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Abstract In this paper, we study the synchronization sta-

tus of both two gap-junction coupled neurons and neuronal

network with two different network connectivity patterns.

One of the network connectivity patterns is a ring-like

neuronal network, which only considers nearest-neighbor

neurons. The other is a grid-like neuronal network, with all

nearest neighbor couplings. We show that by varying some

key parameters, such as the coupling strength and the

external current injection, the neuronal network will exhibit

various patterns of firing synchronization. Different types of

firing synchronization are diagnosed by means of a mean

field potential, a bifurcation diagram, a correlation coeffi-

cient and the ISI-distance method. Numerical simulations

demonstrate that the synchronization status of multiple

neurons is much dependent on the network patters, when the

number of neurons is the same. It is also demonstrated that

the synchronization status of two coupled neurons is similar

with the grid-like neuronal network, but differs radically

from that of the ring-like neuronal network. These results

may be instructive in understanding synchronization tran-

sitions in neuronal systems.

Keywords Ring-like and grid-like neuronal network �
ISI-distance � Mean field potential � Bifuration diagram �
Correlation coefficient

Introduction

Neuronal synchronization is known to play a crucial role in

many physiological functions such as information binding and

wake-sleep cycles (Haken 2002; Liu et al. 2011; Sun et al.

2010; Shi et al. 2008). The synchronization of neuronal signal

was proposed as one of the mechanisms to transmit and code

information in the human brain (Singer 1994; Pikovsky et al.

2001). Hence, the synchronous firing of interconnected neu-

rons has been extensively investigated by means of the theory

of nonlinear dynamics. Synchronization of fast-spiking neu-

rons interconnected by GABA-ergic and electrical synapses

was investigated by Nomura and his team (Nomura et al.

2003). It was observed that a fast-spiking pair connected by

electrical and chemical synapses could achieve both syn-

chronous and antisynchronous firing states in a physiologi-

cally plausible range of the conductance ratio between

electrical and chemical synapses. Sato and Shiino (2007)

investigated effects of the width of an action potential on

synchronization phenomena using an integrate-and-fire neu-

ron model and a piecewise linear version of the FitzHugh-

Nagumo neuron model. It was shown that the duration of the

impulse had a critical role in assuring synchronization. Syn-

chronous behavior of two electrically-coupled neurons was

investigated by Postnova et al. (2007a) Asynchronous and

various synchronous states such as out-of-phase, in-phase and

almost in-phase chaotic synchronization were observed using

the phase difference method. Simulation results demonstrated

that the tuning of neurons coupling strength could have sig-

nificant impact on the synchronous states, especially at tonic

to bursting transitions (Postnova et al. 2007a).

A variety of measures have been introduced to measure

the synchronization transaction between two neurons or

among multiple neurons. As far as we know, the firing rate

and bifurcation diagram are basic and important methods
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used to measure spike trains for encoding information in

neuroscience (Freeman 2000). Phase differences and phase

projection are other common ways to analyze the syn-

chronous state between two coupled neurons (Postnova

et al. 2007a). Mean field potential (MFP) is a global

parameter for visualization of the network synchronization

(Postnova et al. 2010). Since the measures above were all

qualitative, the focus of this study lies on those aiming at a

quantification of the synchrony degree between two or

more spike trains. Prominent examples were cost-based

distance introduced by Victor and Purpura (1996), the

Euclidean distance proposed in van Rossum (2001), cross

correlation of spike trains after filtering (Haas and Write

2002; Schreiber et al. 2003). However, a common property

of these methods is the existence of one parameter that sets

the time scale. Correlation coefficient has been used to

measure the synchronization degree of the two coupled

neurons (Wang et al. 2008), which was parameter free and

could measure the degree of synchronization quantita-

tively. However, this method was not suitable for multiple

neurons but only two neurons. More recently, a new

method ISI-distance has been introduced by Kreuz et al.

(2007, 2009), which used the interspike interval (ISI)

instead of spike frequency as the basic element of com-

parison. Since no binning was used, it was both parameter-

free and self-adaptive (Du et al. 2010). ISI-distance

method was suitable for both two and multiple neurons.

In the present paper, synchronization between two

coupled neurons and between multiple neurons with dif-

ferent network connectivity patterns is studied (Wang et al.

2010; Yu et al. 2010; Che et al. 2010; Hao et al. 2010; Ma

et al. 2011; Haeri et al. 2010; Gan et al. 2011; Zheng and

Lu 2008). There exist different connectivity patterns

including ring-like neuronal network and grid-like neuro-

nal network. The former only considers the coupling of

nearest neighbor neurons, while the latter includes all the

nearest neighbor connected couplings. We are concerned

whether the synchronization process has relation with

network connectivity patterns. If so, what is the exact

difference between them. To give all-sided information

about the synchronization, correlation coefficient and ISI-

distance methods are adopted to give the quantitative

results besides bifurcation diagram to give qualitative

analysis. The neuronal network will exhibit various firing

synchronization by tuning the key parameters of the cou-

pling strength and the external current injection. We will

show that the synchronization depends greatly on the dif-

ferent network connections. The neuron numbers of both

the ring-like and the grid-like neuronal networks are the

same and as sparse as 25. It is much easier for the gridd-

like network to reach synchronization than for the ring-like

one. More interestingly, the behavior of the two coupled

neurons is much different from the ring-like network while

it resembles the grid-like network.

The paper is organized as follows: ‘‘Model’’ presents the

model equations and network connections, including tonic-

to-bursting in a single neuron. ‘‘Results’’ presents the main

simulation results of two-coupled neurons and neuronal

networks with different connection patterns, showing the

different states of synchronization by varying control

parameters, the coupling strength and external current.

Finally, a brief conclusion is given in ‘‘Conclusion’’.

Model

To illustrate what happens when one neuron is coupled

with another neuron or when one neuron is in a coupled

network, one may employ a dynamical system, consisting

of two or more neurons that are coupled via a gap-junc-

tional flux, and study their synchronization properties.

Single neuron pattern generator

Tonic-to-bursting transition seems to be physiologically

more relevant in the central nervous system and many

neurons can display transitions between tonic spiking and

bursting as a function of the brain state (Postnova et al.

2007a, b; Shilnikov and Calabrese 2005b). It have been

observed in many models such as Hindmarsh-Rose model

(Wang 1993), models of heart interneurons (Shilnikov and

Cymbalyuk 2005a) and b-cells model (De Vries and

Sherman 2001) etc. In this paper, a modified version of

Hodgkin-Huxley approach (Hodgkin and Huxley 1952),

the so-called Huber-Braun model is adopted (Finke et al.

2008; Postnova et al. 2010). This model has originally

been developed to mimic the temperature dependent

alterations of static impulse patterns of peripheral neurons

in the skin, which shows pacemaker-like tonic firing,

bursting and a broad range of chaos in between (Braun

et al. 2000, 2001, 2003; Huber et al. 2006, 2007).

The resultant dynamics of a single neuron are described

by the following differential equations:

CM
dV

dt
¼ �

X

i

Ii

¼ �Il � Id � Ir � Isd � Isr � Iext � Icouple; ð1Þ

Il ¼ gl V � Vlð Þ; ð2Þ
Ii ¼ qgiai V � Við Þ i ¼ d; r; sd; sr; ð3Þ

ai1 ¼
1

1þ exp �si V � V0ið Þð Þ i ¼ d; r; sd; ð4Þ

dai

dt
¼ /

si
ai1 � aið Þ i ¼ r; sd; ð5Þ
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ad ¼ ad1; ð6Þ
dasr

dt
¼ /

ssr
gIsd � kasrð Þ; ð7Þ

/ ¼ 3:0ðT�T0Þ=10
�

C; ð8Þ

q ¼ 1:3ðT�T0Þ=10
�

C; ð9Þ

where CM is the membrane capacitance, V is the membrane

voltage, Id is the depolarizing sodium current, Ir is the

repolarizing potassium current, Isd is a slow depolarizing

current, a persistent sodium current as well as a low voltage

activated calcium current, Isr is a slow repolarizing current,

represented as a simplified version of Ca-dependent

K-current, Iext accounts for an external current, Icouple

stands for neighbor gap-junction coupling, gl is the leak

conductance, Vl is the equilibrium potential, gi is the

maximum conductances, ai is the activation parameters, q
is used for the temperature scaling of the ion currents, V0i

are the half-activation potentials, and si the slopes of the

steady state activation curves, g is the coupling contrast

and k is a relaxation factor.

The numerical parameter values are: equilibrium

potential (Vsd = Vd = 50 mV, Vsr = Vr = -90 mV, Vl =

-60 mV); ionic conductances (gl = 0.1, gd = 1.5, gr =

2.0, gsd = 0.25, gsr = 0.4); membrane capacitance (CM = 1);

activation time constants (sr = 2 ms, ssd = 10 ms, ssr =

20 ms); slope of steady state activation (sd = sr = 0.25 ms,

ssd = 0.09 ms); half activation potentials (V0d = V0r =

-25 mV,V0sd = -40 mV); coupling and relaxation con-

stants for Isr (g = 0.012, k = 0.17); reference temperature

(T0 = 25�C); temperature is set as a constant (T = 6�C).

We use Iext in Eq. 1 as a control parameter for tuning the

model to different dynamic states. Without an external

current (Iext = 0 lA/cm2), the uncoupled model neuron

(gc = 0 ms/cm2) operates in a pacemaker-like tonic firing

mode (Fig. 1b). As Iext increases (Iext = 0.3 lA/cm2), a

cascade of period-doubling bifurcations leads to chaotic

dynamics (Fig. 1c). With further increasing of current, at

(Iext = 0.6 lA/cm2), the pattern changes to regular burst

discharges (Fig. 1d).

Network simulations

Both two reciprocally gap-junction coupled neurons and a

neuronal network are simulated in this paper.

For bidirectional coupling of two neurons (Fig. 2a),

Icouple has the form

IcoupleðiÞ ¼ gc Vi � Vj

� �
i; j ¼ 1; 2 ð10Þ

For the ring-like network with N neurons (Fig. 2b), the

coupling current Icouple(i) is the sum of the previous and

next neurons. The closed borders replace i - 1 = 0 by

i - 1 = N, i ? 1 = N ? 1 by i ? 1 = 1.

IcoupleðiÞ ¼ gc Vi � Vi�1ð Þ þ gc Vi � Viþ1ð Þ
i ¼ 1; 2; . . .N

ð11Þ

For the grid-like N 9 N network (Fig. 2c), the coupling

current Icouple(i, j) of a neuron at position (i, j) is the sum of

the input currents for the nearest neighbor neurons. The

summation is taken over all pairs (m,n) with

m; n 2 f�1; 0; 1g. The closed borders replace i ? n = 0

by i ? n = N, j ? m = 0 by j ? m = N, i ? n = N ? 1

by i ? n = 1, j ? m = N ? 1 by j ? m = 1.

Icoupleði; jÞ ¼
X

gc Vi;j � Viþn;jþm

� �
i; j ¼ 1; 2; . . .;N

ð12Þ

Results

In this section, numerical results of synchronization status

between two coupled neurons will be presented firstly.

Then, synchronization status of gap-junction coupled ring-

like network and grid-like one are simulated, respectively.

Synchronization of two reciprocally gap-junction

coupled neurons

A correlation coefficient (CC) has been introduced in

(Wang et al. 2008) to measure the synchronization degree

of two coupled neurons, the CC is calculated as follows:

CC ¼
PN

m¼1 Vm
1 � Vm

1

� ��� �� Vm
2 � Vm

2

� ��� ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

m¼1 Vm
1 � Vm

1

� �� �2
q PN

m¼1 Vm
2 � Vm

2

� �� �2
;

ð13Þ

where V1
m (or V2

m) represents the sampling of the membrane

potential V1(t) (or V2(t)). h:i denotes the average over the

number of the sampling. N is the sampling number. It is

easy to see that the more synchronous the coupled neurons

are, the larger the correlation coefficient is, and the com-

plete synchronization state of the coupled neurons is

achieved when correlation coefficient is equal to 1.

The bivariate ISI-distance method proposed by Kreuz

et al. (2007) is another method to estimate the degree of

synchrony between two spike trains. It is a simple com-

plementary approach that extracts information from the

interspike intervals by evaluating the ratio of the instan-

taneous firing rates. This method is parameter free, time

scale independent and easy to visualize. We take the

instantaneous ISI-ratio between two interspike intervals xisi
1

and xisi
2 , and normalize it. The quantity of ISI-ratio

I1,2(t) becomes zero in case of two spike trains are same

and approaches -1 and 1 respectively if the first spike train

is much higher or lower than the second spike train. In

order to derive the distance between two spike trains, the
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absolute ISI-distance DI is integrated over time. In contrast

to the correlation coefficient, the more synchronous the

coupled neurons are, the less the bivariate ISI-distance DI

is, and the complete synchronization state of the coupled

neurons is achieved when DI is equal to 0.

I1;2ðtÞ ¼
x1

isiðtÞ
x2

isiðtÞ
� 1 x1

isiðtÞ� x2
isiðtÞ

� x2
isiðtÞ

x1
isiðtÞ
� 1

� 	
x1

isiðtÞ[ x2
isiðtÞ

8
<

: ð14Þ

DI ¼
ZT

t¼0

dt IðtÞj j ð15Þ

For two reciprocally gap-junction coupled neurons as

Fig. 2a, a bifurcation diagram is adopted to give the

qualitative analysis while correlation coefficient and bivariate

ISI-distance methods are used to give the quantitative results.

With fixed external current, synchronization of the two

coupled neurons are investigated and the numerical results

are shown in Figs. 3 and 4 by varying the coupling

strength. In the case of increasing coupling strength we will

not only present an example from the tonic firing regime,

but also from the bursting regime.

The examples in Fig. 3 are obtained by tuning of the

coupling strength in the case when both uncoupled neurons

are in the tonic firing regime at a constant value of external

current Iext = 0 lA/cm2. In Fig. 3a the interspike interval

bifurcation diagram shows that, as the coupling strength

increases, the coupled neurons exhibit complicated firing

behaviors, from periodic to chaotic motion firstly, then they

go back to tonic firing again when gc [ 0.03 mS/cm2.

As illustrated in Fig. 3b, the correlation coefficient value

(Eq. 13) increases gradually until it reaches the maximal

value 1 and maintains it thereafter. This means that the two

neurons become more and more synchronous until they

reach a complete synchronous state. Figure 3c shows the

change of the bivariate ISI-distance (Eqs. 14, 15) as a func-

tion of the increasing coupling strength. It first increases to its

maximal value as gc \ 0.013 mS/cm2. The increase of the

ISI-distance to its maximal value for gc \ 0.013 mS/cm2 is

due to chaotic behavior of the neuron. Then it decreases

gradually to 0 in the range of 0.013 \ gc \ 0.03 mS/cm2.

Finally, it stays near 0 as gc [ 0.03 mS/cm2. The ISI-dis-

tance shows that the degree of synchronous status initially

decreases, then increases until the two neurons are preserved

in complete synchronization. Compared with the correlation

coefficient, the result of bivariate ISI-distance is more con-

sistent with that of bifurcation diagram.

Compared with Fig. 3, the examples in Fig. 4 are obtained

when both uncoupled neurons are in the bursting regime at a

constant value of external current Iext = 0.65 lA/cm2. From

the bifurcation diagram of the single neuron in two coupled
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Fig. 1 a Bifurcation diagram of

interspike-intervals for a single

neuron with tuning of external

current. b–d Show tonic firing

(Iext = 0 lA/cm2), chaos

(Iext = 0.3 lA/cm2) and

bursting regimes

(Iext = 0.6 lA/cm2)

Fig. 2 Schematics of network connectivity patterns. a Two recipro-

cally gap-junction coupled neurons b A Gap-junction coupled ring-like

neuronal network c a gap-junction coupled grid-like neuronal network
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neurons (Fig. 4a), it can be seen that the firing pattern of the

neuron is always in burst discharges no matter what the value

of coupling strength is. The changes in the correlation coef-

ficient and the ISI-distance both show that the two neurons

become more and more synchronous (gc \ 0.02 mS/cm2)

until they reach the complete synchronous state by tuning the

coupling strength.

For a more detailed investigation, the contour graphs of

the correlation coefficient and ISI-distance are plotted in

the (gc, Iext)-parameter plane as illustrated in Fig. 5. It can

be seen that the correlation coefficient becomes 1 and the

ISI-distance becomes 0 in some regions of the parameter,

which indicates the realization of complete synchronization

between the two coupled neurons. From the maps, one

obvious conclusion is that no matter what the Iext is (the

uncoupled neurons is in the tonic firing regime, chaotic or

bursting status), with increasing the coupling strength, the

two coupled neurons can eventually reach the in-phase

synchronization.

Synchronization of gap-junction coupled ring-like

neuronal network

To compare synchronization effects in larger networks

with those in two reciprocally coupled neurons, we couple

25 neurons as ring-like network (Fig. 2b). The coupling

current for each neuron in the network is the sum of the

previous and next neurons (Eq.11).

For multiple neurons, the MFP is adopted as a global

parameter for visualization of the synchronization. The

MFP is the mean membrane potential of all neurons in the

network. Since the most pronounced voltage changes occur

during the action potentials, significant MFP deflections

can only be expected when a high percentage of the neu-

rons generates action potentials at the same time. The

maximum amplitude will only be achieved when all neu-

rons fire in exact coincidence (Postnova et al. 2010). The

diagram of ISI which are drawn from a single neuron in

the network give some information about the alterations of

the impulse patterns. To complement these results, an

average bivariate ISI-distance method is introduced to give

the quantitative results (Kreuz et al. 2009). We again start

by assigning the ISI for each spike train and proceed by

calculating the instantaneous average A(t) over all pairwise

absolute ISI-ratios Im;nðtÞ
�� ��. Average over time yields DI

a. It

is clear that the more synchronous the multiple spike trains

are, the less the average bivariate ISI-distance DI
a is, and

the ideal synchronization state of the neuronal network is

achieved when DI
a is equal to 0.

AðtÞ ¼ 1

NðN � 1Þ=2

XN

n¼1

XN

m¼nþ1

Im;n tð Þ
�� �� ð16Þ
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Fig. 3 Plots of synchronization

status at tonic firing regime

(Iext = 0 lA/cm2) by tuning the

coupling strength gc in two

coupled neurons. a Bifurcation

diagram of a single neuron in

two coupled neurons. b Plot of

correlation coefficient of two

coupled neurons. c Plot of the

ISI-distance of two coupled

neurons
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Da
I ¼

1

T

ZT

t¼0

AðtÞdt ð17Þ

In the ring-like tonic firing neuron network (Iext =

0 lA/cm2), Fig. 6a shows that the transition from the

unsynchronized to the synchronized state is not smooth,

going in two steps. When coupling strength increases from

0 to 0.017 mS/cm2, the deflections of MFP become larger

and larger and in a certain rhythm, which indicate that

more and more neurons fire simultaneously. When

coupling strength is between 0.017 and 0.06 mS/cm2, the

neurons are in an almost synchronized state, but do not

reach complete synchronization. The corresponding plot of

interspike intervals from a single neuron (Fig. 6b)

elucidates that coupling values gc \ 0.017 mS/cm2 bring

chaotic spike generation. At higher coupling strengths

gc [ 0.017 mS/cm2, the neuron goes back to almost tonic

firing with a little fluctuation. As to the complementarity of

MFP and bifurcation diagram, the plot of average bivariate

ISI-distance gives more information. When the coupling

strength is small (gc \ 0.007 mS/cm2), the average

bivariate ISI-distance increases to 0.3, which means that

the degree of synchronous state decreases quickly.

However, in the range of 0.007 \ gc \ 0.017 mS/cm2,

the average bivariate ISI-distance decreases to a small
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Fig. 4 Plots of synchronization

status at bursting firing regime

(Iext = 0.65 lA/cm2) by tuning

the coupling strength gc in two

coupled neurons. a Bifurcation

diagram of the single neuron in

two coupled neurons. b Plot of

correlation coefficient of of two

coupled neurons. c Plot of the

ISI-distance of two coupled

neurons
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Fig. 5 The contour plot of the ISI-distance in the (gc, Iext)-parameter plane for two coupled neurons. a The contour plot of correlation

coefficient. b The contour plot of the ISI-distance
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value (almost 0.02) and preserves it, which means the ring-

like network is close to synchronous state, but not in

complete synchronization.

In a ring-like network of bursting neurons (Iext =

0.65 lA/cm2), Fig. 7a shows that with increasing coupling

strength, the spike-related MFP deflections become larger

and larger but with some fluctuations, which means the

neurons are more and more synchronous. Synchronization

is already complete at about 0.04 mS/cm2 where the MFP

reaches a plateau. The corresponding plot of interspike

intervals from a single neuron (Fig. 7b) shows that no

matter what gc value is, the neuron is always in a bursting

state. The value of average bivariate ISI-distance (Fig. 7c)

decreases from 0.6 to almost 0 gradually as gc increases

from 0 to 0.04 mS/cm2, which means that the synchronous

state of ring-like network increases gradually. With further

increasing coupling strength, the value of the ISI-distance

stays at 0. It means the neuronal network reaches a com-

plete synchronous state. The average bivariate ISI-distance

is calculated by Eqs. 16 and 17.

The contour graph of the average bivariate ISI-distance

in the (gc, Iext)-parameter plane for the ring-like network is

illustrated in Fig. 8. It can be seen that the region that ISI-

distance almost equals 0 is much smaller than that of two

coupled neurons. It indicates that the realization of syn-

chronization in the 25 coupled ring-like neuron network is

much difficult than that of two coupled neurons (Fig. 5b).

The plot shows that when coupling strength is bigger than

0.035 mS/cm2, no matter what the value of external current

is, the neurons are in a complete synchronous state.

Another obvious conclusion is that no matter what the

external current is, when increasing the coupling strength,

the neurons in the ring-like network can finally reach

synchronization. However, when 0.1 \ Iext \ 0.5 lA/cm2

(the uncoupled neurons display chaotic dynamics, see

Fig. 1), the neurons reach the complete synchronization

with more difficultly compared with other ranges of

Iext \ 0.1 lA/cm2 and Iext [ 0.5 lA/cm2 (the uncoupled

neurons is in tonic firing and bursting status, respectively).

For example, if Iext = 0.4 lA/cm2, the neurons can reach

the synchronous state only if the values of coupling

strength are larger than 0.035 mS/cm2. This result reveals

that it is more difficult to make the chaotic neurons syn-

chronous than tonic firing and bursting neurons.

Synchronization of a gap-junction coupled grid-like

neuronal network

To check whether the synchronization state is related with

the network connection patterns or not, we change con-

nectivity pattern from ring-like neuronal network to grid-

like one. The number of neurons in the grid-like network

(Fig. 2c) is the same as that of the ring-like network, still

25 (5 9 5). The coupling current of a neuron can be

obtained by Eq. 12, which is the sum of the input currents

for the nearest neighbor neurons (M = N = 3). The
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Fig. 6 Plots of synchronization

status at tonic firing regime

(Iext = 0 lA/cm2) by tuning the

coupling strength gc in ring-like

coupled neurons. a Plot of mean

field potential (MFP) of ring-

like coupled neurons.

b Bifurcation diagram of the

single neuron in ring-like

coupled neurons. c Plot of the

ISI-distance of ring-like coupled

neurons
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neurons at the borders are coupled to the neurons at the

opposite border which gives a closed, torus-like network

(See ‘‘Model’’).

In the grid-like tonic firing neuron network (Iext =

0 lA/cm2), Fig. 9a shows that the values of MFP increase

from -30 to 15 mV linearly with increasing coupling

strength from 0 to 0.017 mS/cm2. With further increasing

coupling strength, the MFP reaches the maximum 15 mV

and remains there, which means that the synchronization is

already complete. The corresponding plot of interspike

intervals from a single neuron (Fig. 9b) elucidates that when

coupling values gc \ 0.017 mS/cm2, the neuron is in a

chaotic state. At higher coupling strengths gc [ 0.017 mS/

cm2, the neuron goes back to tonic firing. The plot of

average bivariate ISI-distance gives more information.

When coupling strength is small (gc \ 0.01 mS/cm2), the

average bivariate ISI-distance increases to 0.3, which means

the degree of synchronous state decreases. In the range of

0.01\ gc \ 0.017 mS/cm2, the average bivariate ISI-dis-

tance decreases to a small value and never changes, which

means that the grid-like network is close to the synchroni-

zation state. Comparing this result with that of the ring-like

network (Fig. 6), there exists two obvious differences. One

is that the smaller coupling strength 0.017 mS/cm2 can drive

the tonic firing of the grid-like network back to the complete

synchronous state while it can only go to an almost syn-

chronous state for the ring-like neuronal network. The other

difference is that the tonic firing of the grid-like network has

less fluctuations than that of the ring-like network, which

can be measured by both a plot of mean field potential and

bifurcation diagram of the single neuron.

In a grid-like network of bursting neurons (Iext =

0.65 lA/cm2), Fig. 10a shows that the values of MFP

increase from -30 mV to almost 15 mV linearly and

remains there with increasing coupling strength. The MFP

reaches the maximum when coupling strength reaches

0.01 mS/cm2, which is smaller than 0.017 mS/cm2 for

tonic firing neurons (Fig. 9a). It indicates that for grid-like
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Fig. 7 Plots of synchronization

status in the bursting firing

regime (Iext = 0.65 lA/cm2) by

tuning the coupling strength gc

in ring-like coupled neuronal

network. a Plot of mean field

potential (MFP) of ring-like

coupled neurons. b Bifurcation

diagram of the single neuron in

ring-like coupled neuronal

network. c Plot of the average

bivariate ISI-distance of ring-

like coupled neuronal network
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network, the neurons in the bursting regime reach the

complete synchronization easier than those in tonic firing

regime. The corresponding plot of interspike intervals from

a single neuron (Fig. 10b) shows that no matter what gc is,

the neurons always in bursting state, the ISI value is similar

with that of two coupled neurons. As gc \ 0.01 mS/cm2,

the value of ISI-distance (Fig. 10c) decreases quickly from

0.5 to almost 0, which means the bursting neurons in the

grid-like network can easily reach the synchronous state

compared with both ring-like network (Fig. 7c) and two

coupled neurons (Fig. 4c).

The contour graph of the average bivariate ISI-distance

in the (gc, Iext)-parameter plane for the grid-like network is

illustrated in Fig. 11. The map is similar with that of two

coupled neurons (Fig. 5b) and differs from that of the ring-

like neuronal network (Fig. 8). It can be observed that the

region that ISI-distance almost equals 0 is much larger than

that of the ring-like neuronal network. It indicates that the

realization of synchronization in the 25 coupled grid-like

neuronal network is much easier than for 25 coupled ring-

like neuron network neurons (Fig. 8). It demonstrates that

synchronization status is much related to the network

connectivity patterns. No matter what the Iext is (the

uncoupled neurons is in tonic firing regime, chaotic or

bursting status), with increasing the coupling strength, the

grid-like neuronal network can eventually reach the com-

plete synchronization. The plot also reveals that when the

coupling strength is larger than about 0.017 mS/cm2, no

matter what the value of external current is, the neurons are

all in complete synchronous state.

Conclusion

In this paper, synchronization status of two coupled

neurons and multiple coupled neurons with ring-like and

grid-like connection network have been investigated. The

double or multiple coupled neurons will exhibit periodic

and chaotic motions by tuning some key parameters such

as the coupling strength and the external current injection.

Three major outcomes are found in this paper. (1) One of

them is the demonstration that the synchronization status is

much related to the network connectivity patterns in the case

where the number of neurons is the same and sparse. The

neuron number of both ring-like and grid-like neuronal net-

works is 25. Large-scale networks have not been simulated yet

due to the limitation of computer performance in our lab. By

tuning both external current and coupling strength, there exists

a larger synchronous region for grid-like neuronal network

than that of ring-like network. The former is located at most of

the region where coupling strength is larger than 0.017 mS/

cm2 while the latter is only located at the region where the

coupling strength is larger than 0.035 mS/cm2. Comparing the

tonic firing neurons in grid-like network with those in the ring-

like network, when the neurons are injected into a constant

external current (Iext = 0 lA/cm2), coupling strength
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Fig. 9 Plots of synchronization

status at tonic firing regime

(Iext = 0 lA/cm2) by tuning the

coupling strength gc in grid-like

neuronal network. a Plot of

mean field potential (MFP) of

grid-like neuronal network.

b Bifurcation diagram of the

single neuron in grid-like

neuronal network. c Plot of the

average bivariate ISI-distance of

grid-like neuronal network
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0.017 mS/cm2 can drive the neurons of the grid-like network

back to the complete synchronous state while only almost

synchronous state for those of ring-like neuronal network. For

the bursting neurons of both networks (Iext = 0.65 lA/cm2),

when increasing the coupling strength, the neurons in the grid-

like network reach the complete synchronization state more

easily than those in the grid-like network. (2) The second

outcome is that the synchronization status of two coupled

neurons is similar with grid-like neuronal network and has an

obvious difference with that of ring-like neuronal network.

The synchronous regions for two coupled neurons and grid-

like neuronal network are similar, which is located at most of

the region where coupling strength is bigger than 0.017 mS/

cm2. (3) Thirdly, the two coupled neurons will immediately

synchronize when they discharge in bursts. In contrast, both

the ring-like and grid-like networks need a significant cou-

pling strength for complete synchronization also in the

bursting regime. The methods and results in this paper provide

some guidelines to understanding the collective behavior of

gap-coupled tonic and bursting neurons.
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