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Abstract Chaotic dynamics generated in a chaotic neural

network model are applied to 2-dimensional (2-D) motion

control. The change of position of a moving object in each

control time step is determined by a motion function which

is calculated from the firing activity of the chaotic neural

network. Prototype attractors which correspond to simple

motions of the object toward four directions in 2-D space

are embedded in the neural network model by designing

synaptic connection strengths. Chaotic dynamics intro-

duced by changing system parameters sample intermediate

points in the high-dimensional state space between the

embedded attractors, resulting in motion in various direc-

tions. By means of adaptive switching of the system

parameters between a chaotic regime and an attractor

regime, the object is able to reach a target in a 2-D maze. In

computer experiments, the success rate of this method over

many trials not only shows better performance than that of

stochastic random pattern generators but also shows that

chaotic dynamics can be useful for realizing robust,

adaptive and complex control function with simple rules.

Keywords Constrained chaos � Chaotic neural network �
Motion control � 2-Dimensional maze � Ill-posed problem

Introduction

The great progress of modern very large scale integrated

circuit (VLSI) technologies has produced revolutionary

devices and machines. However, algorithms on conven-

tional computers run into problems with combinatorial

explosion and program complexity in realizing flexible

functions when there are too many degrees of freedom to

control. On the other hand, recent progress in the study of

biological information and control processing, particularly

brain functions, suggests that they might be based on novel

dynamical mechanisms that result in excellent functioning

and control (Skarda and Freeman 1987; Haken 1988, 1996;

Nara and Davis 1992; Aertsen et al. 1994; Tokuda et al.

1997; Fujii et al. 1996; Kay et al. 1996; Tsuda 2001). Our

key idea is to somehow harness the onset of complex

nonlinear dynamics in information processing or control

systems. This idea arose from the observations of chaos in

biological systems, which suggested that chaotic dynamics

could have important potentiality for complex processing

and control in situations where environments give systems

simple evaluations or responses including ‘‘uncertainties’’

which result in complex dynamics that we call ‘‘con-

strained chaos’’ (Nara 2003) or constrained ‘‘chaotic itin-

erancy’’ (Kaneko and Tsuda 2000, 2001). Thus, it is our

primary motivation for studying chaotic dynamics in neural

networks from the functional point of view. As an example

of such functionality, Nara and Davis proposed that chaotic

dynamics which occur in a recurrent binary neuron net-

work by changing a system parameter (connectivity) can be

applied to solving ill-posed problems such as memory

search or synthesis. In these tasks, certain dynamical

structures play important roles, as described in previous

works (Mori et al. 1989; Nara and Davis 1992, 1997; Nara

et al. 1993, 1995; Kuroiwa et al. 1999; Nara 2003).
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Furthermore, this approach was extended to an application

of chaotic dynamics in adaptive motion control. Two novel

problems, which were set as ill-posed problems, were

investigated. One is the problem of controlling an object to

reach a target in a 2-D maze, and another is the problem to

controlling an object to capture a target moving in 2-D

space, which were successfully executed in computer

experiments and reported in Suemitsu and Nara 2004 and

Li and Nara 2008, respectively. The neural network model

used in these studies is based on a binary neuron model,

and chaos occurs at some parameter values where the

internal field applied to each neuron exhibits large

dynamical fluctuations. In order to investigate the potential

usefulness of chaos, we have extended the approach to two-

dimensional cellular automata, which is one of many

dynamical models. Chaotic dynamics in a two-dimensional

cellular automata was successfully applied to solving 2-D

mazes based on the idea of harnessing of chaos. From the

viewpoint of functional aspects, both dynamical models

show almost equivalent results (Takada et al. 2007). These

studies not only indicate that the role of chaos is critically

important to realize complex control via simple rules in

particular situations, but also enables us to speculate about

the usefulness of chaos in general, in the sense that the

functional features do not depend strongly on the detailed

structure of models.

In this paper, we extend these considerations to other

neuron models. As well known, there are many neural

network models which could cause chaotic dynamics.

However, in order to make the study more general, we

choose the ‘‘chaotic neuron model’’ proposed by Aihara

et al. (Aihara et al. 1990; Adachi and Aihara 1997) as a

typical example of a neuron model in which even a single

neuron can generate chaotic behavior. Using a kind of

pseudo-inverse method (orthogonalized learning method),

multiple limit-cycle attractors are embedded into a recur-

rent neural network model consisting of chaotic neurons.

By appropriately choosing values of parameters, either

attractor dynamics or chaotic dynamics can be introduced

into the network. A simple coding method is employed to

transform the high dimensional dynamics in the network

model into low dimensional complex motions with great

robustness. Using the idea of adaptive switching of

parameter values, chaotic dynamics are used to get an

object to reach a target in a 2-D maze, which is a typical

example of an ill-posed problem. The results of computer

experiments indicate that, in the case of appropriate

parameter values, chaotic dynamics has quite better per-

formance in the control task than a stochastic random

process. Comparing the dynamical structure of chaotic

dynamics with that of stochastic random process from a

statistical point of view we show why the chaotic dynamics

are potentially useful for solving 2-D mazes.

Recurrent neural network model with chaotic neurons

In this paper we employ a recurrent neural network model

consisting of chaotic neurons and with the network struc-

ture shown in Fig. 1. The dynamics of the ith neuron is

described as follows (Aihara et al. 1990):

Siðt þ 1Þ ¼ f

"XN

j¼1

Vij

Xt

d¼0

kd
e Ajðt � dÞ þ

XN

j¼1

Wij

Xt

d¼0

kd
f Sjðt � dÞ � a

Xt

d¼0

kd
r gfSiðt � dÞg �Hi

#

ð1Þ

where Vij and Wij are the synaptic weight of the connection

to the ith neuron from the jth external input and from the

jth neuron, respectively. (Wii = 0 since each neuron has no

feedback from itself). Aj is the jth external input, and ke, kf

and kr are the decay parameters for the external inputs, the

feedback inputs, and the refractoriness, respectively. a is

the refractory scaling parameter, and Hi is the threshold

of the ith neuron. f(•) and g(•) are the activation function

and the refractory function of the neuron, respectively.

When the external input Aj is assumed to be constant,

the external input term can be included in the threshold.

Therefore, we define a new threshold ai that denotes the

sum of threshold and the temporally constant external input

term, and transform Eq. (1) into the following reduced and

simultaneous form with only two internal states (Adachi

and Aihara 1997):

Siðt þ 1Þ ¼ f ðfiðt þ 1Þ þ giðt þ 1ÞÞ ð2Þ

Fig. 1 A recurrent neural network model consisting of N chaotic

neurons: in the connection grid, a black dot indicates that there is a

connection, a white dot indicates that there is no connection
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fiðt þ 1Þ ¼
XN

j¼1

WijSjðtÞ þ kf fiðtÞ ð3Þ

giðt þ 1Þ ¼ krgiðtÞ � agfSiðtÞg þ ai ð4Þ

ai ¼
XN

j¼1

Vij

Xt

d¼0

kd
e Ajðt � dÞ � ð1� krÞHi ð5Þ

In this paper, a new internal state Yi(t)(= fi(t) ? gi(t)) is

employed. In order to use the chaotic neural network for

control, we use the following simplified form with only one

internal state.

Siðt þ 1Þ ¼ f Yiðt þ 1Þð Þ ð6Þ

Yiðt þ 1Þ ¼ kYiðtÞ þ
XN

j¼1

WijSjðtÞ � aSiðtÞ þ ai ð7Þ

f ðYÞ ¼ 1

1þ expð�Y=eÞ ð8Þ

where g(u) = u is employed as the refractory function and

k denotes kr = kf. The activation function is a sigmoid

function, so each neuron is represented by continuous

variables 0 \ Si \ 1. i = 1 *N and N is the total number of

neurons.

The dynamics of the network depends on the synaptic

weight matrix {Wij} and the four parameters (a, k, e, ai).

When Wij is appropriately determined, choosing appropri-

ate values of these parameters can introduce either attractor

dynamics or chaotic dynamics. Next, let us introduce a

method to determine Wij so that multiple cycle attractors

can be embedded into the network. The synaptic weight

matrix is defined in terms of a set of patterns fnk
l j l ¼

1�M; k ¼ 1� Lg as

W ¼
XM
l¼1

XL

k¼1

nkþ1
l � nky

l ð9Þ

where nLþ1
l ¼ n1

l;M is the number of cycles and L (C 3) is

the number of patterns per cycle, or the cycle period. Each

neuron has no feedback from itself, so Wii is set to zero.

Each embedded pattern nk
l is a state vector with nl, i

k = ± 1

(i = 1 *N). We assume that the total number of embedded

patterns is much less than the number of neurons, K

(= M 9 L)�N. nky
l is the conjugate vector of nk

l; which is

obtained by the pseudo-inverse method, also known as the

orthogonalized learning method (Amari 1977; Domany

et al. 1991).

Let us give a brief description about the pseudo-inverse

method. We take nmðm ¼ 1�KÞ as the original set of pat-

terns which we intend to embed as attractors, where we

renumber fnk
l j l ¼ 1�M; k ¼ 1� Lg as fnm j m ¼ 1�K

ð¼ M � LÞg: Then the conjugate vectors nym are defined as

nym ¼
XK

c¼1

amcnc ð10Þ

where a is the K 9 K matrix obtained as the inverse of the

overlap matrix, which is defined by

a ¼ o�1; omb ¼ nm � nb ð11Þ

Using nym; the inner products with the original attractor

patterns nmðm ¼ 1�KÞ satisfy the relations

nym � nb ¼ dmb ð12Þ

dmb ¼
1 ðm ¼ bÞ
0 ðm 6¼ bÞ

�
ð13Þ

It is almost trivial that nky
l and nk0

l0 satisfy the orthogonal

relation nky
l � nk0

l0 ¼ dll0dkk0 ; where the K = M 9 L num-

bering of the vectors fnmðyÞj m ¼ 1. . .Kg is changed again

to (M, L) numbering as fnkðyÞ
l j l ¼ 1. . .M; k ¼ 1. . .Lg:

This pseudo-inverse (orthogonalized learning) method

enables us to make patterns be attractors even if the pat-

terns are similar. This method was confirmed to be effec-

tive to avoid spurious attractors (Nara and Davis 1992,

1997; Nara et al. 1993, 1995). If the parameters (k, a, ai

and e) are appropriately chosen, the network acts as a

conventional associative memory, that is, the cycles of

patterns are limit cycle attractors in the state space.

Let us note that state vectors n and S; where components

of the former are ±1, and the latter, 0 or 1, can be easily

converted to each other by putting ni = 2 Si - 1 or

Si = (ni ? 1)/2. So, if SðtÞ is initially near one of the

attractor patterns ðnq
s þ 1Þ=2; then the sequence Sðt þ lLÞ

(l = 1, 2, 3, ...) generated by the L-step map will converge

to that pattern Sq
s ¼ ðnq

s þ 1Þ=2: For each attractor pattern

Sk
l ¼ ðnk

l þ 1Þ=2; there is a set of states Blk, called

attractor basins, such that if SðtÞ is in Blk then Sðt þ
lLÞðl ¼ 1; 2; 3; . . .Þ will converge to Sk

l ¼ ðnk
l þ 1Þ=2: Let

us show an example with M = 4, L = 6 and N = 400. The

embedded pattern vectors nk
l are the face patterns shown in

Fig. 2. Each pattern corresponds to an image of black (?1)

or white (-1) states of 20 9 20 = 400 pixels. One can

easily see that the patterns have strong similarities.

For some values of parameters (k, a, ai and e), in par-

ticular the parameter a that changes the effect of refrac-

toriness, the internal field {Yi(t)} will fluctuate and then

there may be deviation from the original attractor dynam-

ics. From the results of the investigation of chaotic

dynamics by Aihara et al., it was confirmed that the

attractor dynamics become unstable and S(t) chaotically

wanders around in pattern space (Adachi and Aihara 1997).

However, in this current investigation we ask an

important question, what type of chaotic dynamics arise

when attractor patterns have similarities? Will similarity
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between patterns be reflected in the nature of the onset of

chaotic transitions between them?

Chaotic network dynamics and coding of motion

function

Before applying the chaotic dynamics to control, let us

first describe the characteristics of the chaotic dynamics.

Figure 3 shows an example of iteration of internal field

{Yi } according to Eq. (7). When the parameter values

(k, a, ai and e) are changed, then the internal fields become

unstable and the firing state vector determined by Eq. (6),

S(t), chaotically wanders around in state space. Appropri-

ately choosing parameter values results in either attractor

dynamics or chaotic dynamics in the state space. The

notation P = {k, a, e, ai } is employed to denote a set of

parameter values. In this paper, a set denoted by PA cor-

responds to ‘‘attractor regime’’ and a set denoted by PC,

corresponds to ‘‘chaotic regime’’.

We note the following observations:

(a) an chaotic attractor exists after the cycle attractors

became unstable

(b) sequences in the chaotic attractor repeatedly visit all

the regions which are basins in the attractor regime

(c) the distribution of chaotic sequences over the basins

in the attractor regime is not uniform, so the basin

visiting ratio is not simply related to the state-space

volume of the basins in the attractor regime.

These properties were confirmed by observing statistics

of basin visits. Specifically, the basin visiting measure was

calculated as follows.

• Select an initial pattern

• Recursively update the network many times to generate

a sequence with a particular parameter set P = {k,

a, ai, e }.

• At each step in the sequence, check which basin the

present firing state (state vector) belongs to.

• Count the number of steps in each basin to obtain the

basin visiting ratio for the sequence, corresponding to

the particular initial pattern.

Several examples of basin visiting measure are shown in

Fig. 4. When the parameter set corresponds to the regime

of cycle attractors, such as in Fig. 4a, b, the sequence is

localized in a single pattern cycle. On the other hand, in the

case of PC = {k = 0.90, a = 7.3, e = 0.0010, ai = 3.12},

shown in Fig. 4c, d, the sequence does not converge to any

cycle even after a long time, but wanders chaotically over a

wide area in the N dimensional hypercube state space, so

the measure is spread over the basins of many patterns.

Moreover, the measure is the same even for different initial

Fig. 2 An example of 24 face patterns embedded in a neural network

as limit cycle attractors, M(= 4) 9 L(= 6) = 24. Index numbers of

nk
lðl ¼ 1�M; k ¼ 1� LÞ are shown. Let us note that these face

patterns are shown only for an example of cycle attractor patterns. So,

basin visiting measures shown in Fig. 4 and basin volumes shown in

Fig. 5 are calculated with employing the cyclic attractor patterns

shown in Fig. 6
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Fig. 3 Attractor dynamics

(limit cycle with period 2) and

chaotic dynamics in the

recurrent mapping of the

internal field Y(n). The two

different types of dynamics are

obtained at different values of

parameters
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patterns, indicating the existence of a chaotic attractor. For

comparison, the relative basin volume of each attractor in

the N dimension state space is statistically estimated by

counting the proportion of a large number of randomly

generated initial patterns converging to each attractor,

which is shown in Fig. 5. Obviously, the basin visiting

measure for the chaotic attractor is different from the rel-

ative basin volumes, that is the basin visiting measure is

not simply related to the state space volume of the basins in

attractor regime. This shows that the chaotic sequences are

not distributed uniformly in the state space. A large variety

of chaotic dynamics can be observed in this model and

comprehensive description is beyond the scope of this

paper. More details, including evaluation of the instability

properties of sequences in the chaotic attractor in terms of

‘Lyapunov Spectra’, and analysis of ‘‘haotic itinerancin

terms of trapping in attractor ruins, will be left for future

reports.

Next we describe the coding method which allows the

network states to be used for motion control. A detailed

description of motion control coding has been reported in a

previous paper (Suemitsu and Nara 2004). An object is

assumed to move in 2-D space, from the position

(qx(t), qy(t)) to (qx(t ? 1), qy(t ? 1)) via a set of motion
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Fig. 4 Basin visiting measure

(Fig. 6) for cycle attractor and

chaotic sequences. The

horizontal axis represents the

pattern number and the vertical
axis represents the frequency of

visiting the basin of the

corresponding pattern. Numbers

1 to 24 correspond to the

embedded patterns (1 *M
9 L). The data for number 25
shows the ratio for convergence

to spurious patterns and the data

for number 26 shows the ratio of

patterns which initiated

sequences which did not

converge to any pattern. a and c
memory pattern n1

2 is taken as

initial pattern; b and d memory

pattern n1
4 is taken as initial

pattern. PA = {k = 0.3,

a = 0.4, e = 0.0010, ai = 0.2},

PC = {k = 0.90, a = 7.3,

e = 0.0010, ai = 3.12}
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Fig. 5 Relative basin volume fraction(PA) for the cycle attractor

shown in Fig. 6: The horizontal axis represents the pattern number

and the vertical axis represents the frequency of converging to the

basin of the corresponding pattern. Numbers 1 to 24 correspond to the

embedded patterns (1 *M 9 L). The data for number 25 shows the

ratio for convergence to spurious patterns and the data for number 26
shows the ratio of patterns which initiated sequences which did not

converge to any pattern. Alternate hatching and non-hatching are

used to indicate different cyclic attractors
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functions. The motion function corresponding to a network

state S(t), is defined, in terms of X(t) = 2 S(t) - 1, by

fxðXðtÞÞ ¼
4

N

XN
4

i¼1

XiðtÞ � XiþN
2
ðtÞ ð14Þ

fyðXðtÞÞ ¼
4

N

XN
4

i¼1

XiþN
4
ðtÞ � Xiþ3

4
NðtÞ ð15Þ

From the definition of X = {Xi = 2 Si - 1 = ± 1 }, one

can easily know that fx and fy range from -1 to ?1 with the

normalization by 4/N. Note that each motion function is

calculated by a self inner product between two parts of the

network state X(t). In 2-D space, the actual motion of the

object is given by

qxðt þ 1Þ ¼ qxðtÞ þ fxðXðt þ 1ÞÞ ð16Þ
qyðt þ 1Þ ¼ qyðtÞ þ fyðXðt þ 1ÞÞ: ð17Þ

In the example presented below, we take N = 400,

M = 6, and K = 4. Two dimensional space is discretized

with the resolution 0.02, according to the definition of the

state vector with dimension N = 400 and the definitions of

fx and fy. The way to determine a set of attractor patterns

ni
l,k is as follows. Each attractor pattern is divided into two

parts. One is a random pattern part, where each component

has value ? 1 or - 1 with probability 0.5 (ni
l,k = ±

1:i = 1, ..., N/2). The other part of the attractor pattern

(ni
l,k = ± 1:i = N/2 ? 1, ..., N) is determined so as the

following relations are satisfied

ðfxðnk
1Þ; fyðnk

1ÞÞ ¼ ð�1;�1Þ
ðfxðnk

2Þ; fyðnk
2ÞÞ ¼ ð�1;þ1Þ

ðfxðnk
3Þ; fyðnk

3ÞÞ ¼ ðþ1;�1Þ
ðfxðnk

4Þ; fyðnk
4ÞÞ ¼ ðþ1;þ1Þ:

Each limit cycle attractor corresponds to a constant motion of

the object toward one of the four directions (? 1, ? 1),

(? 1, - 1), (- 1, ? 1), (- 1, - 1). We call these ‘‘pro-

totype patterns’’, as they drive monotonic motions. Figure 6

shows the patterns embedded in the connection matrix of the

network. We choose M = 6, that is, k = 1, ..., 6, so the

K = 4 limit cycle attractors each have M = 6 patterns.

Figure 7 shows examples of two motions that are gen-

erated, respectively, by the second cycle attractor in the

attractor regime (the parameter set PA) and by chaotic

dynamics in the chaotic regime (the parameter set PC).

Motion control using adaptive switching between

attractor regime and chaotic regime

Generally speaking, from the viewpoint of control, chaos

has been considered to spoil the control of systems. A large

number of methods have been proposed in order to avoid

emergence of chaos, as the OGY-method was proposed to

stabilize an arbitrary periodic orbit in chaos (Ott et al.

1990; Grebogi and Yorke 1997). Now, as stated in the

introduction, we consider chaos to be useful not only in

solving ill-posed problems but also in controlling of sys-

tems with large but finite degrees of freedom. In order to

show potential capabilities of chaotic dynamics generated

by CNN, let us try to apply it to a control task, specifically,

as an example, a maze in 2-D space. An object is assumed

to move in a 2-D maze and approaches the target using

chaotic dynamics. One of the reasons why we consider the

maze task is that the process of solving a maze can be

Fig. 6 Cycle attractors embedded for motion control. Each cycle

consists of six patterns. The first cycle fnk
1jk ¼ 1. . .6g is chosen so as

ðfxðnk
1Þ; fyðnk

1ÞÞ ¼ ð�1;�1Þ is satisfied. The second, third and fourth

cycles similarly correspond to (-1, ?1), (?1, -1), and (?1, ?1),

respectively

Fig. 7 Free running trajectories from a starting point which is the

origin (0, 0) (the center of square) during the same updating time

steps. (a) An example of the object orbit from start point in 2D space

in a attractor regime. As the parameter set is PA, attractor dynamics

result in monotonic motions with long journey because pattern

dynamics converges into one of embedded pattern attractors. So the

scale is 800 9 800. One of the monotonic motions which are

embedded in synaptic connection matrix Wij is shown. (b) An

example of the object orbit from start point in 2D space in chaotic

regime. As the parameter set is PC, chaotic dynamics correspond to

complex but rather localized motion, which is called chaotic motion.

So the scale is 80 9 80. Note that the chaotic motions strongly

depend on the values of parameters
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easily visualized. Hence, we can understand how the

dynamical structures are effectively utilized in controlling.

In this section, a method of controlling the object by

switching the parameters P = {k, a, ai, e} according to a

simple evaluation is proposed. A target is assumed to be set

in a 2-D space, at a location with coordinates (Qx0, Qy0).

Note that location coordinates of the target are not used in

the control method. Only the rough direction of the target

D1(t) is used to control the object. This is an example of an

external response with ambiguity. For example, D1(t)

becomes 1 if the direction from the object to the target is

observed between angles 0 and p/2 (the first quadrant),

where angles are defined with respect to the x-axis in 2-D

space. Similarly, D1(t) becomes n (= 1, 2, 3, 4) if the

direction is between angles (n - 1)p/2 and np/2, respec-

tively. The direction of the object motion D2(t) from time

t - 1 to t is defined as

D2ðtÞ ¼

1 ðcxðtÞ ¼ þ1 and cyðtÞ ¼ þ1Þ
2 ðcxðtÞ ¼ �1 and cyðtÞ ¼ þ1Þ
3 ðcxðtÞ ¼ �1 and cyðtÞ ¼ �1Þ
4 ðcxðtÞ ¼ þ1 and cyðtÞ ¼ �1Þ

8>><
>>: ;

where cx(t) and cy(t) are given as

cxðtÞ ¼
qxðtÞ � qxðt � 1Þ
jqxðtÞ � qxðt � 1Þj ð18Þ

cyðtÞ ¼
qyðtÞ � qyðt � 1Þ
jqyðtÞ � qyðt � 1Þj: ð19Þ

Finally, using D1(t) and D2(t), a time dependent set of

network parameters P(t) is determined

PðtÞ ¼ PA ðif D1ðt � 1Þ ¼ D2ðt � 1ÞÞ
PC ðotherwiseÞ

�
; ð20Þ

where PA is the parameter set that gives the ‘‘attractor

regime’’ and PC is the parameter set that gives the ‘‘chaotic

regime’’. After the determination of the parameter set P(t),

the motion of the object is calculated from the network

state updated using the parameter values P(t). After the

motion new values of D1(t) and D2(t) are calculated.

Repeating this process, the connectivity is switched

between PA and PC, and the object moves about in the 2-D

space. In this control method, the parameter set is kept at

P(t) = PA if the object moves toward the target with a

tolerance of p/2. This provides stable and monotonic

motion toward the target. We assume that the object can

know D1(t) at each time step even though there are walls in

the maze. In our experiments, both fx(X(t)) and fy(X(t)) are

taken to be zero if the moving object hits a wall in the next

step of motion. This means that the object cannot penetrate

the wall when it hits the wall. It is necessary to propose a

control algorithm which gets the object to approach the

target in the 2-D maze. The control algorithm using chaos

is shown in Fig. 8.

Figure 9 shows two examples of solving a 2 dimen-

sional maze by switching the parameter set between cha-

otic regime and attractor regime using the proposed simple

algorithm.

In order to investigate the performance of the method

proposed above for solving two-dimensional mazes, we

employ a quantitative evaluation function q(P), the success

rate. The evaluation method is as follows.

• Randomly generate a set of Itrial firing patterns;

• Choose two parameter sets PC and PA;

• Using the algorithm proposed above, solve a 2-D maze

with an initial firing pattern chosen from one of the Itrial

Fig. 8 The block diagram of the control method using the chaotic

neural network (CNN) model

Fig. 9 Two examples of the object trajectory in a 2D maze with

obstacle walls. The �-mark is the starting position and the open
square is the target position. This maze type is called X-type
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random patterns. If the object can avoid obstacles and

reach the target within Tmax steps, it is regarded as a

successful trial.

• Count the number of successful trials over Itrial trials. If

Osuc denotes the number of successful trials, the success

rate q(P) is defined by

qðPÞ ¼ Osuc

Itrial

ð21Þ

We present the performance result for the X-type maze

as an example. The success rate for solving the X-type

maze is shown in Fig. 10. The total number of trials is

Itrial = 300. A successful trial means that the robot can

reach the target within Tmax = 5000 steps. The results of

the computer experiments indicate that, once appropriate

PC is found, the dynamics of the network of chaos-neurons

is useful for solving a specified configuration of maze.

Now, a question arises, that is, are these chaotic dynamics

useful in other configurations, that is, in general? To

answer this question, we prepared the three kinds of maze

shown in Fig. 11, and furthermore, variations of these

configurations consisting of four mirror symmetries of

them. The results indicate that, in all cases, chaos caused

by appropriate parameter values gives satisfactory results

with high success rates. Here, let us show only the

successful cases of the mirror symmetries in the first type

maze. The results are shown in Fig. 12.
.

In the case of the functional application of chaos, it is

always asked whether chaos has advantages over a sto-

chastic random process or not. Therefore, we replace PC in

Eq. (20) with two kinds of stochastic random process, and

try to solve the two-dimensional mazes. Corresponding to

two kinds of stochastic random process, we employed two
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Fig. 10 Success rate: The horizontal axis is ai (3.0 *3.5) corre-

sponding to 50 instances of PC = { k = 0.9, a = 7.3, e = 0.001, ai }
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Fig. 11 The other two types of

mazes (S-type, and V-type) used

in our simulations. The �-mark

is the starting position and the

open square is the target

position

Fig. 12 The four types of mazes taken in the mirror symmetries and

the successful trajectory in each case, obtained using CNN. The

starting positions and the target positions are the same as those of

Fig. 9, and the scale of each maze is also the same
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kinds of stochastic random pattern generator: an N

dimensional random-discrete-bit pattern generator, and an

N dimensional random-white-noise pattern generator. An N

dimensional random-discrete-bit pattern generator is uti-

lized to generate a random pattern with N bits only

including 1 or -1. However, an N dimensional random-

white-noise pattern generator is utilized to generate a

random pattern with N bits, but each bit of the pattern is not

a binary value but a random real number that ranges from

-1.0 to 1.0. Figure 13a, b show examples of solving 2-D

mazes using the two kinds of random pattern generator,

respectively. The results of the computer experiments

indicate the robot cannot avoid obstacles using either of the

random generators. According to the method of perfor-

mance evaluation defined above, the success rate of each of

the two kinds of generator is zero.

Discussion

The above cases indicate two important points, and result

in two questions immediately. One is that, appropriate

parameter values can produce chaotic dynamics that are

effective to solve the 2-D mazes, but not all. Here, a

question arises. What factors cause the difference of the

performance in the same task? The other is that, stochastic

random processes cannot solve the 2-D mazes at all. Then

another question becomes clearly. What is the difference

between chaotic dynamics and a stochastic random pro-

cess? As we said above, we think that chaotic dynamics has

some dynamical structure, which might give us some

heuristic clues or a partial answer. Therefore, in order to

show the relations among these cases, from a dynamical

viewpoint, we have evaluated the dynamical structures of

these dynamical behaviours using a statistical method.

First, let us introduce the method of evaluation of chaotic

dynamics. The network is updated for many steps with a

particular parameter set PC, so that chaotic wandering

occurs in N dimensional hypercube state space. During this

wandering, we have taken statistics of the residence time,

the time during which the system continuously stays in a

certain basin (Suemitsu and Nara 2004; Li and Nara 2008)

and evaluated the distribution p(l, l) which is defined by

pðl; lÞ ¼ fthe number of ljSðtÞ 2 bl in s� t� sþ l
and Sðs� 1Þ 62 bl

and Sðsþ lþ 1Þ 62 bl; ljl 2 ½1;M	g
ð22Þ

bl ¼
XL

k¼1

Bk
l ð23Þ

T ¼
X

l

lpðl; lÞ ð24Þ

where l is the residence time in each attractor basin, and

T is the total number of steps. So p(l, l) denotes a distri-

bution of residence time l in attractor basin L = l within T

steps. In our actual simulation, T = 105. Figure 14a–d

shows the distributions p(l, l) for four parameter sets

PC1 = (k, a, ai and e) and PC2 = (k, a, ai and e), PC3 = (k,

a, aiand e) and PC4 = (k, a, ai and e). Next, stochastic

random processes are evaluated with a similar statistical

method. Two kinds of random pattern generator are

employed. One is an N dimensional random-discrete-bit

pattern generator, and the other is an N dimensional ran-

dom-white-noise pattern generator. With the pattern gen-

erator, random wandering occurs in N dimensional

hypercube state space. Applying the method defined in Eq.

(24) to the stochastic random process, the distribution of

residence time in basins is evaluated. The distributions

corresponding to the two kinds of random pattern generator

are shown in Fig. 14e, f, respectively.

Comparing these figures, the obvious differences

between chaotic dynamics and the stochastic random pro-

cesses has two points. One point is the maximum lmax of

Fig. 13 Examples of solving

two-dimensional mazes using

stochastic random pattern

generators: the robot is seldom

able to find a detour to avoid

obstacles
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residence times in a certain basin. For the stochastic ran-

dom processes, lmax is not over 10. But for the chaotic

dynamics, almost all lmax are over 10. The other point is the

similarity of the distribution pðl; lÞðl ¼ 1MÞ in M basins.

For the stochastic random processes, the distribution p(l, l)

in M basin are almost the same. But for the chaotic

dynamics, each p(l, l) is quite different, or unequal. The

above two points could be reasons why the stochastic

processes cannot solve the two-dimensional mazes but

chaotic dynamics can. Longer residence times and unequal

residence time distributions p(l, l) could enable the robot

to find a detour to avoid obstacles and finally reach the

target. Are longer residence times and unequal residence

time distributions p(l, l) better for solving the two-

dimensional mazes? We find the answer is not ‘‘Yes’’.

Referring to the success rate indicated in Fig. 10, by con-

trast with PC3 and PC4, PC1 and PC2 show better

performance, but their residence times l are shorter and

their distributions p(l, l) are not as unequal. In particular,

comparing these figures, we can find an interesting phe-

nomenon. In Fig. 14c, d, residence time l is always much

longer than that in the other three basins, and lmax is longer

than 25 steps. In other words, chaotic wandering could

often visit a certain basin and show localized dynamical

behaviors. So, it is reasonable for us to consider that

localized chaotic dynamics is not effective for solving the

2-D mazes. According to the above discussion, we can

conclude that somewhat longer residence times l and non-

localized dynamical distribution p(l, l) could enable the

robot to find a detour to avoid obstacles and finally reach

the target.

Finally, let us talk about our navigation strategy. As we

stated in Section ‘‘Introduction’’, our research is motivated

by the discovery of chaotic dynamics in brains. Moreover,
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Fig. 14 The log plot of the

frequency distribution of

residence time l: The horizontal
axis represents residence time

steps l in a certain basin l
during long time chaotic

wandering, and the vertical axis
represents the accumulative

number p(l, l) of the residence

time steps l in a certain basin l
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in our opinion, chaotic dynamics in biological systems play

important roles in adaptive controlling via simple rules.

Therefore our navigation strategy emphasizes the features

of robustness, simple rules and autonomous control. Recent

works about brain-machine interface and the parietal lobe

suggested that, in cortical area, the ‘‘message’’ defining a

given hand movement is widely disseminated (Wessberg

et al. 2000; Nicolelis 2001). So, a relatively large neural

network using a large number N of neurons compared with

other navigation strategies (but actually quite small com-

pared with the number of neurons in brain), can provide a

huge reservoir of redundancy and can result in great

robustness. Generally speaking, many navigation strategies

often fall into enormous algorithm complexity. However,

our navigation strategy is based on a simple adaptive

algorithm responding to external stimulus from the envi-

ronment. Without any pre-knowledge of the configuration

of obstacles, the robot, which is driven by chaotic

dynamics corresponding to appropriate parameter values,

can autonomously avoid obstacles and successfully reach

the target.

Summary and concluding remarks

Our investigation of the dynamics in a chaotic neural net-

work (CNN), where multiple cyclic attractors are embed-

ded by setting synaptic connection strengths using the

pseudo-inverse method (a kind of orthogonalized learning

method),has shown that chaotic dynamics occur at some

values of neuron parameters. For particular parameter sets,

P = { k, a, e, a }, there are chaotic trajectories which

wander among all the regions which are basins of attrac-

tions in the attractor regime. This is advantageous for use

of bifurcation to chaos for search in state space, as shown

in earlier work (Mikami and Nara 2003; Suemitsu and Nara

2003). In particular, chaotic dynamics in a CNN with

multiple cyclic attractors has some features additional

features mentioned in Section ‘‘Chaotic network dynamics

and coding of motion function’’, which are significant in a

functional sense.

Based on the novel idea of harnessing of chaos, chaotic

dynamics generated in a chaotic neural network model are

applied to 2-D motion control. With just a few simple

motions embedded in the network, using a simple coding

method called motion functions, chaotic dynamics in high-

dimensional state space result in various motions in 2-D

space. Using a simple control algorithm to control adaptive

switching of the system parameters between a chaotic

regime and an attractor regime, the object is able to reach a

target in a 2-D maze successfully. The success rate of this

method over many trials is good in comparison with that of

stochastic random pattern generators. In order to clarify the

difference between motion control using chaotic dynamics

and random pattern generation, we have statistically ana-

lyzed their dynamical structures. It was found that the

maximum value lmax of basin residence times and the

similarity of the distributions of residence times p(l, l) in

all the basins indicate why the stochastic processes cannot

solve the two-dimensional mazes. In contrast, it was found

that chaotic dynamics with somewhat longer basin resi-

dence times l and non-localized distributions p(l, l)

resulted in a higher probability of the object finding a

detour around obstacles and finally reaching the target ie.

these dynamical features are a necessary (though not suf-

ficient) condition for solving the 2-D mazes. These con-

clusions are consistent with the conclusions presented in

our earlier work (Suemitsu and Nara 2004; Takada et al.

2007; Li and Nara 2008; Li et al. 2008). As the functional

features do not depend strongly on the detailed structure of

models, we can speculate about the usefulness of chaos in

general Ethat chaotic dynamics are potentially useful in

systems containing large numbers of degrees of freedom to

realize robust, adaptive and complex control functions with

simple rules. Moreover, our results support the idea that

chaos observed in biological systems could play a very

important role in realizing adaptive functions and control

with simple rules.
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