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Inhibition of rhythmic spiking by colored noise in neural systems
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Abstract We study the effect of colored noise on the

rhythmic spiking activity of neural systems in this paper.

The phenomenon of the so-called inverse stochastic reso-

nance , that is, noise with appropriate intensity suppresses

the spiking activity in neural systems, is clearly observed in

a special parameter regime. We find that the inhibition

effect of colored noise is stronger than that of Gaussian

white noise. Furthermore, our simulation results show that

the inhibition effect of colored noise provides a useful

mechanism for the generation of synchronized burst in

type-2 mixed-feed-forward-feedback loop neuronal net-

work motif, which indicates that such inhibition effect

might have some biological implications.

Keywords Neural system � Spiking neuron model �
Noise � Neuronal network motif

Introduction

Noise is ubiquitous in the brain. Recently, much effort has

been devoted to investigating the effects of noise on the

dynamics of neuronal ensembles. It has been widely rec-

ognized that noise is able to facilitate the information

processing and enrich the inherently stochastic dynamics of

neural systems (Deco et al. 2009; Destexhe and Contreras

2006). Two fundamental and maybe the most important

mechanisms that the neural system may use to enhance its

information transmission capability with the help of noise

are stochastic resonance (Collins et al. 1995; Gailey et al.

1997; Chialvo et al. 1997; Lee and Kim 1999; Chik et al.

2001; Guo and Li 2009) and coherence resonance (Guo and

Li 2009; Pikovsky and Kurths 1997; Lindner et al. 2002; Li

and Gao 2008; Sun et al. 2008). For each mechanism, the

response of the neural system greatly depends on the noise

intensity, and there exists a maximal neural response at an

optimal noise level. Furthermore, it has also been observed

that noise can enrich the stochastic dynamics of neuronal

ensembles and induce many complex behaviors, such as

synchronization (Li et al. 2006), deterministic chaos

(Hansel and Sompolinsky 2002), and burst firing (Neiman

et al. 2007). All these findings are in good agreement with

the previous postulate suggesting that noise might play

several functional roles in the signal processing of the brain

(Adey 1972).

In some recent work (see Gutkin et al. 2009; Tuckwell

et al. 2009; Tuckwell and Jost 2010), the authors reported a

new inhibition effect of noise on neural systems. It was

found that the noise can suppress the spiking activity of a

single Hodgkin-Huxley (HH) neuron. Under some specific

conditions, there exists a minimal firing rate (or minimal

frequency of firing rhythm) corresponding to an optimal

noise level. Such phenomenon is the so-called inverse

stochastic resonance (ISR), because the behavior in this

phenomenon likes the reverse of that in stochastic reso-

nance (Gutkin et al. 2009). More importantly, a similar

inhibition effect of noise has also been observed in several

real biological neural systems (Paydarfar et al. 2006),

which implies that this type of inhibition effect might have

some physiological significance. However, so far the rel-

evant studies mainly studied the case of Gaussian white

noise. Although another important case—colored noise has

been also considered in some previous studies, to the best

of our knowledge the inhibition of rhythmic spiking due to
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colored noise in neural systems has not been thoroughly

discussed and the relevant questions still remain unclear.

Especially, since the experimental findings have revealed

that the colored noise, rather than the Gaussian white noise,

provides the best model to simulate the background noise

input of real biological neural systems (Destexhe and

Contreras 2006; Destexhe et al. 2003), it is necessary to

examine how colored noise influences the ISR phenome-

non in neural systems as well as explore whether colored

noise has some special advantages over Gaussian white

noise in terms of ISR.

In this paper, we address the aforementioned questions

and provide insights by computational modeling. Follow-

ing the work of Gutkin et al. (2009) and Tuckwell et al.

(2009), we also use the HH neuron model to mimic the

action potential firing dynamics of biological neurons. Our

goal is to examine how the colored noise influences the

spiking activity of the neural system. The main finding of

the present work is that the neural system can indeed

exploit the colored noise to suppress its spiking activity.

Moreover, our simulation results also demonstrate that the

inhibition effect of colored noise is stronger than that of

Gaussian white noise. Finally, an example is given to

elucidate the underlying physiological significance of the

ISR phenomenon. All these results may provide a foun-

dation for understanding the ISR phenomenon in the brain.

The rest of this paper is organized as follows. The HH

neuron model as well as the numerical simulation method

is introduced in Sect. ‘‘Model and method’’. The main

results of the present work are presented in Sects. ‘‘ISR in

single HH neuron’’ and ‘‘ISR Induced synchronized bursts

in a neuronal network motif’’ Finally, a brief conclusion

and discussion of our work are given in Sect. ‘‘Conclusion

and future work’’.

Model and method

We now introduce the HH neuron model used in the

present work. Here we only describe the dynamics of a

single HH neuron, because the ISR phenomenon is mainly

examined in a single HH neuron in this work. The methods

about how to model the synaptic connections will be briefly

given in ‘‘ISR Induced synchronized bursts in a neuronal

network motif’’ The membrane potential of a single HH

neuron can be described by the following four differential

equations (Hodgkin and Huxley 1952; Gerstner and Kistler

2002):

C
dV

dt
¼ �GNam3hðV � ENaÞ � GKn4ðV � EKÞ

� GLðV � ELÞ þ I;
ð1Þ

with X = m, h, n satisfies

dX

dt
¼ aXðVÞð1� XÞ � bXX: ð2Þ

Here C is the membrane capacitance per unit area, V represents

the membrane potential, GK, GNa, and GL stand for the

maximal potassium, sodium, and leakage conductances per

unit area, and EK, ENa, and EL denote the corresponding

reversal potentials, and I is the total external current injected to

the neuron. Three dimensionless parameters m, h, and n are

used to control the activation and inactivation of sodium

channels and the activation of potassium channels,

respectively. aX and bX (X = m, h, n) are rate functions that

are given by the following set of equations (Hodgkin and

Huxley 1952; Gerstner and Kistler 2002):

am ¼
0:1ð25� VÞ

exp ð25� VÞ=10½ � � 1
; ð3Þ

bm ¼ 4 expð� V

18
Þ; ð4Þ

ah ¼ 0:07 expð� V

20
Þ; ð5Þ

bh ¼
1

exp ð30� VÞ=10½ � þ 1
; ð6Þ

an ¼
0:01ð10� VÞ

exp ð10� VÞ=10Þ½ � � 1
; ð7Þ

bn ¼ 0:125 expð� V

80
Þ: ð8Þ

Without loss of generality, the parameters of the HH

neuron are set as their standard values (Gerstner and Kistler

2002), which are specified in Table 1.

For a single HH neuron, the total external current is

given by I = I0 ? l(t), where I0 is the external constant

current and l(t) is the noise current. In this work, the noise

current is modeled by an Ornstein-Uhlenbeck (OU)

process:

sc
dlðtÞ

dt
¼ �lðtÞ þ DnðtÞ: ð9Þ

Here n(t) is a Gaussian white noise with zero mean and unit

variance, sc is the correlation time, and D is a diffusion

Table 1 Parameter values of the Hodgkin-Huxley neuron model

used in this work

Parameter Value Unit

C 1 lF/cm2

GNa 120 ms/cm2

GK 36 ms/cm2

GL 0.3 ms/cm2

ENa 115 mV

EK -12 mV

EL 10.6 mV
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coefficient used to denote the noise intensity. By its

definition, l(t) corresponds to a zero mean colored noise

with correlation function

hlðtÞlðt0Þi ¼ D2

sc
exp � jt � t0j

sc

� �
: ð10Þ

It should be noted that, for the special case sc = 0 ms, the

above noise current reduces to the Gaussian white noise.

The aforementioned stochastic differential system is

numerically solved by using the Euler-Maruyama algo-

rithm (Kloeden et al. 1994), with a fixed step

h = 0.005 ms. Notice that the chosen integration step is

sufficiently small to ensure the simulation accuracy of the

HH neuron. A spike is detected whenever the membrane

potential upward crosses a threshold Vth = 70 mV.

According to the discussion given in the previous work

(Chialvo et al. 1997), the membrane potential might fluc-

tuate rapidly several times around the threshold for mid-to-

high noise intensities, thus leading to some ‘‘false’’ spikes.

To eliminate these false spikes, we introduce a 5-ms

pseudo absolute refractory period, in which no threshold

crossing is considered as an action potential anymore

(Chialvo et al. 1997). In additional stimulations, it turns out

that the threshold value can vary in a wide range without

altering the results.

ISR in single HH neuron

Before presenting the simulation results, let us now discuss

the bifurcation of the HH neuron. This is an important

preliminary step, because the previous work has shown that

the bifurcation structure plays an important role in the

emergence of the ISR phenomenon. In the absence of

noise, the HH neuron has a globally stable fixed point for

I0 \ Is = 6.2 lA/cm2. In this situation, the membrane

potential of the HH neuron undergoes a subthreshold

response. At I0 = Ih = 9.8 lA/cm2, a Hopf bifurcation

occurs and therefore the HH neuron has a stable limit cycle

for I0 [ Ih. In the case of Is \ I0 \ Ih, due to saddle-node

bifurcation the HH neuron has a globally stable fixed point,

a stable limit cycle and an unstable limit stable cycle. Thus,

the membrane potential of the HH neuron undergoes either

the subthreshold response or the regular spiking response

depending on the initial parameter values in this situation.

As a starting point, we first investigate the inverse sto-

chastic resonance in a single HH neuron driven by the

colored noise. The corresponding results are plotted in

Fig. 1a–c, respectively. All simulations are performed

6000 ms. We collect spikes from 1000 to 6000 ms for

statistical analysis. The initial membrane potential is ran-

domly chosen from a uniform distribution in (-10,70) mV,

and the initial values of m, n, and h are randomly chosen

from a uniform distribution in (0,1). Each data shown in

Fig. 1a and b is based on 1000 independent simulations,

and each data shown in Fig. 1c is based on 500 indepen-

dent simulations.

Figure 1a shows the dependence of the firing rate f on

the colored noise intensity D for several typical values of

I0. For I0 \ Is, an unstrict monotonic increasing and non-

linear relationship is found to exist between the noise

intensity and firing rate. This implies that the colored noise

plays a positive role and purely enhances the firing capa-

bility of the HH neuron in this case. If I0 is slightly larger

than the bifurcation value Is, the firing rate curve basically

drops at first and then rises with the increase of D, sug-

gesting that the colored noise indeed suppresses the spiking

activity of the HH neuron for suitable value of I0. It is

shown that the minimal firing rate occurs at an optimal

noise intensity, which clearly demonstrates that the ISR

phenomenon can exist in the neural system driven by the

colored noise. Furthermore, we find that the effect of the

ISR is largely influenced by the value of I0 even for the

case of I0 [ Is. When I0 is close to and just above the

bifurcation value Is, the colored noise with an appropriate

intensity shows a significant inhibition effect on the spiking

activity of the HH neuron. For example, a proper noise can

even completely suppress the firing behavior for

I0 = 6.6 lA/cm2 (see Fig. 1a). As I0 grows, the inhibition

effect of the colored noise becomes weaker and weaker. If

I0 is increased to a rather large value (see I0 = 8.5 lA/cm2

in Fig. 1a), the inhibition effect is so weak that the ISR

phenomenon almost disappears. Note that our results are

consistent with the findings for the case of Gaussian white

noise given by Gutkin et al. (2009) and Tuckwell et al.

(2009).

In fact, the fundamental mechanism that the colored

noise is able to suppress the spiking activity of the HH

neuron near the saddle-node bifurcation point is similar to

the case of Gaussian white noise, which has been discussed

in detail in the previous work (Gutkin et al. 2009; Tuckwell

et al. 2009). Besides the stable limit cycle, the HH neuron

has another stable fixed point for Is \ I0 \ Ih. In this case,

noise can drive the membrane potential of the HH neuron

from one stable solution to the other, which provides the

underlying mechanism to reduce its spiking activity. Based

on the mathematical theory given by Tuckwell et al.

(2009), the basin of attraction of the stable limit cycle (the

region between the stable and unstable limit cycles) is

smaller than that of the stable fixed point (the region

between the unstable cycle and the stable fixed point) when

I0 is close to and above Is. Therefore, an appropriate small

noise may move the membrane potential of the HH neuron

from the limited cycle to its steady state but with a smaller

probability moving back, thus leading to a spiking weak-

ening phenomenon. For a relatively small I0, once the
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membrane potential converges to the steady state after the

initial several hundred milliseconds of the simulation due

to the optimal noise, the HH neuron generally might need a

stronger noise to make it escape from the steady state

again. Therefore, for some ideal cases, the noise can

completely suppress the spiking activity of the HH neuron

(see I0 = 6.5 lA/cm2 in Fig. 1a).

Figure 1b illustrates the firing rate f versus the noise

intensity D for both the cases of Gaussian white noise

(sc = 0 ms) and colored noise (sc = 1, 2.5, 5 ms). Note

that here only small values of sc are considered because the

correlation time is short and typically less than several

milliseconds in real biological neural systems (Collins

et al. 1996). As we see in Fig. 1b, a pronounced minimal

value exists at the corresponding optimal noise intensity for

each firing rate curve, indicating that both types of noise

are able to suppress the spiking activity successfully. It is

obvious that the minimal value of the firing rate curve for

each colored noise is smaller than that for the Gaussian

white noise. This suggests that the colored noise shows a

stronger inhibition effect than the Gaussian white noise.

Furthermore, our results also reveal that the performance of

ISR induced by the colored noise is also largely influenced

by the correlation time. With the increase of sc, we find

that the inhibition effect of the colored noise becomes

stronger and stronger. At the same time, the trough of firing

rate curve also moves toward the right direction. This is

because the correlation function of the colored noise con-

sidered in this work is determined by both the correlation

time and the diffusion coefficient and increasing sc results

in decreasing the value of correlation function at corre-

sponding time points.

To quantitatively characterize the inhibition effect of

noise, we define an inhibition measure as K = (f0 - fmin)/

f0, where fmin is the minimal firing rate at the corresponding

optimal noise intensity and f0 is the firing rate at zero noise

intensity. By its definition, a larger positive K means a

stronger inhibition effect of noise. In Fig. 1c, the inhibition

measure K as a function of D for both the cases of Gaussian

white noise (sc = 0 ms) and colored noise (sc = 2.5, 5,

8 ms) is plotted. For each considered case, we find the

noise can almost completely suppress the spiking activity

of the HH neuron after the initial 1000 ms of the simulation

if I0 \ 7.3 lA/cm2. Although the K curves all decrease as

the external constant current grows for I0 C 7.3 lA/cm2, it

is clear that those curves for longer correlation times have

slower decreasing speeds. Our results, on the one side,

further demonstrate that the inhibition effect of the colored

noise is stronger than that of the Gaussian white noise, and

on the other side, suggest that the colored noise with longer
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Fig. 1 Inverse stochastic resonance in a single HH neuron driven by

the colored noise. a The firing rate f as a function of noise intensity

D for different values of I0, with sc = 1 ms. b The firing rate f as a

function of noise intensity D for different correlation times, with

I0 = 7.9 lA/cm2. c The dependence of inhibition measure K on the

value of I0 for different correlation times

b
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correlation time has the tendency to maintain the ISR

phenomenon for a larger I0.

To understand why the colored noise shows a stronger

inhibition effect than the Gaussian white noise, we com-

pare the interspike interval histogram (ISIH) for both the

Gaussian white noise and colored noise at corresponding

optimal noise intensities, which are depicted in Fig. 2a and

b, respectively. For each case, the interspike interval his-

togram is computed by using 8000 spikes obtained from an

independent simulation with sufficiently long simulation

time. As we see in Fig. 2a and b, there exists a main peak

located between 15 and 20 ms, and several other nonzero

values that lie in some long-time locations (from tens of

milliseconds to tens of seconds) for both the colored noise

and the Gaussian white noise. The results suggest that the

HH neuron driven by appropriate noise intensity has the

tendency to first fire several spikes in a short period of

time, after that keep silent for a long period of time due to

the inhibition effect of noise, and then continuously repeat

the above process. However, the distribution of the ISIH of

the colored noise is obviously wider than that of the

Gaussian white noise. The above results indicate that the

HH neuron driven by the colored noise sometimes might

need longer time to escape its steady state. This strength-

ening effect might be mainly attributable to the exponential

correlation characteristics of the colored noise in temporal

scales. Due to the existence of correlation time, it is

obvious that the fluctuations of colored noise are less

dramatic than those of Gaussian white noise (i.e., the col-

ored noise is much more smooth than the Gaussian white

noise). Let us assume that the HH neuron driven by noise is

operating around its saddle bifurcation point. For the case

of colored noise, when the state of the neuron is at the left

of bifurcation point, it tends to stay here for a short period

of time; while for the case of Gaussian white noise, the HH

neuron will visit both the left and right of the bifurcation

point transiently. The above mechanism leading to the

colored noise has the ability to speed up the HH neuron

moving to the stable fixed point and make the neuron

converge towards the steady state more deeply at the

appropriate intensity, which means that the neuron may

need much time to escape its steady state (see Fig. 2a and

b). As a result, the inhibition effect of the colored noise on

spiking activity is stronger than that of the Gaussian white

noise.

ISR induced synchronized bursts in a neuronal network

motif

Such inhibition effect of the colored noise might have some

physiological significance. As a nontrivial example, we

show that this type of inhibition effect might play an

important role in the generation of synchronized bursts in

type-2 triple-neuron mixed-feed-forward-feedback loop

neuronal network motif (MFFL2), which is one of the most

significant building blocks of the real biological neuronal

networks (Guo and Li 2009; Li 2008; Milo et al. 2002;

Reigl et al. 2004). In the MFFL2 motif, neurons 1 and 2

reciprocally drive each other, and neurons 1 and 2 both

drive neuron 3. Thus, neurons 1 and 2 can be considered as

the input neurons, and neuron 3 can be regarded as the

output neuron. Here we only study the MFFL2 motif

consisting of three excitatory neurons, and use Vi and Ii

(i = 1, 2, 3) to represent the membrane potential and the

total external current of neuron i, respectively.

For the MFFL2 motif, the total external current is given

by Ii ¼ I0 þ Is
i þ liðtÞ; where I0 is the external constant

current and li(t) is the noise current. For the input neurons,

we choose I0 = 6.9 lA/cm2, and for the output neuron, we

choose I0 = 0 lA/cm2 The total synaptic current Ii
s onto

neuron i is the linear sum of the currents of all incoming

synapses, i.e., Is
i ¼ Rjgrj½Es � ViðtÞ�; where parameter g is

the coupling strength and Es = 85 mV is the reversal

potential. The synapse variable rj is the fraction of
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Fig. 2 The interspike interval histograms for both the Gaussian white

noise (sc = 0 ms) and colored noise (sc = 5 ms) at corresponding

optimal intensities, with I0 = 7.9 lA/cm2. a Gaussian white noise

(D = 0.35) and b colored noise (D = 0.95). Here parameter

N denotes the number of spikes. The inserts embedding in (a) and

(b) show the distribution of the ISIH for ISI larger than 50 ms
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postsynaptically bound neurotransmitter which obeys _rj ¼
FðvjÞð1� rjÞ � rj=ss; with the synaptic recovery function

FðvjÞ ¼ 1=½1þ expð�vj þ 60Þ� and the synaptic decay

rate ss.

Figure 3 illustrates the membrane potentials Vi as a

function of time for the three HH neurons, with sufficiently

strong synapses (g = 0.1 and ss = 2 ms). When D is too

small, there is almost no effect of noise on the spiking

activities of the coupled neurons (see Fig. 3a). In this case,

all neurons repeatedly fire spikes and then excite other

neurons. Thus, the firing behaviors of these neurons almost

display tonic firing activities and no quiescent state emer-

ges. For an appropriate noise intensity, due to the inhibition

effect of noise, the spiking activities of all neurons might

be cut off (see Fig. 3b and c). The aforementioned cutting-

off process is ‘‘almost’’ simultaneous, since in the MFFL2

motif neuron 3 is controlled by both neurons 1 and 2, and

neurons 1 and 2 mutually excite each other. Note that here

we call it ‘‘almost’’ simultaneous, because the firing pat-

terns of these three neurons are the same on the whole but

vary somewhat in detail. Typically, the spiking activities

are cut off only when both input neurons are in the resting

state within a small time interval. If only one input neuron

is in the resting state, due to strong excitatory synaptic

interaction, the other input neuron will kick this neuron

back to the oscillating state immediately with a very high

probability. Such recovery process is usually very quick, so

that we can almost omit the recovery time and treat the

corresponding firings as a whole burst group (see Fig. 3b).

This provides a useful mechanism to generate and control

the quiescent states of the burst firings. As a result, the

phenomenon of synchronized bursts can be seen clearly in

this situation. If D is increased to a large value, the inhi-

bition effect of noise itself is less pronounced and at the

same time the excitation among neurons tends to further

reduce such inhibition, thus leading to the vanish of the

synchronized bursts (see Fig. 3d). The above example

suggests that neural systems might use the ISR mechanism

to generate the synchronized bursts.

On the other hand, our above discussions also suggest that

whether the MFFL2 motif can successfully generate the

synchronized bursts depends not only on noise intensity but

also on synaptic parameters, such as the coupling strength

g and synaptic decay rate ss. In fact, it is found that only

sufficiently strong synapses (strong coupling strength and

slow synaptic decay rate) can support the occurrence of

synchronized bursts (see Fig. 4a–d). This phenomenon can be

easy to understand by considering that, once only one input

neuron is in the resting state, this neuron cannot immediately

or even completely cannot recovery from its resiting state to

the oscillating state due to weak excitatory synaptic interac-

tion, which tends to destroy the synchronized bursts.

It should be noted that here we mainly focus on the case

of colored noise, but the similar results can also be

observed for the Gaussian white noise. However, similar

with the case of signal HH neuron, it is also found that the

inhibition effect of colored noise is stronger than that of

Gaussian white noise for the case of MFFL2 motif (data

not shown).

Conclusion and future work

In this paper, we have systemically investigated the inhi-

bition effect of colored noise on the spiking activity of

neural systems. Our simulation results showed that the

inverse stochastic resonance phenomenon indeed occurs in

the neural systems driven by colored noise. Moreover, we

found that the inhibition effect of the colored noise is
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Fig. 3 Time series of the membrane potentials Vi of the three neurons

in the MFFL2 neuronal network motif, with g = 0.1, ss = 2 ms and

sc = 1 ms. Noise intensities D = 0.02 (a), D = 0.55 (b), D = 0.65

(c), and D = 1.5 (d)
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stronger than that of Gaussian white noise. With the

increase of the correlation time, such inhibition effect can

be largely enhanced. Finally, we also gave an example to

elucidate the underlying physiological significance of the

ISR phenomenon. Noise is ubiquitous in neural systems

and plays important roles in the dynamics of neural

ensembles. The inhibition effect of noise shown here tends

to suppress the spiking activity of the neural systems, but it

may not simply play a negative role in the real biological

neural systems. In fact, the results presented in this work, to

some extent, suggest that the neural systems might make

full use of the ISR mechanism to enrich their inherently

stochastic dynamics. Further work on this topic includes

studying the inhibition effect of noise in complex neuronal

networks, as well as exploring other possible relevant

important biological implications.
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