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Abstract Gene regulation is an intrinsically noisy pro-

cess, which is subject to intracellular and extracellular noise

perturbations and environment fluctuations. In this paper,

we consider the robust stability analysis problem of genetic

regulatory networks with time-varying delays and stochas-

tic perturbation. Different from other papers, the genetic

regulate system considers not only stochastic perturbation

but also parameter disturbances, it is in close proximity to

the real gene regulation process than determinate model.

Based on the Lyapunov functional theory, sufficient con-

ditions are given to ensure the stability of the genetic

regulatory networks. All the stability conditions are given in

terms of LMIs which are easy to be verified. Illustrative

examples are presented to show the effectiveness of the

obtained results.

Keywords Genetic network � Stochastic perturbation �
Robust stability � Uncertain system � Time-varying delays

Introduction

Development of genome sequencing and gene recognition

has been accumulating a wealth of experimental data. This

creates a new challenge to biology of understanding how

genes and proteins work collectively, i.e. the analysis of

these data. This challenge leads to a significant increase of

computer applications for modeling and data interpretation

methods. The aim is to develop computer simulations that

mimic biological phenomena, data or patterns, such as

complex biochemical reactions and genetic networks in

cellular media (Turner et al. 2004). Real genetic systems are

composed of a large number of reactions and reacting

species. There are too many items to include them all in

models. It is rather difficult to find an effective method to

construct a complete model and analyze such a complex

model. So we only consider the concentrations of mRNAs

and proteins. Recently, there have been many efforts for

modeling genetic regulatory networks using different clas-

ses of mathematical models (Hasty et al. 2001; De Jong

2002). Basically, there are two types of genetic network

models. i.e. the Boolean models and the differential equa-

tion model (Smolen et al. 2000; Kobayashi et al. 2002;

Bolouri and Davidson 2002; Wang et al. 2004; Benuskova

and Kasabov 2008). Boolean network model interprets gene

interactions as connections between genes. The state of

gene expression is simplified as being either completely ON

or completely OFF. The Boolean expression state con-

verges to a terminal state via a series of state transitions that

is determined by the designed Boolean rules. In the differ-

ential equation models, the variables describe the
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concentrations of gene products, such as mRNAs and pro-

teins, as continuous values of the gene regulation systems.

Recently, the genetic regulatory networks in the form of

differential equations have been well studied. Becskei and

Serrano (2000) designed and constructed simple gene circuits

consisting of a regulator and transcriptional repressor modules

in Escherichia coli and they showed the gain of stability

produced by negative feedback. In Chen and Aihara (2002), a

model for genetic regulatory networks with time delays was

proposed and nonlinear properties of the model in terms of

local stability and bifurcation was analyzed. In Li et al.

(2006a), a nonlinear model for genetic regulatory networks

with SUM regulatory functions was presented. Genetic net-

works with delays and stochastic perturbations were studied

and sufficient conditions of stability were derived in terms of

linear matrix inequalities (LMI). Li et al. (2006b) provided a

theoretical method for analyzing the synchronization of cou-

pled nonidentical genetic oscillators. Sufficient conditions for

the synchronization as well as the estimation of the bound of

the synchronization error were also obtained. Authors Ren and

Cao (2008) studied the robust stability of the genetic regula-

tory networks with time-delays, and present some sufficient

conditions using Lyapunov functional theory and LMI tech-

nique. In Cao and Ren (2008), discrete-time versions of the

continuous-time genetic regulatory networks with SUM reg-

ulatory functions are formulated and studied, and obtained

sufficient conditions for exponential stability of the discrete-

time genetic regulatory networks with delays.

In fact, for most genetic regulatory system, there are two

types of reactions (De Jong 2002): fast reaction and slow

reaction. Fast reaction, such as dimerization, binding

reactions and other medical modification reaction, we can

assume this reaction is immediately and time delay is

reduced to zero. While transcription and translation involve

a number of multi-stage reactions, there is a time lag in the

peaks between mRNA molecules and proteins of gene. On

the other side, mRNA and proteins may be synthesized at

different locations (i.e. nucleus and cytoplasm, respec-

tively), thus transportation or diffusion of mRNA and

proteins between these two locations results in sizeable

delays. That is, time delays exist in genetic regulatory

networks, and possible effects of time delays have attracted

some attentions (Chen and Aihara 2002; Li et al. 2006a;

Ren and Cao 2008; He and Cao 2008).

Stochasticity is ubiquitous in biology. Noise in the form

of random fluctuations arises in genetic regulatory network

in one of two ways. Intrinsic noise is inherent in the bio-

chemical reactions. Its magnitude is proportional to the

inverse of the system size, and its origin is often thermal.

On the other hand, external noise originates environment

fluctuation (Hasty et al. 2000).

In the applications and designs of genetic networks,

there are often some unavoidable uncertainties such as

model errors, external perturbations, and parameter fluc-

tuations, which can cause the networks to be unstable

(Ren and Cao 2008). There are some papers have studied

stability of neural networks with stochastic perturbations

or parameter uncertainties (Huang and Feng 2007; Liao

et al. 2001; Wang et al. 2006, 2007; Zhang et al. 2007),

that give us some suggests for studying genetic regulatory

networks. In this paper, we aim to analyze the stability of

genetic networks in the forms of differential equations.

We consider the delayed genetic regulatory networks not

only with stochastic perturbations but also with parameter

uncertainties. To our best knowledge, there are few paper

to investigate it. By using Lyapunov functional theory

and LMI technique, Novel criteria are derived to guar-

antee the asymptotic and robust stability of such genetic

networks.

The rest of this paper is organized as follows. In section

‘‘Model and analysis’’, problem formulation and prelimi-

naries are given. In section ‘‘Stochastic stability condition

of uncertain genetic networks with time-varying delays’’,

several sufficient criteria are derived for checking globally

robust stability of the genetic regulatory networks with

stochastic perturbations and time-varying delays. In section

‘‘Illustrative examples’’, two examples are given to show

the effectiveness of the proposed results. Finally, conclu-

sions are given in section ‘‘Conclusions’’.

Notation For convenience, some notations are intro-

duced. For a real square matrix X, the notation

X [ 0(X \ 0) means that X is symmetric and positive def-

inite (negative definite). I is the identity matrix with

appropriate dimension. The superscript ‘‘T’’ represents the

transpose. For s[ 0, }([-s, 0]; Rn) denotes the family of

continuous functions u from [-s, 0] to Rn with the norm

||u|| = sup–s B # B 0|u(#)|. Let (X, F, {Ft}t � 0, P) be a

complete probability space with a filtration {Ft}t C 0 satis-

fying the usual conditions (i.e. it is right continuous and F0

contains all P-pull sets); Lp
F0
ð½�h; 0�; RnÞthe family of all

F0-measurable }([-s, 0]; Rn)-valued random vari-

ables n = {n(h): -s B h B 0} such that sup–s B h B 0

E|n(h)|p \? where E stands for the mathematical expec-

tation operator with respect to the given probability measure

P; }2,1(Rn 9 R?; R?) the family of all nonnegative func-

tions V(x, t) on Rn 9 R? which are continuously twice

differentiable in x and differentiable in t.

Model and analysis

Authors considered a genetic regulatory network model (Li

et al. 2006a):

_miðtÞ ¼ �aimiðtÞ þ biðp1ðtÞ; p2ðtÞ; . . .; pnðtÞÞ;
_piðtÞ ¼ �cipiðtÞ þ dimiðtÞ; i ¼ 1; 2; . . .; n:

�
ð1Þ
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where miðtÞ; piðtÞ 2 R are the concentrations of mRNA and

protein of the ith node. ai and ci are the rates of degradation of

mRNA and protein, respectively; di is the translation rate,

and bi is the regulatory function of the ith gene, which is

generally a nonlinear function of the variables (p1(t),

p2(t), …, pn(t)), and nonlinear function is monotonic with

each variable.

In this paper, we considered the genetic regulatory

networks with time delay described by the following dif-

ferential equation:

_miðtÞ ¼ �aimiðtÞ þ Biðp1ðt � s1ðtÞÞ; p2ðt � s1ðtÞÞ; . . .;
pnðt � s1ðtÞÞÞ;

_piðtÞ ¼ �cipiðtÞ þ dimiðt � s2ðtÞÞ; i ¼ 1; 2; . . .; n:

8<
:

ð2Þ

where s1(t), s2(t) are transcriptional delays, for any single

gene in the network, there are one output pi(t - s1(t)) to

other genes and multiple inputs pj(t - s1(t)) (j = 1, 2,

…, n) from other genes. The structure and regulation

mechanism of the genetic work can be seen in Chen and

Aihara (2002). As a monotonic increasing or decreasing

regulatory function, Bi is usually the Michaelis–Menten

or Hill form. In this paper we take Bi(p1(t), p2(t), …,

pn(t)) =
P

jBij(pj(t)), which is called SUM logic (Li et al.

2006a). That is each transcription factor acts additively to

regulate the ith gene. The function Bij(pj(t)) is a monotonic

function of the Hill form.

BijðpjðtÞÞ ¼
aij

ðpjðtÞ=bÞH

1þðpjðtÞ=bÞH
; if transcription factor j

is an activator of gene i

aij
1

1þðpjðtÞ=bÞH
; if transcription factor j

is a repressor of gene i

(
ð3Þ

where H is the Hill coefficient, b is a positive constant, and

aij is the dimensionless transcriptional rate of transcriptional

factor j to gene i, which is a bounded constant. Note that

1

1þ ðpjðtÞ=bÞH
¼ 1� ðpjðtÞ=bÞH

1þ ðpjðtÞ=bÞH

Hence, we can rewrite (2) as:

_miðtÞ ¼ �aimiðtÞ þ
Pn
j¼1

BijgðpjðtÞÞ þ Ii;

_piðtÞ ¼ �cipiðtÞ þ dimiðt� s2ðtÞÞ; i ¼ 1; 2; . . .; n

8<
: ð4Þ

where g(x) = (x/b)H/[1 ? (x/b)H] is a monotonically

increasing function, Ii is defined as basal rate Ii ¼P
j2Li

aij; and Li is the set of repressors of gene i. B ¼
ðBijÞ 2 Rn�n is defined as:

Bij¼
aij if transcriptionfactor jisanactivatorof gene i;
0 if thereisnolinkfromgene jtoi;
�aij if transcriptionfactor jisarepressorof genei:

8<
:

ð5Þ

In compact matrix form, (4) can be rewritten as

_mðtÞ ¼ �AmðtÞ þ Bgðpjðt � s1ðtÞÞÞ þ I;
_pðtÞ ¼ �CpðtÞ þ Dmðt � s2ðtÞÞ:

�
ð6Þ

where m(t) = [m1(t), m2(t), …, mn(t)]T, p(t) = [p1(t), p2

(t), …, pn(t)]T, gðpðt � s1ðtÞÞ ¼ ½g1ðp1ðt � s1ðtÞÞ; g2ðp2

ðt � s1ðtÞÞ; . . .; gnðpnðt � s1ðtÞÞ�; ½mðt � s2ðtÞÞ ¼ ½m1ðt1�
s2ðtÞÞ;m2ðt2 � s2ðtÞÞ; . . .;mnðtn � s2ðtÞÞ�T ; I = [I1, I2, …,

In]T, A = diag{a1, a2, …, an}, C = diag{c1, c2, …, cn},

D = diag{d1, d2, …, dn}. Let (m*, p*)T be an

equilibrium point of (6), which satisfies the following

relationship:

�Am� þ Bgðp�Þ þ I ¼ 0

�Cp� þ Dm� ¼ 0

�
ð7Þ

For convenience, we will shift an intended equilibrium

point (m*, p*) of the system (6) to the origin. Using x(t) =

m(t) - m*, y(t) = p(t) - p*, we have

_xðtÞ ¼ �AxðtÞ þ Bf ðyðt � s1ðtÞÞÞ;
_yðtÞ ¼ �CyðtÞ þ Dxðt � s2ðtÞÞ:

ð8Þ

where x(t) = [x1(t), x2(t), …, xn(t)]T, y(t) = [y1(t), y2(t),

…, yn(t)]T, f(y(t)) = [f1(y1(t)), f2(y2(t)), …, fn(yn(t))]T,

fi(yi(t)) = gi(yi(t) ? pi*) - gi(pi*), since gi(�) is a

monotonically increasing function with saturation, and if

there exists matrix G = diag{g1, g2, …}, then it satisfies

that

0� giðxÞ � giðyÞ
x� y

� gi:

for all x; y 2 R with x = y. From the relationship of f(�)
and g(�), f(�) satisfied that

0� fsðxÞ
x
� gi: ð9Þ

which is equivalent to the following one:

fiðxÞðfiðxÞ � gixÞ� 0: ð10Þ

In the following, we consider stability of delayed

genetic regulatory networks with parameter uncertainties

and stochastic perturbations:

dxðtÞ¼f�ðAþDAÞxðtÞþðBþDBÞf ðyðt�s1ðtÞÞgdt
þ½ðH0þDH0ÞyðtÞþðH1þDH1Þyðt�s1ðtÞ�dxðtÞ;

dyðtÞ¼f�ðCþDCÞyðtÞþðDþDDÞxðt�s2ðtÞÞgdt:

8<
:

ð11Þ

where DA, DB, DC, DD, DH0 and DH1 are parameter

uncertainties, s1(t), s2(t) are unknown time-varying delays

satisfying 0 B s1(t) B h1, 0 B s2(t) B h2 and _s1ðtÞ�
d1\1; _s2ðtÞ�d2\1; where h1, h2, d1 and d2 are known

constants. xðtÞ¼ ½x1ðtÞ;x2ðtÞ; . . .;xmðtÞ�T 2Rm is a

m-dimensional Brownian motion defined on a complete

probability space (X, F, {Ft}t C 0, P), and DA, DB, DC,

DD, DH0 and DH1 are defined as:
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DA ¼ M1FðtÞE1; DB ¼ M2FðtÞE2; DC ¼ M3FðtÞE3;
DD ¼ M4FðtÞE4; DH0 ¼ M5FðtÞE5; DH1 ¼ M6FðtÞE6:

ð12Þ

where M1, M2, M3, M4, M5, M6, E1, E2, E3, E4, E5 and E6 are

known constant real matrices with appropriate dimensions.

F(t) is unknown time-varying matrix satisfying

FTðtÞFðtÞ� I ð13Þ

Remark 1 It should be noted that, if let H0 = H1 = 0, the

model (11) becomes the same form as Ren and Cao (2008).

If we let DA = DB = DC = DD = 0, the model (11) is

equivalent to the one investigated in Li et al. (2006a).

Remark 2 The parameter uncertainty structure described

in (12) and (13) has been widely exploited in robust control

and robust filtering of uncertain systems. Many practical

systems possess parameter uncertainties which can be either

exactly modeled or over bounded by (13). The stochastic

term, [(H0 ? DH0)y(t) ? (H1 ? DH1)y(t - s1(t)]dx(t),

can be viewed as stochastic perturbations related to the gene

current states and delayed states.

Remark 3 Time delay is an important factor in consid-

ering the stability of real genetic system. It is known that

the time delay is different at different reaction stages and at

different time due to complexity and sensitiveness of

biochemical reaction (De Jong 2002), so constant delays

cannot reflect the real regulate process, accordingly, we use

time-varying delays in this paper.

Next, we give the definition of global robust asymptotic

stability for the uncertain stochastic genetic regulatory

networks:

Definitions 1 For the genetic regulatory network (11) and

n 2 L2
F0
ð½�h; 0�; RnÞ; the trivial solution (equilibrium point)

is robustly, globally, asymptotically stable in the mean

square if, for all admissible uncertainties satisfying (12),

the following holds:

lim
t!1

Ejxðt; nÞj2 ¼ 0 ð14Þ

We recall the following useful lemmas:

Lemma 1 (Boyd et al. 1994). The following LMI

QðxÞ SðxÞ
STðxÞ RðxÞ

� �
[ 0;

where Q(x) = QT(x), R(x) = RT(x), and S(x) depend

affinely on x, is equivalent to

RðxÞ[ 0; QðxÞ � SðxÞR�1ðxÞSTðxÞ[ 0:

Lemma 2 (Gu 2000). For any constant matrix M 2 Rn�n,

M = MT [ 0, scalar c[ 0, vector function x:[0, c] ? Rn

such that the integrations are well defined, the following

inequality holds:

Zc

0

xðsÞds

2
4

3
5

T

M

Zc

0

xðsÞds

2
4

3
5� c

Zc

0

xTðsÞMxðsÞds:

Lemma 3 (Liao et al. 2002) Given any real matrices R1,

R2, R3 of appropriate dimensions and a scalar e[ 0 such

that 0\R3 ¼ RT
3 : Then, the following inequality holds:

XT

1

X
2

þ
XT

2

X
1

� e
XT

1

X
3

X
1

þe�1
XT

2

X�1

3

X
2

:

Stochastic stability condition of uncertain genetic

networks with time-varying delays

We first consider stochastic genetic regulatory networks

without parameter uncertainties:

dxðtÞ ¼ f�AxðtÞ þBf ðyðt� s1ðtÞÞÞgdtþfH0yðtÞ
þH1yðt� s1ðtÞÞgdxðtÞ;

dyðtÞ ¼ f�CyðtÞ þDxðt� s2ðtÞÞgdt:

8><
>: ð15Þ

We have the following result:

Theorem 1 System (15) is globally asymptotically stable

in the mean square, if there exist symmetric positive defi-

nite matrices P1, P2, Q1, Q2, S1, S2 and positive scalar k,

such that the following LMIs holds:

X1 ¼
P1 0 0

0 DT D� ð1� d2ÞQ2 0

0 0 �h�1
2 S2

2
4

3
5\0;

X2 ¼

P2 0 0 0 HT
0 P1

0 �ð1� d1ÞQ1 þ kGT G 0 0 HT
1 P1

0 0 �kI þ BT B 0 0

0 0 0 �h�1
1 S1 0

PT
1 H0 PT

1 H1 0 0 �P1

2
66664

3
77775\0;

ð16Þ
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where

P1 ¼� P1A� AT P1 þ Q2 þ P2
1 þ h2S2;

P2 ¼� P2C � CT P2 þ Q1 þ h1S1 þ P2
2:

Proof Using schur complement, X2 \ 0 implies that

X2 ¼

P2 0 0 0

0 �ð1� d1ÞQ1 þ kGTG 0 0

0 0 �kI þ BT B 0

0 0 0 �h�1
1 S1

2
66664

3
77775

þ

HT
0

HT
1

0

0

2
66664

3
77775P1½H0 H1 0 0 �\0:

Constructing a positive definite Lyapunov–Krasovskii

functional as follows:

VðxðtÞ; yðtÞ; tÞ ¼ yTðtÞP2yðtÞ þ xTðtÞP1xðtÞ

þ
Z t

t�s1ðtÞ

yTðsÞQ1yðsÞdsþ
Z t

t�s2ðtÞ

xTðsÞQ2xðsÞds

þ
Z0

�h1

Z t

tþs

yTðgÞS1yðgÞdgdsþ
Z0

�h2

Z t

tþs

xTðgÞS2xðgÞdgds:

By Itô’s differential formula (Oksendal 2003), the

stochastic derivative of V(x(t), y(t), t) along the trajectory

of system (15)

dVðxðtÞ; yðtÞ; tÞ� f2xTðtÞP1½�AxðtÞ þ Bf ðyðt � s1ðtÞÞ�
þ ½H0ðtÞyðtÞ þ H1ðtÞyðt � s1ðtÞ�T P1½H0ðtÞyðtÞ
þ H1ðtÞyðt � s1ðtÞ� þ 2yTðtÞP2½�CyðtÞ þ Dxðt � s2ðtÞÞ�
þ yTðtÞQ1yðtÞ � ð1� d1ÞyTðt � s1ðtÞÞQ1yðt � s1ðtÞÞ
þ xTðtÞQ2xðtÞ � ð1� d2ÞxTðt � s2ðtÞÞQ2xðt � s2ðtÞÞ

þ h1yTðtÞS1yðtÞ �
Z t

t�s1ðtÞ

yTðsÞS1yðsÞdsþ h2xTðtÞS2xðtÞ

�
Z t

t�s2ðtÞ

xTðsÞS2xðsÞdsgdt þ 2xTðtÞP1½H0ðtÞyðtÞ

þ H1ðtÞyðt � s1ðtÞ�dwðtÞ:

From Lemma 3, the following inequalities hold:

2xTðtÞP1Bf ðyðt � s1ðtÞÞÞ� xTðtÞP2
1xðtÞ

þ f Tðyðt � s1ðtÞÞÞBT Bf ðyðt � s1ðtÞÞÞ:
ð17Þ

2yTðtÞP2Dxðt � s2ðtÞÞ� yTðtÞP2
2yðtÞ

þ xTðt � s2ðtÞÞDT Dxðt � s2ðtÞÞ:
ð18Þ

From (9), we obtain the follow inequality easily,

f Tðyðt � s1ðtÞÞf ðyðt � s1ðtÞÞ � yTðt � s1ðtÞGT Gyðt
� s1ðtÞ� 0: ð19Þ

Noticing that, for a scalar k[ 0, we have

� k½f Tðyðt � s1ðtÞÞf ðyðt � s1ðtÞÞ
� yTðt � s1ðtÞGT Gyðt � s1ðtÞ� � 0:

ð20Þ

Substituting (17), (18) and (20) into dV(x(t), y(t), t) and by

use of Lemma 2, we have

dVðtÞ�

(
xTðtÞð�P1A�AT P1þQ2þ h2S2þP2

1ÞxðtÞ

þ xTðt� s2ðtÞÞðDT D�ð1� d2ÞQ2Þxðt� s2ðtÞÞ

� h�1
2

Z t

t�s2ðtÞ

xðsÞds

0
B@

1
CA

T

S2

Z t

t�s2ðtÞ

xðsÞds

0
B@

1
CAþ yTðtÞð�P2 C�CT P2

þQ1þ h1S1þP2
2ÞyðtÞþ yTðt� s1ðtÞÞð�ð1� d1ÞQ1

þ kGTGÞyðt� s1ðtÞÞþ f Tðyðt� s1ðtÞÞð�kIþBTBÞ

� f ðyðt� s1ðtÞÞ� h�1
1

Z t

t�s1ðtÞ

yðsÞdsÞTS1ð
Z t

t�s1ðtÞ

yðsÞds

0
B@

1
CA
)

dt

þf2xTðtÞP1½H0ðtÞyðtÞþH1ðtÞyðt� s1ðtÞÞ�gdxðtÞ

¼ fnT
1 ðtÞX1n1ðtÞþ nT

2 ðtÞX2n2ðtÞgdt

þf2xTðtÞP1½H0ðtÞyðtÞþH1ðtÞyðt� s1ðtÞÞ�gdxðtÞ: ð21Þ

where

nT
1 ðtÞ¼½xTðtÞ;xTðt�s2ðtÞÞ;

Z t

t�s2ðtÞ

xðsÞds

0
B@

1
CA

T

;nT
2 ðtÞ

¼ yTðtÞ;yTðt�s1ðtÞÞ;f Tðy�s1ðtÞÞ;
Z t

t�s1ðtÞ

yðsÞds

0
B@

1
CA

T2
64

3
75:

Since the expectation of f2xTðtÞP1½H0ðtÞyðtÞþ
H1ðtÞyðt�s1ðtÞÞ�gdxðtÞ is equal to zero, when X1 \ 0

and X2 \ 0. Taking the mathematical expectation of both

sides of (21), we have

E½dVðxðtÞ; yðtÞ; tÞ� �E
�
ðnT

1 ðtÞX1n1ðtÞ
þ nT

2 ðtÞX2n2ðtÞÞdt
�
\0 ð22Þ

where E is the mathematical expectation operator. It indi-

cates that the genetic regulatory network (15) is

asymptotically stable in mean square. This completes the

proof.
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Remark 4 We introduce a new Lyapunov–Krasovskii

functional. The Lyapunov–krasovskii functional not only

dealt with the time-varying delays but also consider the

upper bounds of time delays. That is, both time-varying

delay and the upper bound of time delays have been

brought into the final robust stability condition, and the

effect factor of time delays is considered in genetic regu-

latory networks, the LMIs condition can reflect more

characters of genetic regulatory networks.

Remark 5 In spite of considerable variations and random

perturbations of biochemical parameters, the genetic regu-

latory networks can keep homeostasis in metabolism and

developmental programs of living cells (Yuh et al. 1998). i.e.

despite the stochastic function of regulatory within cells,

most cellular events are ordered and precisely regulated.

That is, genetic networks system can reach stability by auto

regulation. In fact, genetic regulatory network is an essen-

tially continuous and complicated dynamical system. So the

research of stability of genetic regulatory networks is nec-

essary. The LMIs conditions provide one sufficient criteria of

estimating the stability of genetic regulatory networks.

Theorem 2 The genetic regulatory network (11) is

asymptotically robustly stable if there exist positive

matrices Pi, Qi, Si (i = 1, 2) and scalars k[ 0 and li [ 0

(i = 1, 2, …, 6) such that the following LMIs hold:

where

c1 ¼ �P1A� AT P1 þ Q2 þ P2
2 þ h2S2 þ l1ET

1 E1;

c2 ¼ �ð1� d2ÞQ2 þ DDT þ l2ET
4 E4;

j1 ¼ �P2C � CT P2 þ Q1 þ h1S1 þ P2
2 þ l3ET

3 E3

þHT
0 P1H0 þ l5ET

5 E5;

j2 ¼ �ð1� d1ÞQ1 þ kGT Gþ HT
1 P1H1 þ l6ET

6 E6;

j3 ¼ �kI þ BT Bþ l4ET
2 E2;

j4 ¼ �l5I þMT
5 P1M5;

j5 ¼ �l6I þMT
6 P1M6:

and * denotes the symmetric term in a symmetric matrix.

Proof Taking the same Lyapunov–Krasovskii functional

as that in the proof of Theorem 2, and replacing A, B, C, D,

H0 and H1 by A ? M1F(t)E1, B ? M2F(t)E2,

C ? M3F(t)E3, D ? M4F(t)E4, H0 ? M5F(t)E5, H1 ?

M6F(t)E6, respectively.

From (13), we can get following inequalities.

l1xTðtÞET
1 E1xðtÞ � l1ðFðtÞE1xðtÞÞTðFðtÞE1xðtÞÞ� 0;

l2xTðt � s2ðtÞÞET
4 E4xðt � s2ðtÞÞ � l2ðFðtÞ

E4xðt � s2ðtÞÞÞTðFðtÞE4xðt � s2ðtÞÞÞ� 0;

l3yðtÞET
3 E3yðtÞ � l3ðFðtÞE3yðtÞÞTðFðtÞE3yðtÞÞ� 0;

l4f Tðyðt � s1ðtÞÞÞET
2 E2f ðyðt � s1ðtÞÞÞ � l4ðFðtÞE2

� f ðyðt � s1ðtÞÞÞÞTðFðtÞE2f ðyðt � s1ðtÞÞÞÞ� 0;

� l5yðtÞET
5 E5yðtÞ � l5ðFðtÞE5yðtÞÞT � ðFðtÞE5yðtÞÞ� 0;

l6yTðt � s1ðtÞÞET
6 E6yðt � s1ðtÞÞ

�l6ðFðtÞE6yðt � s1ðtÞÞÞTðFðtÞE6yðt � s1ðtÞÞÞ� 0 ð24Þ

X�1 ¼

c1 0 0 �P1M1 0

� c2 0 0 DT M4

� � �h�1
2 S2 0 0

� � � �l1I 0

� � � � MT
4 M4 � l2I

2
666666664

3
777777775
\0;

X�2 ¼

j1 HT
0 PH1 0 0 �P2M3 0 HT

0 P1M5 HT
0 P1M6

� j2 0 0 0 0 HT
1 P1M5 HT

1 P1M6

� � j3 0 0 BT M2 0 0

� � � �h�1
1 S1 0 0 0 0

� � � � �l3I 0 0 0

� � � � � �l4I þMT
2 M2 MT

5 P1M6 0

� � � � � � j4 0

� � � � � � � j5

2
66666666666664

3
77777777777775

\0

ð23Þ
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Using the above inequalities, then

dVðxðtÞ; yðtÞ; tÞ� ffT
1
ðtÞX�1f1ðtÞ þ fT

2 ðtÞX�2f2ðtÞgdt

þ f2xTðtÞP1½H0ðtÞyðtÞ þ H1ðtÞyðt � s1ðtÞÞ�gdxðtÞ: ð25Þ

where

Since X�1\0; X�2\0; we have

E½dVðxðtÞ; yðtÞ; tÞ�

¼ E ðfT
1
ðtÞX�1f1ðtÞ þ fT

2 ðtÞX�2f2ðtÞÞdt
h i

\0:
ð26Þ

For all x(t), y(t) except for x(t) = y(t) = 0. Therefore,

the genetic regulatory network (11) is asymptotically stable

in mean square. This completes the proof.

Remark 6 Noise always exist and need processing in

process of data measurement. The gene expression data

obtained from experiments is especially noisy. Robustness

is a accuracy measurement of extracting the weight matrix

of genetic regulatory network with the existence of noise

Remark 7 In Li et al. (2006a), the authors studied sto-

chastic stability of genetic networks with time-varying

delays, however, the parameter uncertainty was not con-

sidered in the models, and The stochastic disturbance term

in this paper we give is the form of ½ðH0 þ DH0ÞyðtÞ þ
ðH1 þ DH1Þyðt � s1ðtÞ�dxðtÞ: Therefore, our results and

those established in [11] are complementary each other.

Remark 8 Gene regulation process is an inherent noisy

process, the determinate model cannot commendably

reflect the real gene regulation process, the stochastic

model considering noise disturbances and parameter

uncertainties in this paper is in close proximity to the real

gene regulation process than determinate model. Ren and

Cao studied the uncertain genetic networks with time-

varying delays, and several LMI-based conditions were

proposed to guarantee the stability of the equilibrium point

of genetic networks. However, the stochastic term was not

taken into account in the models. Therefore, our developed

results in this paper are more general than those reported in

Ren and Cao (2008).

Remark 9 A cycle of most eukaryotes is composed of

four stages (Chen and Wang 2004): G1(Gap) phase in

which size of the cell is increased by constantly producing

RNA and synthesizing protein. S phase in which the cell

continuous to produce new proteins and grows in size. And

M(mitosis) phase in which chromosomes segregate and cell

division takes place. While regulation of gene expression at

different stages of protein synthesis (De Jong 2002).

Transcription and translation are important process, from

the description of introduction, we known that there exist

time-varying delays in process of transcription and trans-

lation, that is, the time-varying delays can also affect the

cell cycle, which need much more further research.

Illustrative examples

In this section, we present two examples to show the

effectiveness and correctness of our theoretical results.

Example 1 In Elowitz and Leibler (2000), the dynamics

of repressilator has been theoretically predicted and

experimentally investigated in Escherichia coli. The

repressilator is a cyclic negative-feedback loop comprising

three repressor genes (lacl, tetR and cl) and their promot-

ers. The kinetics of system are described as follows:

_mi ¼ �mi þ a
1þ pn

j

; _pi ¼ �bðpi � miÞ:

where i = lacl, tetR, cl; j = cl, lacl, tetR, mi and pi are the

concentrations of the three mRNA and repressor-proteins,

and b[ 0 denotes the ratio of the protein decay rate to

mRNA decay rate.

We consider a three-node genetic regulatory networks

(15) with stochastic disturbance and transcriptional time

delay, where

f1ðtÞ ¼ xTðtÞ; xTðt � s2ðtÞÞ;
Z t

t�s2ðtÞ
xðsÞds

 !T

; ðFðtÞE1xðtÞÞT ; ðFðtÞE4xðt � s2ðtÞÞÞT
" #T

;

f2ðtÞ ¼
yTðtÞ; yTðt � s1ðtÞÞ; f Tðyðt � s1ðtÞÞÞ;

Z t

t�s1ðtÞ
yðsÞds

 !T

; ðFðtÞE3yðtÞÞT ;

ðf ðtÞE2f ðyðt � s1ðtÞÞÞÞT ; ðFðtÞE5yðtÞÞT ; ðFðtÞE6yðt � s1ðtÞÞÞT

2
6664

3
7775

T

:
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A ¼ diag(3:5; 4; 2Þ; C ¼ diag(2:5; 2:5; 2:5Þ;
D ¼ diag(0:6; 0:7; 1Þ; H0 = diag(0:2; 0:2; 0:2Þ;

H1 ¼ diag(0:3; 0:3; 0:3Þ; B ¼
0 1 �1

�1 0 1

�1 �1 0

2
4

3
5

and f(x) = x2/(1 ? x2), i.e. the Hill coefficient is 2. It is

easy to know that the maximal value of the derivative of

f(x) is less than gi = 0.65, Assume time delay

s1(t) = 1 ? 0.5 sin (t), s1(t) = 0.5 ? 0.5 cos (t) and

s1 = 1.25, s2 = 0.75, d1 = d2 = 0.25. According to

Theorem 1, if the LMI (16) hold, then the genetic

network is globally asymptotic stable in mean square.

The simulation of trajectories and phase graph of m(t) and

p(t) are show in Fig. 1. By using the MATLAB LMI

Toolbox (Gahinet et al. 1995), we solve the LMI (16) and

obtain

P1 ¼
36:2053 0 0

0 31:3224 0

0 0 62:3129

2
64

3
75;

P2 ¼
79:5411 0 0

0 79:5411 0

0 0 79:5411

2
64

3
75;

Q1 ¼
118:6103 0 0

0 118:6103 0

0 0 118:6103

2
64

3
75;

Q2 ¼
87:9061 0 0

0 88:9510 0

0 0 74:1024

2
64

3
75;

S1 ¼
51:7302 0 0

0 52:1224 0

0 0 45:1345

2
64

3
75;

S2 ¼
46:4566 0 0

0 46:4566 0

0 0 46:4566

2
64

3
75:

k = 63.9422.

Therefore, the genetic regulatory network (15) with

stochastic disturbance and time-varying delays is asymp-

totically stable.

Example 2 Now, let us consider a five-node delayed

stochastic genetic regulatory network (11) with norm

bounded uncertainties. The network coefficients are given

as follows:

A ¼ diagð3; 4; 5; 4; 4Þ;
C ¼ diagð5; 4; 5; 4:5; 4Þ;
D ¼ diagð0:3; 0:2; 0:4; 0:2; 0:2Þ;
H0 ¼ diagð0:3; 0:3; 0:3; 0:3; 0:3Þ;

H1 ¼ diagð0:2; 0:2; 0:2; 0:2; 0:2Þ;
M1 ¼ M2 ¼ M3 ¼ M4 ¼ M5 ¼ M6

¼ diagð0:3; 0:3; 0:3; 0:3; 0:3Þ;
E1 ¼ E2 ¼ E3 ¼ E4 ¼ E5 ¼ E6

¼ diagð0:2; 0:2; 0:2; 0:2; 0:2Þ;
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Fig. 1 Trajectories and phase graph of m(t) and p(t) for Example 1

278 Cogn Neurodyn (2009) 3:271–280

123



B ¼

0 �1 1 0 0

�1 0 0 1 1

0 1 0 0 0

1 �1 0 0 0

0 0 0 1 0

2
66664

3
77775:

The simulation of trajectories and phase graph of m(t)

and p(t) with FðtÞ ¼ diagfsinðtÞ; cosð2tÞ; cosðtÞ; cos2ðtÞ;
� sinðtÞg are show in Fig. 2. Again, by solving the LMI

(23) for the same parameters, we have

P1 = diag(100.0412, 81.0543, 59.9681, 77.5957,

81.0543),

P2 = diag(75.4597, 99.5427, 75.0213, 85.6906,

99.5427),

Q1 = diag(294.2091, 291.9178, 294.2575, 293.3227,

291.9178),

Q2 = diag(208.6455, 208.6287, 208.8624, 208.6488,

208.6287),

S1 = diag(120.3644, 120.3778, 120.3997, 120.3833,

120.3778),

S2 = diag(111.6799, 110.7737, 111.6990, 111.3293,

110.7737),

k = 157.0317, l1 = 150.5257, l2 = 150.6112, l3 = 150.

4322,

l4 = 150.5630, l5 = 151.2316, l6 = 151.2004

which indicates from Theorem 2 that the delayed uncertain

stochastic genetic regulatory network (11) is robustly,

globally, asymptotically stable in the mean square.

Conclusions

In this paper, we have dealt with the problem of global

asymptotic and robust stability analysis for stochastic

delayed genetic regulatory networks, which involve sto-

chastic perturbations, parameter uncertainties and time-

varying delays. There are exist time-varying delays in

process of transcription and translation of gene expression,

while process of transcription and translation occupy a

majority of cell cycle. So the time-varying delays can also

affect the cell cycle. Effect on gene regulate process of cell

cycle may result in other dynamical behaviors, such as

switch, oscillation and bifurcation, which need much more

further research.
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