can be tracked when the network is

evolving. Thus, we can calculate the visiting distributions

of the trajectory to compare the changing memory land-

scape among different learning types.

Fig. 5 Dynamics measure of

unidirectional learning when A
is a sender and B is a receiver:

(a) and (b) represent the

evolutionary dynamics of SAðtÞ.
As A does not learn, only

Dl
A AðtÞ shows successive

memory retrieval. c and d
Represent the evolutionary

dynamics of SBðtÞ. At the initial

stage, only Dm
B BðtÞ exhibits

successive memory retrieval

but, finally, Dl
B AðtÞ also shows

retrieval of new memories,

which implies that B has learned

from A. Different colors of lines

correspond to different

embedded memories: n1
A(red),

n2
A(green), n1

B(blue), n2
B(violet).

(Color figure online)
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For a long time T, we can obtain a trajectory that is a

series of state patterns fSðtÞgð0� t� TÞ. Regarding the

state pattern SðtÞ, we have to determine which basin it

belongs to. Here, we propose a simple way to achieve this

based on the definition of a geometric attractor. First, we

assumed that each embedded memory is an attractor in

N-dimensional phase space, which has a corresponding

basin. At time t, the landscape of the phase space is

determined by a weight matrix {Wij(t)}, i.e., attractor

basins are arranged by {Wij(t)}. Second, the definition of a

geometric attractor requires that all points that are suffi-

ciently close to an attractor in the phase space are absorbed

to the attractor; thus, if {Wij(t)} is extracted to reconstruct a

typical Hopfield network with the same dimension, the

landscape of the phase space at time t is kept in this new

network. Third, in this situation, if SðtÞ is taken as the

initial state pattern of this new network, the development of

the new network should asymptotically converge to the

corresponding attractor. In this way, the basin to which

each SðtÞ belongs can be determined. Specifically, an

attractor is denoted by wb and the corresponding basin, Bb.

If SðtÞ asymptotically converges to wb as the new network

evolves, it is recorded as:

qbðtÞ ¼
1 if SðtÞ 2 Bb;
0 otherwise:

�

where b 2 ½1;MA þMB þ 2�. Here, those basins corre-

sponding to embedded memories of agents A and B are

denoted by 1� b�MA þMB, respectively. Two special

cases are b = MA ? MB ? 1 and MA ? MB ? 2, where

b = MA ? MB ? 1 corresponds to the case of formation of

new attractor ruins defined by the state pattern that has

reached convergence but did not converge into one of

embedded memories within Lmax = 500 steps, whereas

b = MA ? MB ? 2 is for the exceptional case of inability

to reach convergence within Lmax = 500 steps. When the

network evolves for a long time T, we can measure the

statistics of the distribution of the frequency of the visit in

the basin of each attractor, which is called a basin visiting

measure. If pb (t) is denoted as a basin visiting measure in

the basin of memory wb, it can be defined as follows.

pb ¼
1

T

XT

t

qbðtÞ: ð21Þ

Several examples of the basin visiting measure are

shown in Fig. 7, where a and b illustrate the following case.

When the systems A and B are independent, i.e., they do

not learn from each other, the dynamical trajectory of SAðtÞ
only passes through the basins of two embedded memories

and visits those basins almost evenly. In a similar way, the

dynamical trajectory of SBðtÞ also only passes through

those basins. In contrast to these results, when novelty-

induced learning is adopted, some interesting phenomena

occur. Figure 7c and d depicts a case in which the

dynamical trajectory of SBðtÞ has passed through not only

their basins, but also the basins corresponding to embedded

memories in system A when B learns system A. Further-

more, Fig. 7e and f shows that the dynamical trajectories of

both SAðtÞ and SBðtÞ have passed through all the basins

corresponding to all memories embedded in the two

systems when A and B learn from each other. Interest-

ingly, in novelty-induced learning, the number of new

attractor ruins increases, despite that fact that attractors

corresponding to embedded memories dominate. Intuitively,

Fig. 6 Dynamics measure of

bidirectional learning when A
and B learn from each other: (a)

and (b) represent the

evolutionary dynamics of SAðtÞ.
c and d Represent the

evolutionary dynamics of SBðtÞ.
At the initial stage, only

Dl
A AðtÞ and Dm

B BðtÞ exhibits

successive memory retrieval,

but, finally, Dm
A BðtÞ and

Dl
B AðtÞ also shows retrieval of

new memories, which implies

that and B have learned from

each other. Different colors of

lines correspond to different

embedded memories: n1
A(red),

n2
A(green), n1

B(blue), n2
B(violet).

(Color figure online)
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this suggests that the landscape of phase space has been

changed extensively, so that new and old attractors can

coexist. More implicitly, these new attractor ruins could be

quite important to human communication because commu-

nicating behaviors is a creative process. As mentioned

above, mutual understanding is the key purpose of commu-

nication, however, mutual understanding is not a merely

copy between two agent’s memories but rather a creative

reorganization among new and old information. These new

attractor ruins are different from any of two agent’s embed-

ded memories, thus it is reasonable that they are considered

as creative memories.

Nonorthogonal memories and critical overlap

In the biological sense, it is unrealistic to completely dis-

tinguish memory patterns because they are not strictly

orthogonal in most situations. For example, information

exchanged between two agents is usually correlated but is

neither isolated nor independent. Thus, one question about

the model arises: can the communication model work well

in the case of two systems that have correlated memories?

One can introduce a correlation of memory using the

following simple method. The idea is to change the degree

of overlap between memories, which is denoted by

r(0 B r B N), where we assume r = 0 when the embed-

ded memories are mutually orthogonal. If r is larger than 0,

the embedded memories could become mutually nonor-

thogonal. With the increase of r, the overlapped parts of

embedded memories increase; thus, the value of r can be

used to measure memory correlation. In our simulation, we

found that there is a critical overlapping r = NC beyond

which memory transmission cannot occur. We investigated

the relation among the system size N, the number of

memories M, and the critical overlapping NC. For each

N and M, we used U randomly generated initial patterns for

the determination of the critical overlapping NC. In our

simulation, the system size was N 2 f32; 64; 128; 256;

512; 1024; 2048g and the number of embedded memories

was M 2 f1; 2; 3; 4; 5g. The mean and the standard devia-

tion of critical overlapping NC over U = 100 trials were

calculated and the results are shown in Fig. 8a. For a cer-

tain number of memories M, NC was almost directly pro-

portional to the system size N. Furthermore, we used the

ratio gC = NC/N, which represents the proportion of the

critical overlapping in relation to the system size. With the

increase of the system size N, gC became saturated around

500 neurons, which is shown in Fig. 8b.

However, Fig. 8 also shows that increasing the number

of embedded memories causes a decline of the critical

point of overlapping. This prompts the question of whether

it will go to zero when the number of embedded memories

goes to infinity. We successfully estimated the final critical

ratio g�C by assuming that the critical ratio gC obeys an

exponential distribution on the number of embedded

memories M, which is derived by:

gCðMÞ ¼ ae�bM þ c: ð22Þ

We used Eq. 22 to fit the critical ratios using a nonlinear

optimization method (the Levenberg–Marquardt Method).

The simulated and fitted data are shown in Fig. 9; we

obtained the following parameter values: a ¼ 1:030691

910275422. . .; b ¼ 0:919253449357962. . .; c ¼ 0:0708843

49478589. . .. If c is zero, the critical number of neuron will

tend to zero when the number of embedded memories is

sufficiently large. However, the results did not show that

case. Since we have taken statistical measure on many

trials and obtained this deviation based on a quantitative

approach, we can confirm that the deviation from zero is

not random deviation due to noise. Thus, it is interesting to

Fig. 7 Basin visiting measure of the dynamical trajectories of

SAðtÞ(left) and SBðtÞ (right): the horizontal axis represents the basin

number b (1 B b B 6), where number 5 is for the case of formation

of new attractor ruins and number 6 is for the exceptional case of

inability to reach convergence during Lmax ¼ 500 steps. The length of

the steps used for evaluation is T = 10,000. (a) and (b) show a case

without interactive learning. (c) and (d) show a case with unidirec-

tional learning in which B learned from A. (e) and (f) show a case

with bidirectional learning in which A and B learned from each other
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see a fact that c was not zero because it means that there is

always a region in which overlapped memories can be

utilized to implement this type of communication model

successfully.

Discussion and summary

This paper describes a communication model consisting of

two heterogeneous nonequilibrium neural networks that

communicate dynamically with each other. Using novelty-

induced learning, mutual understanding was interpreted as

a learning process involving memory transmission between

communicating individuals. As mentioned above, the tran-

sition of cortical dynamics from ‘‘I do not know’’ to ‘‘I know’’

states must involve a process of reorganization or reconfig-

uration of the memory landscape, which could be illustrated

by the distribution of the frequency of visit in different

memory basins.

The present results include four important implications.

First, mutual understanding could be accomplished by

memory transmission between heterogeneous brains via

transitory neural dynamics in the form of chaotic itiner-

ancy. This is consistent with the results of several recent

experimental reports on mirror neurons, which suggest that

our brains are not only responsible for individual behav-

iors, but also replicate the behaviors of others (Rizzolatti

and Craighero 2004; Arbib 2006). In particular, recent

fMRI experiments have demonstrated the presence of

synchronized firing phenomena in communicating subjects

(Schippers et al. 2010; Stephens et al. 2010). This syn-

chronous firing in communicating brains implies that

mutual understanding involves memory transmission to

produce similar dynamics in heterogeneous brains.

Second, the introduction of novelty-induced learning

enables the successful implementation of memory trans-

mission, which implies that the extent of the novelty of

incoming signal/information strongly affects the efficiency

of learning, such as motivation and intention. Remarkably,

a large number of experimental reports in the field of

neurophysiology have suggested that novel stimuli can

effectively enhance learning and memory (Bunzeck and

Duzel 2006; Jenkins et al. 2004; Nyberg 2005; Tulving

et al. 1996; Ranganath and Rainer 2003). The novelty of

external stimuli is an important factor that could determine

Fig. 9 Critical point with respect to the number of embedded

memories: with the increase of the number MðM ¼ 1; 2; � � �Þ, the

critical point ratio gC(M) decreases exponentially. The red circles
with error bars indicate the mean \gC(M) [ and standard deviation

of simulated data. The curve with blue points was fitted using the

Levenberg–Marquardt method. (Color figure online)

Fig. 8 Critical overlapping distribution in the case of nonorthogonal

memories: the abscissa of (a) and (b) represents the system size of the

networks. The ordinate of (a) represents the critical overlapping NC of

the number of neurons. The ordinate of (b) represents the critical ratio

gC = NC/N of the number of neurons
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what we should learn and how much we should learn.

Many other experimental findings have indicated that the

hippocampus is the detector of novelty and that many

neurotransmitters play important roles in signaling the

novelty of stimuli(Nyberg 2005).

Third, novelty-induced learning facilitates selective learn-

ing because the change of novelty brings about the intermit-

tency of the learning process. The memory landscape changes

gradually in the course of intermittent learning. Understand-

ing may be achieved when the effect of learning is sufficient to

form a new memory. This could provide a partial explanation

for the fact that we often cannot repeat the words of others

accurately after a conversation, although we can reproduce

their meaning well.

Fourth, when novelty-induced learning is introduced

into the model, several new attractor ruins are generated,

which is shown in Fig. 7. In a certain sense, these new

attractor ruins may have a crucial meaning because they

suggest that novel memories, which are different from

embedded memories, are generated during the process of

communication. The purpose of communication is to

obtain mutual understanding on the one hand and to inspire

creative works on the other. On many occasions, the latter

could be more important because of the requirement of

cooperation. Undoubtedly, novel memories generated

during communication may facilitate the generation of

creative ideas. From this viewpoint, the present simple

model provides additional possibilities regarding commu-

nication.

The present study provided only a basic concept to

investigate the neural mechanism of communication in

terms of complex and dynamical systems based on a

dynamical viewpoint. Additional investigations using more

realistic models will be performed in the near future.

Acknowledgments The authors would like to thank the anonymous

reviewers for their critical comments that help improve the manuscript.

This work was partially supported by a Grant-in-Aid for Scientific

Research on Innovative Areas (No.4103) (21120002) from MEXT,

Japan, and was partially supported by HFSPO (HFSP:RGP0039).

References

Adler RB, Rodman GR (2009) Understanding human communication.

Oxford University Press, Oxford

Arbib, MA (eds) (2003) The handbook of brain theory and neural

networks. MIT Press, Cambridge

Arbib, MA (eds) (2006) Action to language via the mirror neuron

system. Cambridge University Press, Cambridge

Axmacher N, Cohen MX, Fell J, Haupt S, Dumpelmann M, Elger CE,

Schlaepfer TE, Lenartz D, Sturm V, Ranganath C (2010)

Intracranial eeg correlates of expectancy and memory formation

in the human hippocampus and nucleus accumbens. Neuron

65(4):541–549

Bunzeck N, Duzel E (2006) Absolute coding of stimulus novelty in

the human substantia nigra/vta. Neuron 51(3):369–379

Crick F, Asanuma C (1987) Certain aspects of the anatomy and

physiology of the cerebral cortex. In: Rumelhart DE, McClelland

JL (eds) Parallel distributed processing: explorations in the

microstructure of cognition.. The MIT Press, Massachusetts

Gu Q (2002) Neuromodulatory transmitter systems in the cortex and

their role in cortical plasticity. Neuroscience 111(4):815–835

Hopfield JJ (1982) Neural networks and physical systems with

emergent collective computational abilities. Proc Natl Acad Sci

USA 79(8):2554–2558

Ikeda K, Otsuka K, Matsumoto K (1989) Maxwell-Bloch turbulence.

Prog Theor Phys Suppl 99:295–324

Jenkins TA, Amin E, Pearce JM, Brown MW, Aggleton JP (2004) Novel

spatial arrangements of familiar visual stimuli promote activity in the

rat hippocampal formation but not the parahippocampal cortices: a

c-fos expression study. Neuroscience 124(1):43–52

Kaneko K (1990) Clustering, coding, switching, hierarchical ordering,

and control in network of chaotic elements. Phys D 41:137–172

Kaneko K, Tsuda I (2003) Chaotic itinerancy. Chaos 13(3):926–936

Kay LM (2003) A challenge to chaotic itinerancy from brain

dynamics. Chaos 13(3):1057–1066

Keysers C, Gazzola V (2010) Social neuroscience: mirror neurons

recorded in humans. Curr biol 20(8):353–354

Kozma R, Freeman WJ (2001) Chaotic resonance: Methods and

applications for robust classification of noisy and variable

patterns. Int J Bifur Chaos 11(6):1607–1629

Li SM, Cullen WK, Anwyl R, Rowan MJ (2003) Dopamine-

dependent facilitation of ltp induction in hippocampal ca1 by

exposure to spatial novelty. Nat Neurosci 6(5):526–531

Li Y, Tanaka T, Suemitsu Y, Nara S (2007) A novel method of

control using chaotic dynamics in systems having many degrees-

of-freedom. Proc Appl Math Mech 7(1):1122003–1122004

Li Y, Nara S (2008) Application of chaotic dynamics in a recurrent

neural network to control: hardware implementation into a novel

autonomous roving robot. Biol Cybern 99:185–196

Li Y, Nara S (2008) Novel tracking function of moving target using

chaotic dynamics in a recurrent neural network model. Cogn

Neurodyn 2:39–48

Li Y, Nara S (2012) Solving complex control tasks via simple rule(s):

using chaotic dynamics in a recurrent neural network model. In:

Rao AR, Cecchi GA (eds) The relevance of the time domain to

neural network models. cognitive and neural systems, vol 3.

Springer, Berlin, pp. 159–178

Meeter M, Murre J MJ, Talamini LM (2004) Mode shifting between

storage and recall based on novelty detection in oscillating

hippocampal circuits. Hippocampus 14(6):722–741

Milnor J (1985) On the concept of attractor. Commun Math Phys

99:177–195

Nara S, Davis P (1992) Chaotic wandering and search in a cycle-

memory neural network. Prog Theor Phys 88(5):845–855

Nyberg L (2005) Any novelty in hippocampal formation and memory.

Curr Opin Neurol 18(4):424–428

Otani S, Daniel H, Roisin MP, Crepel F (2003) Dopaminergic

modulation of long-term synaptic plasticity in rat prefrontal

neurons. Cereb Cortex 13(11):1251–1256

Prather JF, Peters S, Nowicki S, Mooney R (2008) Precise auditory-

vocal mirroring in neurons for learned vocal communication.

Nature 451(7176):305–310

Raffone A, van Leeuwen C (2003) Dynamic synchronization and

chaos in an associative neural network with multiple active

memories. Chaos 13(3):1090–1104

Ranganath C, Rainer G (2003) Neural mechanisms for detecting and

remembering novel events. Nat Rev Neurosci 4(3):193–202

Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu

Rev Neurosci 27(1):169–192

Sano A (2000) Generating novel memories by integration of chaotic

neural network modules. Artif Life Robot 4:42–45

Cogn Neurodyn (2013) 7:225–236 235

123



Schippers MB, Roebroeck A, Renken R, Nanetti L, Keysers C (2010)

Mapping the information flow from one brain to another during

gestural communication. Proc Natl Acad Sci USA 107(20):9388–9393

Skarda CA, Freeman WJ (1987) Brains make chaos to make sense of

the world. Behav Brain Sci 10(2):161–173

Stephens GJ, Silbert LJ, Hasson U (2010) Speaker-listener neural

coupling underlies successful communication. Proc Natl Acad

Sci USA 107(32):14425–14430

Szentágothai J (1975) The ’module-concept’ in cerebral cortex

architecture. Brain Res 95:475–496

Tadokoro S, Yamaguti Y, Fujii H, Tsuda I (2011) Transitory

behaviors in diffusively coupled nonlinear oscillators. Cogn

Neurodyn 5:1–12

Tsuda I (1991) Chaotic itinerancy as a dynamical basis of

hermeneutics in brain and mind. World Futur 32:167–184

Tsuda I (1992) Dynamic link of memory–chaotic memory map in

nonequilibrium neural networks. Neural Netw 5(2):313–326

Tsuda I (2001) Toward an interpretation of dynamic neural activity in

terms of chaotic dynamical systems. Behav Brain Sci 24(5):793–847

Tsuda I, Koerner E, Shimizu H (1987) Memory dynamics in

asynchronous neural networks. Prog Theor Phys 78(1):51–71

Tsuda I, Fujii H, Tadokoro S, Yasuoka T, Yamaguti Y (2004) Chaotic

itinerancy as a mechanism of irregular changes between

synchronization and desynchronization in a neural network.

J Integr Neurosci 3:159–182

Tulving E, Markowitsch HJ, Craik FM, Habib R, Houle S (1996)

Novelty and familiarity activations in pet studies of memory

encoding and retrieval. Cereb Cortex 6(1):71–79

Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions

in localized populations of model neurons. Biophys J 12(1):1–24

Yamaguchi S, Hale LA, D’Esposito M, Knight RT (2004) Rapid

prefrontal-hippocampal habituation to novel events. J Neurosci

24(23):5356–5363

Yoshida H, Kurata S, Li Y, Nara S (2010) Chaotic Neural Network

Applied to Two-Dimensional Motion Control. Cogn Neurodyn

4(1):69–80

236 Cogn Neurodyn (2013) 7:225–236

123


	Novelty-induced memory transmission between two nonequilibrium neural networks
	Abstract
	Introduction
	Nonequilibrium neural networks
	Network construction
	Dynamics measure: direction cosine

	Communication model
	Construction and embedded memories
	Novelty-induced learning

	Simulation and results
	Unidirectional and bidirectional memory transmission
	Basin visiting measure
	Nonorthogonal memories and critical overlap

	Discussion and summary
	Acknowledgments
	References


