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Abstract Rhythms at slow (\1 Hz) frequency of alter-

nating Up and Down states occur during slow-wave sleep

states, under deep anaesthesia and in cortical slices of

mammals maintained in vitro. Such spontaneous oscilla-

tions result from the interplay between network reverber-

ations nonlinearly sustained by a strong synaptic coupling

and a fatigue mechanism inhibiting the neurons firing in an

activity-dependent manner. Varying pharmacologically the

excitability level of brain slices we exploit the network

dynamics underlying slow rhythms, uncovering an intrinsic

anticorrelation between Up and Down state durations.

Besides, a non-monotonic change of Down state duration is

also observed, which shrinks the distribution of the

accessible frequencies of the slow rhythms. Attractor

dynamics with activity-dependent self-inhibition predicts a

similar trend even when the system excitability is reduced,

because of a stability loss of Up and Down states. Hence,

such cortical rhythms tend to display a maximal size of the

distribution of Up/Down frequencies, envisaging the loca-

tion of the system dynamics on a critical boundary of the

parameter space. This would be an optimal solution for the

system in order to display a wide spectrum of dynamical

regimes and timescales.

Keywords Slow oscillations � Mean-field theory �
IF neuron networks � Bifurcation analysis � Relaxation

oscillators � Up and Down states � Cortical rhythms

Introduction

Our brain needs to continuously collapse into discrete rep-

resentations the enormous variety of sensory information

and potentially associated actions. This is one of the reasons

why attractor dynamics has long been proposed as a plau-

sible and appropriate substrate for brain functions (Hopfield

1982; Amit 1989). Computational modeling has proven the

versatility of such theoretical framework, accurately

describing the evolution of the firing activity recorded

during the performance of a wide range of cognitive func-

tions (Zipser et al. 1993; Amit and Brunel 1997; Koulakov

et al. 2002; Wang 2002; Machens et al. 2005; Deco and

Rolls 2005). In vitro preparations show attractor dynamics

as an emergent property of coordinated cell assemblies

capable, through synaptic reverberation, to sustain meta-

stable high-firing activity patterns (Cossart et al. 2003; Shu

et al. 2003; Lau and Bi 2005; Sasaki et al. 2007). Some of

these preparations spontaneously display slow oscillatory

patterns of spiking activity in which Up states at high firing

rates alternate rather regularly with almost quiescent Down

states (Sanchez-Vives and McCormick 2000; Shu et al.

2003). Yet, attractor dynamics together with a self-inhibi-

tion modeling an activity-dependent fatigue mechanism,

provide a reliable theoretical framework capable to quan-

titatively describe the observed features of this phenomenon

(Latham et al. 2000; Compte et al. 2003).
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Slow rhythms in cortical slices largely share electro-

physiological properties with the in vivo recordings during

slow wave sleep and ketamine anaesthesia, originally

characterized in the neocortex of the cat (Steriade et al.

1993). Furthermore, Up states of spontaneous slow

rhythms from the auditory and somatosensory cortices of

rats in vivo, show stereotyped time course which conserve

their temporal structure in the activity patterns produced in

response to sensorial stimuli (Luczak et al. 2009; Harris

et al. 2010). Hence, the study of the neurobiological sub-

strate of slow Up/Down oscillations and the characteriza-

tion of the underlying network dynamics is directly related

to the question of which neuronal machinery is available

for information processing in the brain.

Here we explore the footprints leaved by the nonlinear

dynamics of the cortical networks during Up/Down oscil-

lations aiming at strengthening the hypothesis that the

nervous tissue, and in particular the cerebral cortex, is an

excitable medium with a potentially high computational

power (Langton 1990; Beggs 2008). In particular, we

investigate the relationship between network excitability

and the timescales observable in vitro like Up and Down

state durations. We report a wide spectrum of such time-

scales whose distribution largely match the one predicted

by the theoretical framework of attractor dynamics and

activity-dependent self-inhibition. The resulting working

regime of such cortical networks appears to be supported

by a balanced interplay between intrinsic fluctuation of the

spiking activity and an eroded landscape of force field

driving the system to wonder with timescales longer than

the ones available at microscopic level (Tsuda 2002;

Durstewitz and Deco 2008; Braun and Mattia 2010).

Methods

Mean-field theory of neuronal network dynamics

Under quite general assumptions, the average firing rate m
of a neuron can be worked out as a function of the

instantaneous mean and variance of ionic currents flowing

across its membrane potential. The same input–output

relationship can be used at the population level, provided

that the statistics of incoming currents is similar for dif-

ferent neurons. In other words, a condition in which all the

neurons in the network feel the same mean ‘‘field’’, a

physics concept which here has to be considered as a

synonym of input current. Although such hypothesis could

appear unlikely to work, it is fulfilled when a sufficiently

wide network of neurons is undertaken (Amit and Tsodyks

1991), like those observed in the cortical tissue (Braiten-

berg and Schüz 1991). Mean-field theory allows to predict

population firing rate of a network of spiking neurons

under stationary conditions, provided that we are able to

compute the input–output gain function U(min), a sigmoidal

function like those depicted in Fig. 1a. U(min) returns the

output discharge rate mout of a nervous cell when its pre-

synaptic neurons emit spikes at frequency min. The gain

function is shaped both by single-neuron properties, like

the absolute refractory period and the spike emission

threshold for the membrane potential, and by synaptic

features determining how incoming spikes on the dendritic

tree are translated in input currents. Neuronal networks

with higher or lower amplification gain (like red and blue

curve in Fig. 1a, respectively) are more or less excitable,

respectively. Gain functions have been worked out for

several integrate-and-fire (IF) neurons and synaptic trans-

mission models (see for review Burkitt 2006; La Camera

et al. 2008). Here we use a U(m) derived in (Fusi and Mattia

1999) for a simplified IF neuron model.

Starting from the response properties in U(m), the time

evolution of the network activity m(t) can be roughly

obtained as a sequence of discrete steps. For each of them,

U(m(t)) provides the discharge rate m(t?1) of the neuronal

pool at the next step, to feedback as input in order to close

the loop and have the mean-field dynamic equation of the

network. For reference see (Amit 1989) and (Renart et al.

2003).

Energy landscape metaphor and firing rate distribution

The difference between the output firing mout = U(min) and

the input min determines the ‘‘force’’ driving the activity

m(t) of the network: positive U(m)-m brings the neurons of

the network to fire at higher rates. Examples of force

profiles from the gain functions in Fig. 1a are show in

Fig. 1b: steeper U(m) (red curves) from a more excitable

network induces more positive driving forces if compared

to a dampen system (blue curves) where U(m)-m is mainly

negative. If input activity equals the output ones

(U(m) = m), null forces result and the network is stuck in a

‘‘fixed point’’ (circles in Fig. 1). These are special states of

the system where the firing rate self-consistently reproduce

itself. If forces nearby such states are ‘‘attractive’’ (curves

with negative slopes in Fig. 1b), they are preferred activity

levels of the network called attractor states.

From the concept of force, we can introduce the ‘‘work’’

a network could spend and then the available energy, given

by the integral EðmÞ ¼
R
ðUðmÞ � mÞdm. The resulting

energy landscape, shown on top of Fig. 1b for the above

gain functions, can help in recognizing the attractor states

of the network as the bottom of the wells, which the net-

work activity tends to reach. Actually, networks are com-

posed of a finite number of nervous cells and on very short

time scales the whole discharge rate is a fluctuating
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variable depending on the Poissonian counting statistics of

emitted spikes (Brunel and Hakim 1999; Spiridon and

Gerstner 1999; Mattia and Del Giudice 2002). Embodying

such intrinsic fluctuations in the mean-field description, the

energy landscape allows to work out the distribution of

firing rates under stationary conditions, analogous to the

Gibbs distribution (Risken 1989): PðmÞ / expð�EðmÞ=kTÞ,
where jT is the parameter related to the fluctuation size of

m(t), inversely proportional to the number of neurons in the

network. In Fig. 1c are the three distributions for the

example networks in Fig. 1a, b.

Energy landscape can have more complex shapes as in

Fig. 1c, where the intermediate excitability of the neurons

yields to have three fixed points (circles): the two corre-

sponding to the valleys of E(m) are attractors states, while

the third one pointing to the top of the central hill is an

unstable fixed point. Activity distribution in Fig. 1d clearly

shows the existence of two preferred states (two separated

peaks) at high and low m, analogously to what have been

observed during Up/Down slow oscillations (see Fig. 3c).

In vitro experiments and data analysis

Results from the experiments reported have been previ-

ously published in (Sanchez-Vives et al. 2010; Reig et al.

2010), where a detailed description of experimental

methods and data analysis is given. Briefly, extracellular

recordings were obtained by means of tungsten electrodes

from 400 lm thick cortical slices from adult ferrets. Slices

were placed in an interface-style recording chamber and

bathed in ACSF containing (in mM): NaCl, 124; KCl, 3.5;

MgSO4, 1; NaHPO4, 1.25; CaCl2, 1.2; NaHCO3, 26; and

dextrose, 10, and was aerated with 95% O2, 5% CO2 to a

final pH of 7.4. The bath temperature was maintained at

34–36�C. Under these conditions, slow rhythmic activity

appeared in the slice (Sanchez-Vives and McCormick

2000). Here we used only the control conditions from both

studies (Sanchez-Vives et al. 2010; Reig et al. 2010),

although further pharmacological and bath temperature

manipulation were performed afterwards.

We introduced a multi-unit activity (MUA) estimate

inspired to the evidence that power spectra of population

firing rate have asymptotic values at very high frequency

proportional to the firing rate itself (Mattia and Del Giudice

2002). If a linear transform occurs from spikes to local field

potentials (LFP) at high Fourier frequencies, LFP power

spectra ratios should provide a reliable estimate of popu-

lation firing rate changes. MUAs were then estimated as the

average power of the relative LFP spectra in the frequency

band of 0.2–1.5 kHz, and sampled every 5 ms. The base-

line spectrum was the one corresponding to the average

down state level. Log(MUA) scaling was used to balance
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Fig. 1 Mean-field theory of attractor network dynamics. a Input–

output gain functions U(m) for different levels of excitability. Neurons

in a network respond to the input pre-synaptic firing min, with an output

firing mout = U(min), which is higher for excited cells (red) with respect

to the dampened ones (blue). In all panels, circles are ‘‘fixed points’’ of

the dynamics, where the output firing is the same as the input one:

min = mout. b Restoring forces result from the ‘‘distance’’ between the

input and output firing: U(min) - min. Larger is such distance, faster is

the firing rate change of the network. Sigmoid shaped curves are forces

for different levels of excitability: low (blue, as in Panel A);

intermediate (green) and high (red, as in Panel A). Null force points

out a fixed point of the dynamics (no motion). The integral of the force

is a kind of ‘‘work’’ the network can spend: the ‘‘energies’’ sketched on

top of the panel. Networks tend to reach a minimum of the energy, a

stable fixed point. c Probability distributions of the network firing rates

assuming intrinsic fluctuations of the dynamics, and directly computed

from the energy landscapes in Panel B. A distribution peak

corresponds to an energy valley, because the dynamics is ‘‘attracted’’

to such preferred state. d and e Same as Panels B and C for an

intermediate level of excitability, which makes the network bistable

(two preferred states corresponding to the energy wells)
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the large fluctuations of the nearby spikes. Log(MUA) was

furthermore smoothed with a moving window of 80 ms.

The time of occurrence of an upward and downward

transition was estimated as the crossing time of a threshold

MUA value taken to be 60% of the distance between the

two peaks in the log(MUA) histogram corresponding to Up

and Down states. In Fig. 2a is shown a rasterplot of the

time course of MUA extracted from an example recording

around the detected Down-to-Up transitions (left) and the

Up-to-Down transitions. Colour code in logarithmic scale

MUA from low (blue) to high (red) firing rates taking as

reference the activity during Down states. In matching

theory, simulations and experiments we considered the

population firing rate m and the MUA as the same variable.

Activity-dependent fatigue mechanism for Up/Down

slow oscillations

The nonlinear dynamics of the network activity by itself is

not capable to describe the full range of the experimental

evidences collected on the Up/Down slow oscillations.

Even when a bistable regime of activity like that shown in

Fig. 1d, e is obtained, the residence times in one of the two

preferred states (Up or Down) have approximately an

exponential distribution (Gigante et al. 2007; Martı́ et al.

2008; Mejias et al. 2010), in analogy to the problem of the

diffusion over a barrier (Risken 1989). On the other hand,

slow oscillation in vitro are quite regular with a relatively

low coefficient of variation (Sanchez-Vives and McCor-

mick 2000; Sanchez-Vives et al. 2008; Sanchez-Vives

et al. 2010; Reig et al. 2010), as shown in Fig. 3d for an

example recording. An effective theoretical description has

to include an activity-dependent modulation of the attractor

dynamics. Indeed, if a mechanism of self-inhibition is

embodied through an additional hyperpolarizing current or

a short-term depression of the excitatory synaptic trans-

mission, stability of Up and Down states may change with

time introducing a time correlation and then a regularity of

the permanence times (Latham et al. 2000; van Vreeswijk

and Hansel 2001; Compte et al. 2003; Giugliano et al.

2004; Holcman and Tsodyks 2006; Gigante et al. 2007,

Curto et al. 2009; Ngo et al. 2010). Here we included a

self-inhibition proportional to a fatigue level c(t) modelled

as an accumulation process with leakage driven by firing

rate m(t), mimicking the dynamics of the extracellular ionic

concentrations which drive the activity-dependent hyper-

polarizing potassium current : dc=dt ¼ �c=sþ m, where s
is a characteristic decay time. A numerical reconstruction

of c(t) from an experimentally estimated MUA is shown in

Fig. 2b (an arbitrary s = 250 ms has been used). High c

levels results at the end of Up states, and may be respon-

sible for the spike-frequency adaptation phenomenon, a

monotonic decrease of firing rate with time. After Up-to-
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Fig. 2 Activity-dependent self-inhibition and attractor dynamics to

have a ‘‘relaxation’’ oscillator. a Rasterplot of MUA (multi-unit

activity) centred around upward (Down-to-Up, left from blue to red)

and downward (Up-to-Down, right from red to blue) transitions, from

an in vitro experiment with ferret brain slices. b A sample period of

MUA time series (blue) and the fatigue level c(t) (red) proportional to

the activity-dependent self-inhibition and carried out from experi-

mentally accessible MUAs (see text for details). c Black (solid and
dotted) curve depicts the firing rates at the fixed points of the attractor

dynamics as a function of the changes DI in the incoming current to

the neurons. Solid and dotted branches correspond to stable or

unstable fixed points (valleys or saddles of the energy landscape),

respectively. Gray tick line provides the amount of self-inhibition

proportional to c(t) expected for a given output m under stationary

conditions. Stable fixed points at four sample DIs are shown as circles
coloured adopting the code used for MUAs in Panel A. Background

coloured thick arrows schematically illustrate the Up/Down cycle

(see text for details). d Energy landscapes for the same sampled DIs as

in C. Darker gray curves are for networks dampened by more

negative DIs
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Down transitions, the absence of spiking activity allows a

recovery stage during the Down states.

Above mean-field theory can be extended to faithfully

describe the network dynamics of IF neurons with spike

frequency adaptation (Gigante et al. 2007). A good

approximation is to consider U as function of a mean input

current I(t) in which both the synaptic feedback due to the

local activity m(t) and the self-inhibition modulated by the

fatigue level c(t) are taken into account:

I tð Þ ¼ Crecm tð Þ � g c tð Þ þ Iext;

where Crec is the synaptic weight proportional to the

average number of local synapses multiplied by the

effectiveness of the synaptic transmission; g is the coupling

strength between the hyperpolarizing ionic current and the

fatigue level; and Iext is the additional synaptic and

ionotropic current both due to the firing activity from the

neurons outside the monitored local network and to the

ionic flux determining the excitability of the neurons.

Setting I0 as the background current in absence of adap-

tation (c = 0) is convenient to write Iext ¼ DI þ I0, where

DI is the change of a generic input current, used in this

work as an alternative way to govern the neuron

responsiveness.

The interplay between the nonlinear dynamics of m(t)

and the self-inhibition modulated by c(t) may yield to a

‘‘relaxation oscillator’’ behaviour completely fitting the

experimental evidence (Latham et al. 2000; Compte et al.

2003; Giugliano et al. 2004). The relaxation oscillations are

orbits (closed trajectories) in a phase plane like that in

Fig. 2c. Black curve is where at different c fixed points

U(c,m) = m are found: solid and dotted branches are for

stable and unstable fixed points, respectively. As x-axis we

used the input current change due to the fatigue level:

DI = -g c. Under stationary condition and given a m, the

asymptotic (dc/dt = 0) fatigue level is c = s m: gray

straight line illustrate such linear ‘‘nullcline’’ m = -DI/gs.

For relatively slow c(t) with s of several hundreds of

milliseconds or more, firing rate approaches the closest

stable fixed point available. In the phase plane, the system

will then moves along the solid branches of the black

curve, trying to relax by minimizing the distance with the

gray nullcline, as sketched by the colored thick arrows.

Respectively, relaxation dynamics on top and bottom

branches correspond to the accumulation stage during Up

state and the recovery stage during Down state in Fig. 2b.

Seen from a different perspective the relaxation oscillator

dynamics is the result of the shaping of the energy land-

scape at different fatigue levels (see Fig. 2d). From this it is

then clear that Up and Down states terminate because the

corresponding well disappears and the system moves to the

other strengthened attractor.

In silico experiments: simulation details

We investigated the dynamical properties of the Up/Down

slow oscillations and the distribution of residence time in

the high and low m states, adopting a network model of

simplified IF neurons with spike frequency adaptation as in

(Fusi and Mattia 1999; Gigante et al. 2007). Briefly, we

simulated networks of N = 1,000 excitatory IF whose

membrane potential dynamics is: dV=dt ¼ �bþ Isyn tð Þþ
IAHP tð Þ, where Isyn(t) is the input synaptic current and

IAHP(t) is the self-inhibition modulated by the fatigue

mechanisms hyperpolarizing V. Potential unit is the voltage

gap h between the spike emission threshold and the resting

potential reached when no spikes are received. V(t) cannot

be negative, and the model includes a reflecting barrier at

V = 0 h. The refractory period after a spike emission is of
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Fig. 3 Time dependent in vitro MUA variability during Up states

behaves as predicted by the attractor framework. a MUA centred

around Up state onset (left) and Up-to-Down transition (right) in the

same in vitro recording shown in Fig. 2. Solid black line, average

MUA. Gray shaded regions depict the percentiles from 10 to 90 of the

time-varying MUA distribution around both Up state onset (left
dashed vertical line) and downward transitions (right dashed vertical
line). b Histogram of MUAs in the intervals depicted in Panel A at the

beginning (red vertical strip) and the end (green strip) of the Up state.

Dashed lines, average MUA in the two periods (right labels, numeric

values of the mean and the SD). c Histogram of log(MUA) showing

the existence of two preferred states (Up and Down at high and low
MUAs, respectively). d Histograms of Up (red) and Down (blue) state

durations observed in this recording. Dashed lines, mean durations
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10 ms. The constant leakage is b = 73 h/s. Every time a

spikes is emitted the local fatigue level c(t) of a single

neuron is increased by 1, while during the inter-spike

intervals exponentially decay with a time constant

s = 500 ms, if not otherwise specified. Self-inhibition is

IAHP tð Þ ¼ �gc tð Þ, with g = 1.0 h/s. Synaptic transmission

was instantaneous, and local spikes are transmitted with

delay randomly chosen from an exponential distribution

with decay constant of 3.3 ms. Connectivity is sparse and

the probability two neurons are connected is 0.01. Depo-

larization induced by a local recurrent spike is Jrec = 0.15

h. Besides, spikes from neurons outside the local network

are modelled as a Poissonian spike trains at frequency

mext = 1,500 Hz, coupled with a synaptic efficacy

Jext = 0.0461 h. Hence, the average recurrent coupling is

Crec = 0.01 N Jrec, and in what follows all the modulations

of such parameter are expressed as percentage of such

value. An event-based approach described in (Mattia and

Del Giudice 2000) has been used to numerically integrate

the network dynamics.

Results

Evidence of attractor dynamics during slow Up/Down

oscillations

Attractor dynamics have been previously reported as an

emergent network property explaining the occurrence of

Up states during spontaneous slow oscillations in vitro

(Cossart et al. 2003; Shu et al. 2003). Stereotyped activity

patterns have been also observed during spontaneous and

sensory evoked Up states sharing conserved temporal

structure in vivo, which is suggestive of an attractor

mechanism at work (Luczak et al. 2009). Indeed, a first

clue of attractor dynamics is the existence of preferred

states of the spiking activity, as predicted by the theoretical

mean-field framework summarized in the Methods section.

By preferred states we mean that although MUAs widely

fluctuate in time, firing rate is ‘‘attracted’’ to a suited dis-

charge frequency: an almost quiescent Down state at the

beginning and the end of the cycles in Fig. 2a from an

example recording in vitro, and a high firing Up state

between the two transition times. Such preferred states are

particularly evident in the bimodal distribution of MUA

during time in logarithmic scale in Fig. 3c, usually

observed in Up/Down slow oscillations experiments

(Sanchez-Vives et al. 2008; Sanchez-Vives et al. 2010;

Reig et al. 2010).

However, the narrow distributions of Up and Down state

durations like those shown in Fig. 3d for the example in

vitro recording, cannot be explained as the only result of

the bistability of the cortical networks for which an almost

exponential distribution is predicted (see Methods for

details). Local synaptic reverberation has to interplay with

an activity dependent fatigue mechanism in order to

embody a time correlation which induces state transitions

as in a relaxation oscillator (Latham et al. 2000; Compte

et al. 2003; Giugliano et al. 2004; Gigante et al. 2007;

Curto et al. 2009; Ngo et al. 2010). This additional

mechanism can explain the spike frequency adaptation

(SFA) observable at the single cycle level in Fig. 2a, where

a tiredness and a recovery stage brings MUA from dark red

to orange/yellow during Up states and from blue to cyan in

the Down states, respectively. In Fig. 3a, average MUA

across Up/Down cycles makes SFA more apparent during

the high firing state between the two transitions marked by

dashed lines.

The slow decrease of MUA is predictive for the mean-

field theory of a relaxation due to an increased activity-

dependent self-inhibition, reducing the stability of the high

firing attractor, as in Fig. 2c, d. If this is the case, the

restoring force making attractive the high frequency neu-

ronal activity through synaptic reverberation becomes

weaker when the fatigue increases, such that MUA fluc-

tuations around the preferred state becomes larger. A

widening of the firing rate m distribution like that shown in

Fig. 1b, c when the excitability of the model network is

reduced from red to green. Such expectation is confirmed

in Fig. 3b, where the distribution of experimentally recor-

ded MUAs across cycles in a 100 ms interval after Up state

onset (red strip in Fig. 3a) is narrower compared to the one

obtained from the MUAs preceding the Up state offset

(green strip). Such fluctuations changes are super-Poisso-

nian (variance increases while mean decreases) and cannot

be simply attributed to the intrinsic variability of the spike

counting process. Interestingly, increasing inter-cycle var-

iability of single-electrode MUAs during Up states is

another way to describe the in vivo observed patterns of

spike sequences showing a temporal precision which

decays as the high firing state progresses (Luczak et al.

2009).

Relaxation oscillators should leave yet another footprint:

a fast change in the time derivative of the firing rate

m(t) just before the detection time of a state transition. This

behaviour is expected because transitions are the conse-

quence of the stability loss driven by the adaptation slow

dynamics, as shown in Fig. 2c, d. Under these conditions

the system is driven to move on the steep descent to the

only valley available corresponding to the other state.

Network activity would next have to start a chain reaction

elicited by recurrent self-excitation or a sudden drop to the

silent state due to the strong self-inhibition. In Fig. 3a such

almost discontinuous changes in the average MUA time

course are clearly apparent looking within an interval of

50 ms preceding the two transitions.
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Excitability modulation and related change

of the network dynamics

The network dynamics of the relaxation oscillator behind

the Up/Down oscillations can be widely modulated by

shaping the neuronal response properties. The input/output

gain function U(c,m) returns the output firing rates of the

cortical network when neurons have a fatigue c and receive

presynaptic spikes at rate m. Excitability of neuronal pop-

ulations is mainly governed by the slope of U, the ampli-

fication gain, i.e. the steeper is U the more excitable the

network is. Figure 4 displays how network parameters

affect both the shape of U and the coupling strength

between the single-neuron fatigue mechanism and the

neuronal firing. Phase planes in Fig. 4a, c are the same as

Fig. 2c: S-shaped curves are where the fixed-point of the

dynamics can be found for a given c (m-nullcline: dm/

dt = 0), while gray lines show the change in the input

current due to the adaptation level c reached when neurons

fire at constant rate m (c-nullcline: dc/dt = 0, see Methods

for details).

Increasing the average strength of the recurrent excit-

atory synaptic feedback Crec, reshapes U such that avail-

able fixed-points of the dynamics will be shifted at higher

firing rates. For Crec [ 80%, m-nullcline are divided in

three branches because for a subset of cs the network is

expected to be bistable with three fixed point as in Fig. 1d,

e: the unstable ones are pointed out by the dotted branch.

A

Input current change ( /s)

0

10

20

30
)z

H(
etar

gniri
F

25

15

5

35

20-2-4-6

g = 1.0 /s

Crec = 100%
Crec = 85%

Crec = 70%

C

0

10

20

30

)z
H(

etar
gniri

F

25

15

5

35

Input current change ( /s)
0-2-4-5 -3 -1

I = -0.5 /s

Crec = 100%

g
=

0.25
/s

g = 0.5
/s

g = 1 /s

g = 1.5 /s

B

Input current change ( /s)
10-2-4-6 -5 -3 -1

I = 1 /s

I = -1
/s

I = -3 /s

g = 1.0 /s

0

10

20

30

)z
H(

etar
gni ri

F

25

15

5

35

0

10

0

10

0

10

0

10

)z
H(

etar
gniri

F

1 s

D
g = 0.4 /s

g = 0.75 /s

g = 1.0 /s

g = 1.25 /s

Fig. 4 Modulation of the excitability of neuronal networks. a Shape

change of the fixed-point curve (see Fig. 2c) by varying the strength

of the recurrent synaptic coupling Crec, i.e. the self-excitation degree.

At fixed self-inhibition feedback g and without any additional current

DI, the network has stable stationary states at low firing rate (open
coloured circles). Intersections marked by black dots are unstable

fixed points, and Up/Down oscillations are expected. Larger Crec (red)

are those with higher m. b Fixed-point curves changing the incoming

current DI. Crec = 100% and g = 1 h/s. c Fixed-point curves at

different self-inhibition feedback g. Crec = 100% and DI = 0 h/s.

Larger gs are those inducing a larger range of input current change

(flatter gray lines). Smaller gs make the network more excitable such

that states at high m are preferred. d Spontaneous activity in simulated

network of 1,000 excitatory IF neurons for Crec = 100%, DI = 0 h/s

changing g. From larger self-inhibition feedback (darker, bottom) to

smaller gs (lighter, top) the network shifts from an asynchronous low

firing state to the random occurrence of short Up states, to a periodic

Up/Down oscillation, finally showing a persistent asynchronous high

firing state only occasionally interleaved by short Down states

Cogn Neurodyn (2012) 6:239–250 245

123



Intersections between c- and m-nullclines are stable (col-

oured circles) or unstable (black dots) fixed points of the

whole c-m mean-field dynamics. Where stable intersections

occur, trajectories in the phase plane will be attracted as

converging spirals. On the other hand, unstable intersec-

tions between gray lines and dotted branches will deter-

mine global oscillations (limit cycles) of the network

activity: the Up/Down slow oscillations.

Another way to make the cortical network more or less

excitable is to change the amount of incoming synaptic

current due to the spiking activity of neurons outside the

local network or by modulating pharmacologically the

permeability of ionic channels on the cell membranes. As

shown in Fig. 4b, such input current changes DI shift

almost rigidly the m-nullcline, shaping as expected in an

additive way the gain function U. Finally, instead of

increasing the excitatory input and/or the strength of self-

excitation, the excitability of the system can be enhanced

by reducing the self-inhibition due to the activity-depen-

dent adaptation mechanism. In Fig. 4c, changes in the self-

inhibition coupling term g are directly related to the slope

of the gray c-nullcline: smaller is the feedback g, steeper is

the nullcline such that stable intersections with the high-m
stable branch of the m-nullcline may occur (see for instance

g = 0.25 h/s).

Each of the Crec, DI and g parameters affect the

dynamics of the cortical network in a peculiar way. Nev-

ertheless all of them are capable to induce phase transitions

driving the system from stable asynchronous firing regime

to Up/Down oscillations. Besides, such parameters may

strongly affect the timescales of the dynamics without any

change in the time constants determining the microscopic

dynamics of the single neurons, like the decay time s for

c(t). In Fig. 4d we show the firing activity m(t) sampled

from four different simulations of simplified IF neuron

networks with the same parameters as in Fig. 4c. Quanti-

tative predictions on the dynamic phase and expected m are

faithfully reproduced by the in silico experiments. In par-

ticular, decreasing gs yield the population firing from low-m
asynchronous state (bottom, dark gray), to irregular and

regular Up/Down oscillations (centre, two intermediate

gray), and eventually to an almost stable high-m asyn-

chronous state (top, light gray). Interestingly, in the inter-

mediate cases changing g from 0.75 to 1.0 h/s, Down state

have been widened to durations much longer than the lar-

ger microscopic timescale available, which in these

examples is s = 500 ms.

A spontaneously emerging wide spectrum of timescales

Hence, mean-field theory suggests qualitatively different

ways to manipulate the excitability of the cortical net-

works. Both an increase of the synaptic self-excitation Crec

and a positive change DI of the external current yield the

network to respond at higher firing rates, although they

shape differently the gain function U. On the other hand,

the loss of excitability obtained augmenting the self-inhi-

bition feedback g could be compensated at least in prin-

ciple by an increase of Crec, although it could be not

granted because of possible nonlinear compositions of the

effects induced to the network dynamics. In order to

investigate this issue we simulated a large set of networks

composed of 1,000 simplified IF neuron (see ‘‘Methods’’),

sampling randomly for each of them the parameters Crec,

DI and g from a uniform distribution. Networks have been

selected among those with m(t) alternating between Up and

Down states during a time span of 200 s (n = 93), and

discarding the others with a stable asynchronous activity at

low or high firing rate. The average state durations have the

wide distribution shown in Fig. 5a. Each simulated net-

work is a coloured circle, changing from blue for very long

Down states, to white for relatively short Up/Down cycles,

and finally to red for long Up state durations.

The distribution has a non-trivial hyperbolic shape

representing an apparent anticorrelation between Up and

Down state durations, such that a cortical model network

with long Up states will almost certainly have short Down

states, and vice versa. This is a direct consequence of the

rigid modelling of the function U whose sigmoidal shape is

not changed. Hence, if an intersection between the null-

clines in Fig. 4 occurs close to the high m stable fixed-point

branch, it will be far from the bottom stable branch of the

nullcline, such that the recovery stage during Down state

will be necessarily fast. Another interesting feature of the

distribution is its asymmetry: Down state durations

elongate to more than 10 s intervals, while Up states are

unlikely longer than one second. This is mainly due to the

non-uniform distribution of the slope of the c-nullclines

proportional to 1/g, implying a more dense sampling for

large self-inhibition feedback g. Nullcline intersections are

then more likely close to the bottom stable branch of the

m-nullclines, as in Fig. 4c. Indeed, such asymmetry cannot

be attributed to an asymmetric sampling of the parameters

being their distributions in Fig. 5b, bell-shaped and sym-

metric: the asymmetry is then the result of the generic

nonlinearity of the network dynamics.

In Fig. 5c, d, we mapped the simulated networks in two

representative subsections of the bifurcation diagram

computed as in (Gigante et al. 2007) from the mean-field

description of the activity dynamics (see Methods for

details). The available dynamical regimes by changing

Crec, DI and g span from simple asynchronous stable states

(white regions) to more complex dynamics in which more

asynchronous states coexist (orange area) or relaxation

oscillations occur (yellow). Smaller areas in which both

global oscillations and asynchronous state coexist are also
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visible (green and cyan triangles). The reliability of the

mean-field description is shown by the almost complete

overlap between the yellow corners and the circle positions

representing the same model networks in Fig. 5a. Their

positioning close to the stability boundary of the relaxation

oscillator regime, explain why heterogeneous networks

have a so widespread timescale distribution.

From an experimental point of view, a similar explora-

tion of the parameters space can be performed by

exploiting the intrinsic variability of the biological prepa-

ration. A cortical slice with spontaneous slow oscillations

displays a wide heterogeneity in the detailed MUA

dynamics and in the average duration of the Up and Down

states (Sanchez-Vives et al. 2010; Reig et al. 2010). In

Fig. 6 are plotted the Up and Down average durations for

the recorded slices with spontaneous slow oscillations

(n = 69) collected under control conditions (see Methods).

Experimental evidence confirms the theoretical scenario

predicted in Fig. 5. With few exceptions (the dark circles

with relatively long durations of both Up and Down states),

in vitro slow oscillations display an anticorrelation and an

asymmetric distribution of Up and Down state durations.

State-dependent shrinking of timescale distribution

In Sanchez-Vives et al. (2010) we probed the properties of

the spontaneously Up/Down oscillations by changing

pharmacologically the excitability of the cortical slices. We

injected antagonists of the GABAA receptors, which reduce

the efficacy of the synaptic transmission of inhibitory

neurons. A progressive blockade of synaptic inhibition on

average shortened Up state duration and elongated Down

states, lowering the frequency of oscillations. Here we look

that data at a single-slice level, in order to understand how

timescales and dynamical regimes are affected by a direct

modulation of the excitability. In Fig. 7a the average Up

state duration for each cortical slice is plotted versus the

duration change observed after the injection of 0.2 lM of a
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Fig. 5 Anticorrelation of Up and Down state durations in simulated

networks of IF neurons. a Average Up and Down state durations of

n = 93 different simulated networks of 1,000 excitatory IF neurons

with randomly chosen DI, Crec and g. Each circle is a different

network and the colour is blue and red for long Down and long Up
states, respectively. White filling is for relatively short state durations.
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smoothed by a convolution with a bivariate Gaussian kernel.

b Histograms of the randomly chosen parameters: from left to right
DI, Crec and g. Dashed lines, mean values. c Planar section of the

bifurcation diagram at Crec = 100%. Coloured circles are from the

subset of simulations shown in Panel A with Crec in [96.75,103.25]%.

Different coloured patches delimit regions with qualitatively different

network dynamics: yellow, regime of Up and Down oscillations;

orange, two simultaneously stable Up and Down states without

oscillations; white, only one stable state at low (top left) and high

(bottom right) firing frequencies; green and cyan, regions in which

coexist Up/Down oscillations and one stable state at low and high

firing rate, respectively. d Another section of the bifurcation diagram

at DI = 0 h/s. Circles, the subset of simulations shown in A with

DI in [-0.5,0.5] h/s. Patch colours as in C
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GABAA antagonist. Although Up states shorten, the dura-

tion change depends on the initial length of the state:

longer durations display larger variations. More interest-

ingly, the Down state durations in Fig. 7b have a non

monotonic change: slices with Down states shorter than

2.35 s display an increase of duration, while the opposite

occurs for longer average durations. Even in this case, the

change in the state duration depends on the initial length of

the state itself. In summary, the distribution of timescales

in Fig. 6 shrinks when the cortical network excitability is

increased by injecting a GABAA antagonist, and it does

that in a non-trivial state-dependent manner.

Discussion

Slow Up/Down oscillations are a network phenomenon

which emerges in isolated cortical tissue (Sanchez-Vives

and McCormick 2000; Cossart et al. 2003) from the

interplay between a strong synaptic self-excitation sus-

taining the reverberation of local spikes, and an activity-

dependent self-inhibition associated to a fatigue mecha-

nism (Latham et al. 2000; van Vreeswijk and Hansel 2001;

Compte et al. 2003; Holcman and Tsodyks 2006; Curto

et al. 2009; Ngo et al. 2010). Mean-field theory of IF

neuronal networks provides a quantitatively reliable

description of the dynamical regimes and timescales of

such relaxation oscillators (Gigante et al. 2007). Here we

tested several predictions of this theoretical framework on

recordings from in vitro cortical slices with spontaneous

oscillations (Sanchez-Vives et al. 2010; Reig et al. 2010),

finding further evidence that attractor dynamics with

adaptation are at work. In particular, we reported an inter-

cycle variability of MUA which increases during Up states

while spike frequency progressively decays, possibly

adapting to an augmented fatigue level. Such trend has

been observed in those recordings with relatively long Up

state durations, which allowed the data analysis illustrated

in the Results sections. The variability modulation in time

does not have to be expected when high firing states do not

display spike frequency adaptation. This would explain

why in some of the eligible recordings we have not found a

change in the fluctuation size of the activity during Up

states.
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Matching simulations of IF neuron networks, mean-field

theory and in vitro experiments, we further found a wide

spectrum of average Up and Down state durations with a

non-trivial distribution. Its shape highlights a theoretically

expected anticorrelation of the permanence times, together

with an asymmetry in the maximum state durations: Down

states are one order magnitude longer than Up states. This

asymmetry and the wide range of timescales seem naturally

emerging features of the proposed theoretical description,

provided that the usually observed heterogeneity in the

excitability of the cortical tissue is taken into account.

Network parameters for in silico experiments have been

sampled from random uniform distributions, but only the

simulated networks displaying an alternation of firing rates

between Up and Down states are taken into account. The

resulting cloud of cell assemblies (the circles in the bifur-

cation diagram of Fig. 5c, d) are distributed closely to the

bifurcation boundaries delimiting the corner where relax-

ation oscillations become unstable and asynchronous firing

regimes take place. Hence, networks with Up/Down

oscillations are those on the verge of losing stability. This

is reminiscent of criticality, which emerges when nonlinear

systems are placed at ‘‘the edge of chaos’’ (Langton 1990),

where long range activity correlations in space and time are

expected to be maximal. The wide spectrum of dynamical

scales are the basis for complex computations and infor-

mation processing in neuronal networks (Bertschinger and

Natschläger 2004; Beggs 2008), and here we speculate that

the emergence of slow Up/Down oscillations may reflect

how cortical networks spontaneously settle in order to

make available a high computational power.

Inspecting the behaviour of single brain slices when

their excitability is enhanced through the progressive

blockade of the inhibitory synaptic transmission, we

observed changes in the state durations which depended on

the permanence times under control conditions. As a result,

the wide spectrum of timescales is shrunk, yielding an

increase of the slow oscillation frequency and a shortening

of Up state durations. From a mean-field perspective, this

excitability enhancement implies a multivariate change of

the key parameters Crec, DI and g. If the cloud of the

networks in the parameter space is shifted far from the

critical boundaries delimiting the stability of the relaxation

oscillations, shorter state durations can be obtained in

agreement with experimental observations. Hence, even

when only a single network parameter like synaptic feed-

back is modulated, a kind of homeostatic process may yield

the whole system to adapt other parameters accordingly.

Symmetrically, an excitability loss can be modelled

shifting the network cloud in the opposite direction of the

bifurcation diagram. Critical boundaries will be crossed,

and for different reasons yet another compression of the

distribution of the state durations is expected. Indeed, the

loss of excitability dampens the gain function U, which

reflects in a smaller gap between the firing rates in the Up

and Down states. Under these conditions, the energy

landscape has shallower valleys which eventually melt in a

single attractor well associated to a stable asynchronous

state. The excitability dampening ruins the force field

(Tsuda 2002; Durstewitz and Deco 2008) allowing the

system to have a wondering only mildly constrained by

what remains of the barriers and the valleys of the energy

landscape. The permanence times in the almost overlapped

Up and Down states are consequently shortened. Such

transition from relaxation oscillations to stationary asyn-

chronous states well represents the change in the dynamical

regimes of the activity recorded in vivo when the brain

shifts from deep sleep states to resting wakefulness

(Destexhe et al. 2007; Curto et al. 2009; Deco et al. 2010).

In summary, cortical networks seem to have slow Up/

Down oscillations when set in a region of the parameter

space maximizing the range of available timescales, which

corresponds to a subspace close to the stability boundary of

the oscillatory activity regimes. Finally, it should not be

neglected that the theoretical framework adopted here is

well suited to describe not only spontaneous slow oscilla-

tions but also other physiological and pathological brain

states like epilepsy, identifiable as different dynamical

regimes in the parameter space.
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