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Abstract Hebbian cell assemblies provide a theoretical

framework for the modeling of cognitive processes that

grounds them in the underlying physiological neural cir-

cuits. Recently we have presented an extension of cell

assemblies by operational components which allows to

model aspects of language, rules, and complex behaviour.

In the present work we study the generation of syntactic

sequences using operational cell assemblies timed by

unspecific trigger signals. Syntactic patterns are imple-

mented in terms of hetero-associative transition graphs in

attractor networks which cause a directed flow of activity

through the neural state space. We provide regimes for

parameters that enable an unspecific excitatory control

signal to switch reliably between attractors in accordance

with the implemented syntactic rules. If several target

attractors are possible in a given state, noise in the system

in conjunction with a winner-takes-all mechanism can

randomly choose a target. Disambiguation can also be

guided by context signals or specific additional external

signals. Given a permanently elevated level of external

excitation the model can enter an autonomous mode, where

it generates temporal grammatical patterns continuously.

Keywords Cell assemblies � Attractor networks �
Grammar � Language � Behaviour

Introduction

Hebbian Cell Assemblies have been proposed as a model

for cognitive processes that on one hand aims at functional

explanations of psychological phenomena, but on the other

hand tries to link them to physiological processes going on

in neural circuits in the brain (Hebb 1949). Related studies

have mostly modeled aspects of object memory, techni-

cally realised by storing patterns in attractor neural net-

works (Amit 1988; Amit 1995; Palm 1982). Recent

experimental findings support the basic framework of

assemblies, see, e.g. Harris et al. (2003), Tsien (2001).

More complex spatio-temporal patterns and processes as

compared to simple fixed point attractors have also

received attention. Lashley (1951) early pointed out the

need for neural mechanisms that allow for complex tem-

poral sequencing in neural activity in order to explain

behaviour and language. These ideas have been further

developed conceptually by Wickelgren and others (Amari

1972; Hebb 1949; von Neumann 1958; Palm 1982; Pul-

vermüller 1992; Wickelgren 1979, 1992). Central to com-

putational models of sequences are hetero-associative

connections between pools of neurons that can evoke a

wave-like directed propagation of activity along specific

synaptic pathways. In one such type of models, so-called

‘‘synfire-chain’’ models, hetero-associative connections

alone suffice to implement sequences. Such studies date

back to Abeles (1991) and aim at explaining highly precise

temporal patterns in neural firing times (Abeles et al. 1993;

Bienenstock 1995; Diesmann et al. 1999; Herrmann et al.

1995; Wennekers 2000).

A second class of sequence models starts from attractor

networks where a number of patterns are stored auto-

associatively, but additional hetero-associative connections

are used to allow for transitions between patterns, see, e.g.
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Horn and Usher (1989), Palm (1982), Sommer and

Wennekers (2005), Willwacher (1982). These models often

employ additional mechanisms to destabilise attractor

patterns and to evoke autonomous transitions along the

hetero-associatively stored sequences of attractors. For

example, Horn and Usher (1989) used adapting neurons to

cause the transitions. They also provide a mean-field type

analysis of such networks with adapting neurons. Rehn and

Lansner (2004) present a network where synaptic depres-

sion causes pattern transitions. Their model explains par-

ticipant’s performance in free-recall tasks of ordered and

random lists of items.

Although the physiological reality of precise hetero-

associative firing patterns and synfire chains is still being

discussed, some experiments lend support to the idea of a

more or less deterministic directed activation flow through

neural circuits as compared to merely stochastic firing

sequences (Cossart et al. 2003; Hahnloser et al. 2002;

Ikegaya et al. 2004). Specific sequential spatio-temporal

firing patterns have especially been observed in the song

production system of birds (Hahnloser et al. 2002) where

they apparently correspond to representations of syllables

and their sequencing into songs (Gentner and Margoliash

2003; Gentner et al. 2006; Jarvis 2004).

It is still an open problem how cell assembly networks

can support language and behaviour, both domains

requiring the rule-based syntactic concatenation of tem-

poral elements into more complex compounds. The

respective mechanisms have to take interactions with the

environment into account (or rather with the environment’s

representation in the brain). Some relevant physiology-

inspired models for language and behaviour have been

built, in part based on the concept of ‘‘mirror neurons’’

(Arbib et al. 2000; Arbib 2005; Feldman and Narayanan

2004; Pulvermüller 1992, 2003; Rizzolatti et al. 2002).

This includes advanced models in robotics (Knoblauch

et al. 2005a; Markert and Palm 2006; Yamashita and Tani

2008).

We have proposed a generic approach addressing

mechanisms for complex behaviour and language in cell

assembly networks by extending them by rule-based

‘‘operational’’ principles (Wennekers 2006), see also

Knoblauch et al. (2005a), Wennekers and Palm (2007).

Operational cell assemblies combine attractor networks

with rules and finite state automata in a simple and plau-

sible manner by allowing for input-dependent transitions

between attractors. This results in an intuitive picture of

brain processes as occurring in a state space with a graph-

like structure of transitions, where states are attractors of a

local neural network dynamics and edges are hetero-asso-

ciative transitions between attractors that are triggered if

certain input events arrive. Such systems would describe

processes going on locally in an area or column. The full

complexity of cognition would then arise from many such

modules interacting. Operational cell assemblies of this

kind have been used to implement language and behav-

ioural components on robots (Fay et al. 2005; Knoblauch

et al. 2005a, b; Markert and Palm 2006; Markert et al.

2005, 2007). They can also well be implemented in modern

neural hardware (Indiveri 2007; Schemmel et al. 2004;

Wijekoon and Dudek 2008) and may therefore form a

programming paradigm for future computing hardware

(Palm 1982; Wennekers 2006).

Our previous work considered only systems, where

transitions between assemblies were purely determined by

specific input sequences. Either different syntactic input

patterns (‘‘words’’) were recognised based on the order of

arriving ‘‘syllables’’, or different objects in a visual input

uniquely triggered the generation of syntactically struc-

tured spatiotemporal outputs (‘‘object naming’’) (Wenne-

kers 2006).

In contrast, in the present work we consider the gener-

ation of syntactic spatio-temporal output patterns in cell

assemblies without specific inputs. This may apply to the

generation of free speech, free thinking, or other autono-

mous behaviours.

One practical difficulty in this context relates to the fact

that the speed of speech and behaviour can be modulated in

wide ranges. It is not obvious at all how neural circuits can

support this. Earlier models for sequencing and timing

exist, but the issue is far from being resolved, see

Wörgötter and Porr (2005) for a review. Sommer and

Wennekers (2005) proposed a switching mechanism to

explicitly trigger transitions in a sequence network com-

prising conductance based neurons. The triggering signal

was entirely unspecific with respect to any information

stored in the networks but rather aimed at setting the pace

of retrieval. We here propose a similar solution in the

broader framework of operational cell assembly networks,

where syntactic rules are implemented in form of hetero-

associative transitions between assemblies as indicated

earlier (Wennekers 2006). These can, for instance, form

word networks or sentence networks. We then study how

unspecific excitatory input can trigger transitions between

attractors in such networks. Such a trigger would again not

contain any information about the sequences to be gener-

ated; rather, it would serve as a threshold control that at

some pace evokes transitions along the embedded syntactic

pathways. Valentino Braitenberg has suggested such a

‘‘pump of thought’’ (Braitenberg 1978); we here show a

possible realisation. The idea of triggered transitions sep-

arates the problem of regulating the speed of transitions

from the problem of creating the structural properties of

possible transitions in the network.
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State switching by unspecific excitatory input

In the present section we study the most simple setup of

state switching by unspecific excitatory input between

latched attractor states. We assume that a single chain of

attractor patterns is embedded in a network and linked by

hetero-associative connections into a cyclic chain. Transi-

tions between patterns can be caused at (almost) arbitrary

times by entirely unspecific inputs that use no extra

information beyond that stored in the hetero-associative

connections. Analytical conditions for stable switching are

derived.

Basic model

We consider a network of n excitatory and n inhibitory

graded response neurons. The excitatory neurons are

described by low-pass membrane potentials xi with time-

constant s and an intrinsic cell-adaptation ai per cell with

time-constant sa that decreases a cell’s excitability during

periods of elevated firing. The neurons receive an input Ii

and their output is computed by a sigmoid firing rate

function as zi = f(xi - ai). A possible choice for f is the

unit-step or Heaviside function, f(x) = 1 if x C 0 and

f(x) = 0 else, but other sufficiently steep functions work

as well. The inhibitory cells (yi) are assumed to be linear

for simplicity; they have a membrane time constant s2

but do not adapt. The dynamic equations of the model

read

s _xi ¼ �xi þ Ii �
1

n

Xn

j¼1

Dijyi þ
1

m

Xn

j¼1

Aij þ Hij þ Rij

� �
zj

ð1Þ
sa _ai ¼ �ai þ bzi ð2Þ

s2 _yi ¼ �yi þ
1

m

Xn

j¼1

Cijzi ð3Þ

zi ¼ f ðxi � aiÞ ð4Þ

In (1) A = (Aij) and H = (Hij) are auto- and hetero-asso-

ciative coupling matrices, respectively. D = (Dij) and

R = (Rij) in (1) and C = (Cij) in (3) are matrices of random

synapses. Their entries are assumed to be independent and

identically distributed random variables with means E[R11]

= r, E[C11] = c, E[D11] = d and variances D[R11] = r2
r,

D[C11] = r2
c and D[C11] = r2

d.

The auto- and hetero-associative connections are set up

between neurons in a set of binary memory patters {na, a =

1,…,P} where the na
i 2 f0; 1g have ones at random posi-

tions and zeroes else. We assume that each pattern has

exactly m ones. A and H are given by

Aij ¼ a
XP

a¼1

na
i n

a
j ð5Þ

Hij ¼ h
XP

a¼1

naþ1
i na

j : ð6Þ

In (6) and elsewhere we implicitly assume that the hetero-

associative chain of patterns is cyclically closed, i.e.

nP?1 = n1. Parameters a and h set the relative strength of

the auto- and hetero-associative connections. Note that here

and throughout the paper upper Greek indexes denote

patterns (1,…,P) and lower Roman indexes units (1,…,N).

Where they are obvious we often don’t provide summation

ranges in sums.

We define the overlap matrix between patterns as Uab :

¼ 1
m

P
i n

a
i n

b
i : Because the patterns are random and each has

m ones we have Uab � dab þOðmnÞ: The second term

reflects overlaps between patterns and can be made small

by using sparse patterns with p :¼ m=n� 1:

Derivation of meanfield equations

We further define the following pattern specific averages of

the model variables

ha :¼ 1

m

Xn

i¼1

na
i xi ð7Þ

ma :¼ 1

m

Xn

i¼1

na
i zi ð8Þ

ua :¼ 1

m

Xn

i¼1

na
i yi ð9Þ

wa :¼ 1

m

Xn

i¼1

na
i ai ð10Þ

The ma are often called ‘‘overlaps’’ because they measure

how close the firing pattern z is to a stored pattern na; ma

will take its maximum value of 1 only if all ones in na are

also fully active in z.

We now derive dynamic equations for these averaged

variables from the original (1)–(4). For this we use the

approximation

zi �
X

b

mbnb
i : ð11Þ

Equation 11 states that the individual neuron activations can

be written as a superposition of the memory patterns weighted

by the current activation strength mb of each pattern. This

approximation reflects that the dynamics of the system will

either stay in fully excited memory states (auto-associative

mode) or move between such patterns (switched mode).
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For the pattern specific adaptation we then get

sa _wa ¼ �wa þ bma ð12Þ

If we define the total activity as s: =
P

b mb the

inhibitory dynamics results in

s2 _ua ¼ �ua þ 1

m2

X

i;j;b

na
i Cijm

bnb
j ð13Þ

��uaþ c

m

X

j;b

mbnb
j ¼�uaþc

X

b

mb¼�uaþcs: ð14Þ

Note that the right hand side in (14) defines the same low-

pass dynamics for all a. Therefore, the pattern-specific

inhibition variables all become similar asymptotically in

time after initial transients have died out. (They may even

become identical if we would further assume

Cij = c = constant or in the asymptotic limit of infinite

pattern size, m??.) We could therefore just have started

with a single globally acting linear inhibitory neuron. This

reflects that the main purpose of the inhibitory neurons is to

measure the total activity of the excitatory cells and pro-

vide a proportional dynamic threshold control.

The averaged excitatory potentials become

s _ha ¼ �ha þ Ia � 1

mn

X

i;j

na
i Dijuj ð15Þ

þ 1

m2

X

i;j;c

nc
j

X

b

ana
i n

b
i n

b
j þ hna

i n
bþ1
i nb

j

� �
þ na

i Rij

" #
mc

ð16Þ

¼ �ha þ Ia � 1

mn

X

i;j

na
i Dijuj þ

a

m2

X

i;j;b;c

nc
j n

a
i n

b
i n

b
j mc

ð17Þ

þ h

m2

X

i;j;b;c

nc
j n

a
i n

bþ1
i nb

j mcþ 1

m2

X

i;j;b;c

na
i n

c
j Rijm

c ð18Þ

� � ha þ Ia � dua þ a
X

b;c

UcbUabmc

þ h
X

b;c

UcbUabþ1mc þ rsð19Þ
ð19Þ

Now, remember that Uab � dab þOðpÞ where

p ¼ m=n� 1: Inserting this into (19) leads to

s _ha � �ha þ Ia � dua þ rs ð20Þ

þa
X

b;c

dcbdab þOðpÞðdcb þ dabÞ
� �

mc ð21Þ

þ h
X

b;c

dcbdabþ1 þOðpÞðdcb þ dabþ1Þ
� �

mc þOðp2Þ

ð22Þ

¼ � ha þ Ia � dua þ ama þ hma�1 þ rs

þOðpÞ2ðaþ hÞs:
ð23Þ

Equation 23 shows that the pattern averaged potentials will

follow a low-pass dynamics. Ia is the averaged input and

dua the effect of the inhibitory pool of neurons. Clearly,

pattern a is only influenced by effective auto-associative

connections ama from neurons within the pattern and het-

ero-associative connections from patterns in the previous

pattern, hma-1. The expressions rs and OðpÞ2ðaþ hÞs in

(24) are noise due to random synapses between excitatory

cells and cross-talk noise between patterns, respectively.

They are both proportional to s and should be small.

Because a, h, and r are all positive we may integrate their

effect into a single constant r / r ? 2(a ? h) that

accounts for the maximum impact of the noise sources.

s _ha ¼ �ha þ Ia � dua þ ama þ hma�1 þ rs ð24Þ

Note that ua by means of (14) is a low-passed version of the

total activity s as well. It should therefore be possible to

balance the mean impact of the noise (rs) by a proper

choice of the inhibitory coupling strength d.

Analysis of triggered transitions

We assume that a sequence of patterns is stored in the syn-

aptic connections. For proper parameters the model supports

stable auto-associative retrieval of individual patterns,

meaning that after its initial excitation and without further

input the network activity stays in an attractor corresponding

with the retrieved pattern. Such a state is characterised by one

of the overlaps ma being close to one and all others being

small, i.e. of the order of the mean overlap between patterns.

The activated pattern, say pattern number a, feeds into

the next pattern, a ? 1, by means of the hetero-associative

synaptic connections in matrix H. If the whole network is

in an attractor state this input should not raise the neurons

in a ? 1 above threshold.

We study if it is possible to reliably switch to the next

pattern by means of an unspecific input pulse into all

excitatory neurons. The hetero-associative input into a ? 1

together with that extra input may then switch a ? 1 on.

This in turn would increase the level of inhibition which

introduces competition between activated patterns.

Because pattern a does not see hetero-associative input as

a ? 1 does and its cells may furthermore be in an adapted

state, the activation of a ? 1 can subsequently lead to an

inactivation of a. This way unspecific excitatory pulses into

the network may be used to trigger specific transitions

imprinted in the hetero-associative connections. We study

unspecific triggering as a worst case scenario—it would of
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course be possible to specifically trigger transitions to the

next pattern by activating it directly and inhibiting all

others. This, however, would require the triggering control

network to already possess the information in the stored

pattern sequence that we want to retrieve.

We observe the population activity in three subsequent

populations na ?na?1 ? na?2 during the transition from na

to na?1 and distinguish three phases:

Phase 1: na stays active; na?1 remains inactive without

external input (attractor state)

Phase 2: na stays active; na?1 grows with external input

I into all cells

Phase 3: na deactivates; na?1 is completed and stays

activated without external input I

In all three phases na?2 and other populations beside na

and na?1 should not get activated.

Collecting the simplified equations for the pattern spe-

cific activities derived in ‘‘Derivation of meanfield equa-

tions’’ we have for any pattern a:

s _ha ¼ �ha þ Ia � dua þ ama þ hma�1 þ rs ð25Þ
sa _wa ¼ �wa þ bma ð26Þ
s2 _ua ¼ �ua þ cs ð27Þ
ma ¼ f ðha � waÞ ð28Þ

The neurons are modelled with a sigmoid rate function f

which increases steeply from 0 to a constant value �f

beyond a threshold 0. Without loss of generality we assume
�f ¼ 1: One choice of rate function is the threshold- or step-

function with threshold 0. We also set d = 1.

Phase 1 (attractor state) During this phase activation

remains stationary such that ha is above threshold but ha?1

and all other potentials stay below. Accordingly, ma is

close to one and all other overlaps are close to zero. Only

patterns a and a ? 1 receive specific synaptic input via

auto- or hetero-associative connections from neurons in the

active pattern a. Neurons in other patterns only receive

random input from a via random or cross-talk synapses.

There is no unspecific external input, I0 = 0.

Stationarity implies for pattern a

0 ¼ �ha � ua þ aþ r ð29Þ
0 ¼ �wa þ b ð30Þ
0 ¼ �ua þ c ð31Þ

In order to stay active ha [ 0 ? wa = 0 ? b is required

which implies

ha ¼ aþ r � c [#þ b: ð32Þ

According to the discussion after (23) the parameter r

accounts for random synapses between cells as well as

cross-talk between patterns. These are random effects that

can vary between zero and some positive value

characterised by r. To stay on the safe side and ensure

stable attractors even for those patterns where r is

vanishing, we assume instead of (32) the stronger condition

ha ¼ a� c [#þ b: ð33Þ

The case r = 0 is indeed relevant if orthogonal patterns

and no additional random synapses are assumed.

For pattern a ? 1 we get 0 = -ha?1 ? r - c ? h and

0 = -wa?1. Pattern a ? 1 should not get activated such

that ha?1 \ 0 is required. This implies

haþ1 ¼ hþ r � c\#: ð34Þ

Pattern a ? 1 is the only one that receives hetero-

associative input from a. Therefore, if it stays stable, no

other pattern can get activated either (beside the already

active one, a).

Phase 2 During this phase the untuned input into all

neurons is activated such that pattern a stays on but pattern

a ? 1 increases its potentials ha?1 close to a new equi-

librium above 0. Simultaneously ma?1 increases from 0 to

1. The average adaptation wa?1 of neurons in a ? 1 will

also slowly increase towards its maximal value b. During

this phase we further require that a ? 2 and any other

pattern remain below threshold. The stimulus is switched

on for a time of the order of the larger of the membrane

time-constants (s,s2) and the adaptation constant (sa) to

allow for these changes of variables to take place.

For simplicity we assume that s2 � s; meaning that the

inhibition follows excitation quasi instantaneously, ua = cs

for all a. Because ma is requested to stay (near) one we

have for patterns a to a ? 2

s _ha ¼ �ha þ I0 þ ðr � cÞð1þ maþ1Þ þ a ð35Þ

s _haþ1¼�haþ1þ I0þðr� cÞð1þmaþ1Þþamaþ1þh ð36Þ

s _haþ2 ¼ �haþ2 þ I0 þ ðr � cÞð1þ maþ1Þ þ hmaþ1 ð37Þ

For a constant ma?1 the asymptotic potentials approached

would be

ha ¼ I0 þ ðr � cÞð1þ maþ1Þ þ a ð38Þ

haþ1 ¼ I0 þ ðr � cÞð1þ maþ1Þ þ amaþ1 þ h ð39Þ

haþ2 ¼ I0 þ ðr � cÞð1þ maþ1Þ þ hmaþ1: ð40Þ

We require patterns a and a ? 1 to be super-threshold, but

a ? 2 to stay below. This is requested during the whole

phase 2 where ma?1 grows from 0 to 1. More precisely,

consider pattern a ? 1: At the beginning of phase 2, ha?1 is

small and certainly smaller than the right hand side in (36).

It will therefore grow towards the asymptotic value in (39)

as long as the right hand side in (36) stays positive due to
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the unspecific input. We need to guarantee that the right

hand side is positive for all maþ1 2 ½0; 1�: By means of

linearity it is sufficient to check this only at ma?1 = 0 and 1,

namely at the beginning and the end of phase 2,

respectively. Analogous arguments for pools a and a ? 2

lead to the following inequalities:

I0 þ aþ r � c [#þ b ð41Þ
I0 þ aþ 2ðr � cÞ[#þ b ð42Þ
I0 þ hþ r � c [#þ d ð43Þ
I0 þ aþ hþ 2ðr � cÞ[#þ b ð44Þ
I0 þ r � c \# ð45Þ
I0 þ hþ 2ðr � cÞ\# ð46Þ

In (43) d is some slack variable that reflects the possibility

that the adaptation of a ? 1 is not entirely relaxed towards

zero at the beginning of phase 2. This would mean a higher

input is required to overcome the firing thresholds. It is

possible to just consider the worst case d = b and also to

again assume r = 0 in the first four inequalities. This

makes (41) and (44) redundant relative to (42) and we keep

I0 þ a� 2c [#þ b ð47Þ
I0 þ h� c [#þ b ð48Þ
I0 þ r � c \# ð49Þ
I0 þ hþ 2ðr � cÞ\# ð50Þ

Phase 3 During this phase the external input is switched

off again. At the beginning of phase 3 pattern a ? 1 sees

auto-associative input from itself and hetero-associative

input from pattern a; pattern a sees auto-associative input

from itself but no hetero-associative input; pattern a ? 2

sees hetero-associative input from pattern a ? 1 only; all

other patterns see at best random or cross-talk input.

Therefore, pattern a ? 1 has the best chance to survive the

competition induced by inhibition. All patterns receive

inhibition, but in contrast to phase 1 this now stems from

two activated patterns, a and a ? 1, and can therefore

deactivate pattern a if it is strong enough. High adaptation

in pattern a may in addition support this pattern to die out.

The average adaptation wa of neurons in a will then decay

to zero during phase 3 and the adaptation of wa?1 will

approach and stay around the equilibrium value b. Thus at

the end of phase 3 we are again in the situation of phase 1

with pattern a ? 1 activated instead of a.

We thus assume that essentially only pattern a will

change its activation during phase 3. ha will move to a new

equilibrium below 0 and ma will decrease from one to close

to zero. Therefore:

s _ha ¼ �ha þ ama þ ðr � cÞð1þ maÞ ð51Þ

s _haþ1 ¼ �haþ1 þ amaþ1 þ hma þ ðr � cÞð1þ maÞ ð52Þ

s _haþ2 ¼ �haþ2 þ hmaþ1 þ ðr � cÞð1þ maÞ ð53Þ

For ma = 0 at the end of phase 3 we recover the same

inequalities as in phase 1 because the situation is the same

with a ? 1 activated stably instead of a. At the beginning

of phase 3 we obtain (using additional worst case

assumptions as earlier)

aþ 2ðr � cÞ\# ð54Þ
aþ h� 2c [#þ b ð55Þ
hþ 2ðr � cÞ\# ð56Þ

Inequality (56) is redundant because (50) is more

restrictive. This leaves us with eight inequalities for the

model parameters: (33), (34), (47)–(50), (54), and (55).

These are conditions on the (non-negative) parameters a, h,

b, c, r, I0, 0 that allow for stable switching between

attractors.

a� c� b [#[ a� 2cþ 2r ð57Þ
aþ h� 2c� b [#[ h� cþ r ð58Þ
I0 þ a� 2c� b [#[ I0 � cþ r ð59Þ
I0 þ h� c� b [#[ I0 þ h� 2cþ 2r ð60Þ

Observe that if we find a set of parameters with b [ 0

which satisfies these conditions, the same set also satisfies

them for all smaller b. This includes b = 0 such that

adaptation is apparently not necessary for triggering

transitions. However, the above inequalities are not the

most general—in some parameter regimes not covered by

them adaptation of neurons in the currently active pattern

may ease the transition towards the next un-adapted and

therefore more excitable pattern. Suppression of the current

pattern via inhibitory competition will be easier in this

case.

Moreover, for any valid parameter set with r = 0 the

same inequalities stay valid for all smaller r. We may

therefore continue the analysis by studying the case

r = b = 0. If we find parameters that satisfy the above

inequalities under this assumption, any margin can be used

to choose maximal b and r afterwards independently. For

the same reason we can assume 0 = 0.

We therefore make the assumptions r = b = 0 = 0 and

a = 1, and introduce new parameters l, j, f by means of

h = la, c = ja, I0 = fa. The inequalities (57)–(60) then

become

1� j[ 0 [ 1� 2j ð61Þ

434 Cogn Neurodyn (2009) 3:429–441

123



1þ l� 2j[ 0 [ l� j ð62Þ
1þ f� 2j[ 0 [ f� j ð63Þ
fþ l� j[ 0 [ fþ l� 2j ð64Þ

Equation 61 immediately implies 1/2 \ j\ 1 and (62)

and (63) imply l\ j and f\ j, respectively. The right

inequality in (64) is then redundant but the left

requires l ? f[ j or l[ j - f and f[j - l. If we

use the latter two conditions in (62) and (63) these

inequalities reduce to 1 - f - j[ 0 and 1 - l - j[ 0

which is the same as f\ 1 - j and l\ 1 - j. Because j
is already constrained in the range 1/2 \ j\ 1 we get

f\ 1 - j\ j and l\ 1 - j\ j such that the earlier

derived conditions l\ j and f\j are obsolete. This

finally leaves us with

# ¼ 0; a ¼ 1; 1=2\j\1; f\1� j; l\1� j; lþ f [ j:

ð65Þ

In words: For a vanishing threshold and an arbitrary but

fixed auto-associative coupling constant, inhibition has to

be relatively strong between 50 and 100% of the auto-

associative coupling. The input and hetero-association

strengths individually may only be as strong as up to 50%

of the auto-associative coupling, but input and hetero-

association together have to be stronger than the inhibition.

Examples for triggered and autonomous transitions

To satisfy (65) we may choose l = f which results in j/

2 \l = f\ 1-j in addition to the earlier 1/2 \j\ 1.

This allows for solutions in the range 1/2 \ j\ 2/3, for

instance, j = 0.6, l = f = 0.35. Given these values we

can check the margins in inequalities (57)–(60), which we

can then use to calculate maximal b and r values (as

fractions of a = 1) assuming vanishing thresholds, 0 = 0.

We find as maximal values bmax = rmax = 0.1. Alterna-

tively we can split the margin for b into a fixed positive

threshold 0 \ 0\ bmax and a new upper bound for the

maximal adaptation strength, e.g. 0 = 0.05 and b = 0.05.

Positive firing thresholds have the advantage that cells do

not autonomously activate if there is no input and no

already active pattern that can cause inhibitory competition

in order to avoid firing of unwanted neurons.

Figures 1 and 2 display example simulations. The sim-

ulations implement (1)–(6) for n = 36 excitatory neurons,

and P = 6 non-overlapping patterns with m = 6 active

units each. The rate function of the excitatory neurons is

the Heaviside function (unit step). R is the zero matrix.

There is only a single inhibitory neuron; synapses from

excitatory cells to the inhibitory cell have identical values

C1j = c; synapses from the inhibitory cell to the excitatory

cells are all 1. The latter is possible without loss of

generality because the inhibition is purely linear; it is

therefore enough if c can be varied. The differential

equations are solved by the Euler method (Press et al.

1993) with stepsize 0.1. Parameter values were s = s2 =

sa = 1, r = 0, b = 0.05, 0 = 0.05,a = 1.0, l = 0.35, f =

0.35, j = 0.6.

Figure 1 shows switching between patterns given

unspecific triggers of various duration. Note that we have
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Fig. 1 Transitions between patterns for various durations of an

unspecific trigger. Trace 7 shows the ‘trigger’ signal; small numbers

1,2,3 on top indicate the three phases of a transition defined in

‘‘Analysis of triggered transitions’’. Traces 1–6 show pattern overlaps

(rectangular curves) and potentials of individual cells in each pattern

(smooth curves). Trace-1 is the global inhibition and trace 0 indicates

a specific excitatory driving input into the cells of the first pattern

which ‘starts’ the sequence retrieval. Overlaps are between 0 and 1.

Other quantities are in arbitrary units. Time is in multiples of the

membrane time constants. For more explanations see text
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Fig. 2 Autonomous propagation of activity if the unspecific input is

persistently high (trace 7, ‘trigger’). The level of adaptation (model

parameter b) increases during the simulation in several steps from

0.05 to 0.55 (trace 0). Trace-1 displays the level of inhibition and

traces 1–6 the pattern overlaps as well as potentials and adaptation

variables of individual neurons in the different patterns. Pattern 1 is

specifically activated during the first time unit. Observe autonomous

propagation of activity, a shortening of retrieval periods with adaption

strength (quicker sequence retrieval), and unstable propagation for

high adaptation values (t [ 85)
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chosen all time constants identical, s = s2 = sa = 1,

although in ‘‘Analysis of triggered transitions’’ we assumed

that inhibition is fast in order to proof the stability condi-

tions provided there. However, simulations show that this

assumption is not very crucial. Even with identical time-

constants as used here triggering works well.

In Fig. 1 the first pattern is excited by an excitatory

specific input into all neurons of pattern 1 during time 3.0–

4.0 (see trace 0). Note that this activates pattern 1 (trace 1)

but also already pattern 2 (trace 2) via the hetero-associa-

tive couplings from pattern 1 to 2. Pattern 2 can fire

because the inhibition (trace-1) starts from 0 and has to

build up first in order to suppress patterns that only get

hetero-associative input. This initialisation step is not

covered by the stability considerations in ‘‘Analysis of

triggered transitions’’. Firing of pattern 2 could, for

instance, be avoided by initialising the inhibition with an

appropriate positive value or by providing excitatory input

not only into the first pattern but also the inhibitory unit

during the primary excitation of the starting pattern.

Observe that each triggering phase causes synchronous

fluctuations in the potentials of all excitatory cells

regardless of which pattern they belong to (smooth curves

in traces 1–6). This reflects the unspecific nature of the

trigger. A positive (excitatory) response is usually followed

by an inhibitory slightly later component caused by the

next pattern getting excited and thus suppressing its com-

petitors. Neurons in successive patterns are super-threshold

such that the respective overlaps are large. Because we use

step-functions as rate functions of the excitatory neurons

the overlaps switch in an almost rectangular manner

between 0 and 1 (traces 1–6).

Small numbers on top of Fig. 1 reflect the three different

phases of a transition as defined in ‘‘Analysis of triggered

transitions’’. During phases 1 only a single pattern is acti-

vated and stays roughly in equilibrium. During phase 2 the

unspecific input raises the subsequent pattern above firing

threshold; other patterns do not fire because they do not get

hetero-associative input. If two patterns are activated dur-

ing phase 2 inhibition rises proportionally. This increased

inhibition switches the previously active pattern off in

phase 3 because that pattern only receives auto-associative

input whereas its successor receives hetero- and auto-

associative input and therefore stays above threshold.

Afterwards signals relax back to equilibrium values until

the next transition is initiated.

The duration of a triggering phase 2 can be arbitrarily

long as long as it exceeds a certain minimum length. This

basically was assumed in the stability considerations in

‘‘Analysis of triggered transitions’’ where the only

restriction on the duration of phase 2 was that it is long

enough to allow for the transition to take place. In Fig. 1

the durations start much longer than the neural time-

constants (s = s2 = sa = 1) but get successively shorter.

As long as the unspecific input is present for long enough a

time to raise the subsequent pattern above threshold the

retrieval works well; if it gets too short retrieval fails. This

happens around time 50 where the trigger is present only

for 2 units of time and the network stays in attractor 5.

Finally note that the sequence of stored patterns in the

simulation is cyclic. At time 65 attractor 1 is reached again.

Figure 2 displays a simulation with adaptation too

strong to guarantee stable switching. In this simulation the

unspecific input is permanently on (trace 7). The figure

shows, that above a certain value of the adaptation strength

(model parameter b) autonomous propagation of activity

through the sequence of attractors results. As the adaptation

gets stronger, the times spent in any single attractor gets

shorter, and therefore the retrieval of the pattern sequence

speeds up. A similar effect can also be reached by

increasing the hetero-associative coupling strength, but not,

for example, by changes in the level of unspecific input

(not shown). At high adaptation, retrieval fails with more

complex firing patterns emerging than linear sequences of

states (t [ 85 in the figure).

Activity starts propagating through the combined action

of adaptation and inhibition. During phase 2 of a retrieval

cycle, characterised by the presence of the unspecific

triggering stimulus, two patterns are ideally active, the

current and the previous one. If the adaptation strength is

too high it switches the previous pattern off because its

auto-associative self-excitation together with the unspecific

input will no longer be strong enough to overcome the

threshold plus adaptation minus the inhibition. As a con-

sequence the inhibition is released such that the next pat-

tern can become super-threshold, it fires, and after a brief

relaxation time the system reaches the initial state again

just one step forward in the sequence.

For increasing adaptation strength the adaptation times

get shorter because threshold conditions are reached

quicker. The inhibition can then no longer follow the

excitatory activity changes fully, such that its amplitude

changes decrease (trace-1 in Fig. 2). This diminishing

inhibition causes an instability to complex firing patterns at

high adaptation strength where the inhibition can no longer

suppress the firing of more than one or two patterns only

(t [ 85 in the figure).

In summary the present section has presented simula-

tions of proper retrieval of pattern sequences by unspecific

external triggers consistent with the analysis in ‘‘Analysis

of triggered transitions’’. Such simulations reveal that the

stability conditions derived in ‘‘Analysis of triggered

transitions’’ are actually quite robust. Nonetheless, if the

conditions are broken, especially for too strong adaptation

or hetero-association, more complex activation patterns can

arise including an autonomous mode of retrieval of a stored
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sequence. These modes will be discussed in the next sec-

tion in relation to generators and recognisers of more

complex, syntactical time patterns than linear sequences.

Context and graph-like transition patterns

In traditional attractor networks static patterns are stored in

auto-associative connections; they can be retrieved from

partial or noisy cues (Hopfield 1982; Willshaw et al. 1969)

by the recurrent network dynamics. Hetero-associative

connections as shown in the previous section can further be

used to extend the possible dynamic modes towards

sequences (Abeles 1991; Horn and Usher 1989) thereby

introducing (temporal) order. In an autonomously evolving

setup they also provide a notion of ‘‘time’’. Such network

properties may underlie episodic memory and time per-

ception (Wennekers 2006). Still, linear sequences are not

yet sufficiently powerful models of spatio-temporal pattern

processing appearing in real-world situations. Those usu-

ally reveal syntactic structure, for instance, describable by

some kind of grammar.

We have earlier pointed out how attractor networks can

be extended in a natural way towards the processing of

syntactic structures (Wennekers 2006; Wennekers and

Palm 2007; Wennekers et al. 2006). Keys to this approach

are, first, the introduction of several possible target states

for each attractor coded in hetero-associative couplings,

and second, specific external inputs, that disambiguate

which transition is selected if there are several for a given

attractor state. These extension where partly motivated by

von Neumann’s and Wickelgren’s earlier works, see, e.g.

(von Neumann 1958; Wickelgren 1979; Wickelgren 1992).

This extension of attractor networks leads from pure

attractors via linear sequences [also called ‘‘synfire chains’’

(Abeles 1991)] to labelled graphs (‘‘synfire graphs’’) rep-

resenting complex, input- and context-driven patterns of

activation flow in a generalised attractor system. Nodes in

these graphs are the stored patterns (attractors) and the

edge-labels represent the specific external inputs that cause

a particular transition between patterns. This generic image

indeed describes nothing but the state transition graph of

some finite state automaton (FSA) (Hopcroft and Ullman

1969). A simple and plausible extension thus allows for a

significant boost in computational capabilities of attractor

networks. We have called the general framework ‘‘opera-

tional cell assemblies’’ because it concretises how classical

Hebbian cell assemblies can systematically support pro-

cedural and rule-based processing, see Wennekers (2006).

Clearly, the different dynamic modes—fixed point attrac-

tors, linear flow of activity (sequences), and input depen-

dent gating of activation flow in a graph-like structure

(syntax)—can all be integrated in the same neuronal net-

work; they just represent three different principles in an

isolated and abstract way that can be studied

independently.

In Wennekers (2006) the recognition of spatio-tempo-

ral syntactic patterns was studied as well as their auton-

omous generation. These simulations made use of ‘‘full

disambiguation’’ of transitions by external inputs: If in

any state several transitions were possible a specific input

external to the network provided a bias that determined

the next state uniquely (together with the state informa-

tion). If there was no such input or if it did not fully

determine the next state, the network behaviour was

undefined. This is equivalent to the behaviour of a finite

state automaton and thereby also a modern computer—

ambiguous states do not occur.

Processes in the brain may well be different. However,

an unspecific trigger causing the network to compute as in

‘‘Analysis of triggered transitions’’ assumes that the next

target is unambiguous. This is true for the linear sequences

used in ‘‘Analysis of triggered transitions’’ and it was also

true in Wennekers (2006) where specific inputs disambig-

uated target states in a word recogniser. In a more general

setup there may be uncertainties about the next network

state, especially where syntactic patterns are generated and

not recognised. Whereas external input can disambiguate

activity flow in the second case, other mechanisms are

necessary in the case of internal generation.

In neural structures disambiguation can have various

causes not always clearly separable from each other. One

possibility is specific input into an operational associative

module as already mentioned. A second one is general

context that remains stable for a certain time and constrains

or biases some of the possible transitions in a network (e.g.

Wickelgren 1979; Wickelgren 1992). Instead of a single

fixed transition graph this results in context-dependend

mappings implemented in a recurrent operational cell

assembly network. Such contextual selection may underlie

rule- and task-set maps in frontal cortical areas and the

switching between them (Dosenbach et al. 2006; Koechlin

and Jubault 2006; Mushiake et al. 2006; Rushworth et al.

2004; Stoet and Snyder 2003).

It is also useful to consider that a local network will

usually be embedded in a larger-scale super-network of

operational modules. This situation reflects that cortical

columns and areas are quite extensively connected with

each other. Processes going on in the different modules

mutually provide input to each other, which again may

disambiguate local processes. Finally, there is certainly

also the impact of noise as a way to choose between dif-

ferent possible targets. This requires in addition some kind

of winner-take-all mechanism because a target, once cho-

sen, needs to stabilise itself against the firing of other tar-

gets. The next section demonstrates disambiguation by

noise in a simple example setup.
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Example for random transitions in a network

Figure 3 shows an example of a network with random

transitions. The model is the same as in ‘‘Examples for

triggered and autonomous transitions’’ including parameter

values, but the neurons now receive independent Gaussian

white noise inputs that allows for random transitions in

case of ambiguities. In addition to the cyclic sequence of

patterns 1–6 an additional hetero-associative transition has

been added from pattern 5 to 3. All hetero-associative

weights are the same, therefore the probability for transi-

tions from pattern 5 to either 6 or 3 should be about equal

(neglecting effects of adaptation that may favour one or the

other transition). Pattern 1 is externally activated at time

zero. The unspecific input is permanently on which causes

an autonomous network behaviour. As can be seen the

network first cycles two rounds through the ‘‘regular’’

cyclic sequence and then does another two transitions

along the second pathway (arrows).

This simple example is shown here for demonstration

purposes. It should be clear that quite arbitrary transition

structures can be implemented and that by choosing dif-

ferent synaptic weights hetero-associative transitions can

be given different probabilities to be taken. Thereby a wide

variety of Markov chains can be implemented. (Although

not all possible ones, unless additional assumptions are

made; the finite system noise gives every transition a finite

chance to occur, even those that are not imprinted in the

hetero-associative connections. Dynamic network proper-

ties may pose additional constraints—long-lasting adapta-

tion, for instance, will induce temporal correlations beyond

those described by Markov chains.)

The setup can apparently also be combined with the

mechanisms described earlier: Specific external input can

provide context that disambiguates situations by making

some transitions more or less likely. An unspecific external

input can still act as a trigger: The simulation in Fig. 3

shows the autonomous generation of a syntactic time-pat-

tern, but the same network works also in a triggered mode

as in Fig. 1 (not shown).

Discussion

In summary we have shown that syntactic patterns can be

represented in operational cell assembly networks com-

prising attractor states, input dependend transitions

between states, and an unspecific activation control that

triggers actual transitions unless they evolve in an auton-

omous mode. Noise in the system can be used to disam-

biguate possible target states and give them different

transition probabilities as reflected by different strengths of

hetero-associative connections. Disambiguation can further

be realised by contextual signals, either spatially or tem-

porally [as for instance already suggested by Wickelgren

(1979)]. In an abstract sense, such networks may be seen as

just implementing some kind of Markov chains in neural

hardware. However, by flexibly combining the various

features mentioned with the well-known classical memory

properties of attractor networks complex computational

structures can result that exceed the usual world of Markov

chains by far.

We here have provided parameter regimes for a proper

retrieval of syntactic sequences using unspecific excitatory

triggers and have shown simulations of autonomous and

non-autonomous modes of retrieval. These parameter

constraints should enable an implementation of temporal

pattern generators and recognisers in software simulations

and potentially also in neural hardware (Indiveri 2007;

Schemmel et al. 2004; Wennekers 2006).

In the present work we have used simplistic graded

response neurons. The dynamics of spiking neuron net-

works can often be reduced to ‘‘mean-field’’ equations of

similar structure (Coolen 2001a, b; Eggert and van Hem-

men 2000; Horn and Usher 1989). Single units in our

model may be interpreted as representing pools of spiking

neurons in an asynchronous regime. In Sommer and

Wennekers (2005) we have shown that triggered transitions

can also be caused in networks of conductance based

neurons, although the results presented here do not gener-

alise to this work because of a different network structure.

We only considered linear and unspecific inhibition, i.e.

the inhibitory neurons did not store information about the

pattern sequences. The latter reflects that mainly only

synapses between excitatory neurons are engaged in syn-

aptic learning. The linearity assumption is made to simplify

the analysis in the main text. It is not entirely crucial, but if

relaxed, many of the conditions constraining the model
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Fig. 3 Example for random transitions in autonomous retrieval

mode. The same network and parameters as in Fig. 2 (for

b = 0.05) are used but membranes receive noise input and beside

the cyclic stored sequence an extra transition from pattern 5 to 3 has

been embedded in the coupling matrix. Observe that the noise causes

transitions from state 5 to either of its target states 6 and 3 (arrows)
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parameters become nonlinear equations that can not be

further analysed by hand. Linear inhibition informally

means that in stationary states the total amount of inhibi-

tion is proportional to that of excitation, which is not

unreasonable as some author’s even make the stronger

claim that excitation and inhibition are balanced in physi-

ological states (Haider et al. 2006; van Vreeswijk 1996).

The inhibition is again assumed to reflect the average

activity level of inhibitory neurons. Although individual

neurons may have non-linear rate functions those may

average to a close(r) to linear relationship in the mean.

The general framework of operational cell assemblies

can be applied to model rule-based temporal behaviour. A

primary target would be a model for syntactic aspects of

language on its different hierarchical levels of phonemes,

syllables, words, and sentences, because the use of attractor

states allows for a quite arbitrary timing of triggers. Trigger

signals can come at any time if the stability of attractors

that hold information about the current state of parsing is

guaranteed. The inflow of acoustic information can thus

happen at flexible speed. Experimental results by Koechlin

and Jubault (2006) may be interpreted as evidence for

triggered transitions. This work suggests the existence of a

hierarchy of behavioural/language sequences in Broca’s

area and it’s right homologue, as well as trigger-like sig-

nals occurring at segment boundaries at the various hier-

archical levels. Strictly speaking this work does not show

that the triggering signals are unspecific. However, our

assumption of unspecific triggers is an extreme case; spe-

cifity would ease the sequencing problem by potentially

providing information about possible target states.

On the shortest time-scale of phonemes and syllables,

other than triggered transitions may be of importance, see

e.g. Buonomano (2003), Hahnloser et al. (2002). On that

level the flow of incoming information may cause a more

continuous flow of activity through the neural recogniser

circuits without discrete triggers. Such circuits may be

more akin to ‘‘synfire chains’’ (Abeles 1991; Hahnloser

et al. 2002; Wennekers 2000) or the untriggered autono-

mous mode of operation displayed in Figs. 2 and 3.

Clearly, any kind of mixture with some transitions trig-

gered, others autonomously evolving is possible.

Previous sequencing models have often focused on

autonomous retrieval. They usually require some mecha-

nism for automatically destabilising attractors. Several

such mechanisms have been proposed like adaptation,

depressing synapses, delayed hetero-associative connec-

tions, and others (Abeles 1991; Hertz et al. 1991; Horn and

Usher 1989; Rehn and Lansner 2004; Russo et al. 2008).

Our main interest here was mainly on non-autonomous

triggered transitions. Few works have considered those

before, but see Sommer and Wennekers (2005), Wennekers

and Palm (2007). Our analyses show that adaptation is not

necessary to stably trigger transitions; however, as the

simulations in Sect. ‘‘Examples for triggered and autono-

mous transitions’’ show that it can cause autonomous

transitions compatible with the mechanisms in Horn and

Usher (1989). It is possible to include effects of synaptic

depression and facilitation in our analysis by assuming that

the synaptic strengths approach stationary values during

the three phases defined in Sect. ‘‘Analysis of triggered

transitions’’. In that case the parameters ‘‘a’’ and/or ‘‘h’’ for

the auto- and hetero-association strengths in the stability

inequalities have to be replaced by their adapted or maxi-

mum values, depending on whether a target pattern is

requested to fire or stay below threshold, respectively. The

form of the conditions remains similar as before, being

slightly more restrictive. Stable triggering can be obtained

at least for facilitating synapses or not too strongly

depressing ones.

Our approach of triggered transitions precisely aims at

implementing rule-like operations in cell assembly net-

works. In a linguistic context these rules may refer to

entities at different levels, low-level phonetic features or

higher level syntactic categories. Different levels can be

combined into hierarchies such that linguistic knowledge

can be represented efficiently [perhaps reflected by the

experiments in Koechlin and Jubault (2006)]. We have

worked out the main ideas in Wennekers (2006), Wenne-

kers and Palm (2007). The framework extends attractor

networks from fixed point retrieval and linear sequences

towards context-dependent rules. In these previous works,

however, spatio-temporal ‘‘grammatical’’ sequences where

recognised or generated such that the necessary state

transitions either occurred fully autonomously or were

driven by specific input events. The triggering proposed in

the present work adds an additional principle of unspecific

control.

An important question refers to memory capacities of

associative networks. A common result is that under opti-

mal conditions associative networks are quite efficient

memories able to store a significant fraction of a bit per

(binary) synapse (Coolen 2001a, b; Palm and Sommer

1992). Simulations using spiking neuron networks get

close to the theoretical limits as shown in Rehn and

Lansner (2004), Sommer and Wennekers (2001). The

network studied in the present work assumes some stability

margin expressed by positive threshold distances in the

stability conditions. It will therefore not reach the absolute

theoretical capacity limits, but as long as the margins are

not too big, one would still expect an extensive memory

capacity. Given the huge number of synapses in the cortex,

a large number of associations can certainly be stored.

We should finally note that we haven’t touched on the

difficult problem of how to learn the type of model

described here in a self-organising way, that is, how such
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structures can emerge as a consequence of stimulus-driven

synaptic plasticity. Machine learning techniques can be

used to learn some grammars in artificial neural networks,

but they are often not too plausible biologically (Sun and

Giles 2000; Wörgötter and Porr 2005). The problem has

been approached recently in more realistic settings, but

with no answer yet: some of the proposed systems appear

quite engineered (Knoblauch et al. 2005a; Markert et al.

2008), others with more generic architectures are not yet

able to learn more than the simplest grammatical temporal

patterns (Garagnani et al. 2008). We have earlier pointed

out that grammar and rule-like behaviour may in principle

result from a timing dependent synaptic learning rule that

maximises a temporal generalisation of mutual information

(Wennekers and Ay 2005). However, this result was

derived in the quite abstract framework of Markov chains

and needs further exploration in realistic contexts.
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