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Abstract The paper introduces a novel computational

approach to brain dynamics modeling that integrates

dynamic gene–protein regulatory networks with a neural

network model. Interaction of genes and proteins in neu-

rons affects the dynamics of the whole neural network.

Through tuning the gene–protein interaction network and

the initial gene/protein expression values, different states of

the neural network dynamics can be achieved. A generic

computational neurogenetic model is introduced that

implements this approach. It is illustrated by means of a

simple neurogenetic model of a spiking neural network of

the generation of local field potential. Our approach allows

for investigation of how deleted or mutated genes can alter

the dynamics of a model neural network. We conclude with

the proposal how to extend this approach to model cogni-

tive neurodynamics.

Keywords Computational neurogenetic modeling �
Gene regulatory networks � Neuroinformatics �
Gene expression data � Local field potential

Introduction

This paper presents a methodology for brain dynamics

modeling called computational neurogenetic modeling

(CNGM) that integrates gene regulatory networks with

models of artificial neural networks (ANN) to model dif-

ferent functions of neural system. Properties of all cell

types, including neurons, are determined by proteins they

contain (Lodish et al. 2000). In turn, the types and amounts

of proteins are determined by differential transcription of

different genes in response to internal and external signals.

Eventually, the properties of neurons determine the struc-

ture and dynamics of the whole neural network they are

part of. In the CNGM approach, interaction of gene vari-

ables in neurons affects the dynamics of the whole ANN

through neuronal parameters, which are no longer constant,

but change as a function of gene expression. Through

optimization of the gene interaction network, initial gene/

protein expression values and neuronal parameters, par-

ticular target states of the neural network operation can be

achieved, and meaningful relationships between genes,

proteins and neural functions can be extracted.

One particular instance where the gene expression

determines the neural dynamics is the circadian rhythm. A

circadian rhythm is a roughly 24-h cycle in the physio-

logical processes of plants and animals. The circadian

rhythm partly depends on external cues such as sunlight

and temperature, but otherwise it is determined by periodic

expression patterns of the so-called clock genes (Lee et al.

1998; Suri et al. 1999). Smolen et al. (2004) have devel-

oped a computational model to represent the regulation of

core clock component genes in Drosophila (per, vri, Pdp-1,

and Clk). To model the dynamics of gene expression, dif-

ferential equations and first-order kinetics equations were

employed for modeling the control of genes and their
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products. The model illustrates the ways in which negative

and positive feedback loops within the gene regulatory

network (GRN) cooperate to generate oscillations of gene

expression. The relative amplitudes and phases of simu-

lated oscillations of gene expressions resemble empirical

data in most of simulated situations. The model of Smolen

et al. (2004) shows that it is possible to develop detailed

models of gene control of neural behavior provided enough

experimental data is available to adjust the model.

Another example of modeling genetic influence upon

neural dynamics is genetic control of neural development.

Computational models were developed for early neural

development, early dendritic and axonal morphogenesis,

formation of dendritic branching patterns, axonal guidance

and gradient detection by growth cones, activity-dependent

neurite outgrowth, etc. (van Ooyen 2003). Although, these

models consider role and dynamics of proteins they do not

take into account the role and dynamics of genes. However,

they can be taken one step further by linking proteins to

genes. This step was actually performed by Marnellos and

Mjolsness (Marnellos and Mjolsness 2003; Mjolsness et al.

1991), Storjohann and Marcus (Storjohann and Marcus

2005; Thivierge and Marcus 2006).

Mjolsness et al. (1991) and Marnellos and Mjolsness

(2003) have introduced a modeling framework for the study

of development including neural development based upon

genes and their interactions. Cells in the model are repre-

sented as overlapping cylinders in a two-dimensional

hexagonal lattice where the extent of overlap determines the

strength of interaction between neighboring cells. Model

cells express a small number of genes corresponding to

genes that are involved in differentiation. Genes in broad

terms can correspond to groups of related genes, for

instance proneural genes or epithelial genes, etc. Abstract-

ing from biochemical detail, genes interact as nodes of a

recurrent network. According to Marnellos and Mjolsness

(2003), levels of gene products should be viewed as cor-

responding to gene product activities rather than actual

concentrations and gene interactions should be viewed as

corresponding more to genetic rather than specific bio-

chemical (transcriptional, etc.) interactions. The gene

network allows cell transformations in the model. For

instance, cells may change their state (i.e., the levels of gene

products or other state variables), change type, strength of

interaction, can give birth to other cells, or die. These

transformations are represented by a set of grammar rules,

the L-grammar as in Lindenmayer systems. Rules are trig-

gered according to the internal state of each cell (or other

cells as well) and are of two kinds: discrete (leading to

abrupt changes) and continuous (leading to smooth chan-

ges). Marnellos and Mjolsness applied this approach to

modeling early neurogenesis in Drosophila and constructed

models to study and make predictions about the dynamics

of how neuroblasts and sensory organ precursor cells dif-

ferentiate from proneural clusters (Marnellos and Mjolsness

2003). The gene interaction strengths were optimized in

order to fit gene expression patterns described in experi-

mental literature. The objective function was the least-

squares one and optimization was done by means of simu-

lated annealing. The Drosophila developmental model

made predictions about how the interplay of factors such as

proneural cluster shape and size, gene expression levels,

and strength of cell–cell signaling determine the timing and

position of neuroblasts and sensory organ precursor cells.

The model also made predictions about the effect of various

perturbations in gene product levels on cell differentiation.

Yet another example of a neurodevelopmental process

that is dependent upon gene expression is formation of

topographic maps in the brains of vertebrates. Topographic

maps transmit visual, auditory, and somatosensory infor-

mation from sensory organs to cortex and between the

cortical hemispheres (Kaas 1997). Experimental evidence

suggests that topographic organization is maintained also

in sensory neural structures where learning occurs, in other

words, tactile information is stored within the spatial

structure of maps (Diamond et al. 2003). It is known that

the topographic map formation depends on activity-inde-

pendent (genetic) and activity-dependent processes

(learning or activity-dependent synaptic plasticity) (Will-

shaw and Price 2003). To study the interplay between

these processes a novel platform is under development

called INTEGRATE (Thivierge and Marcus 2006). It is

similar in nature to a novel computational programming

system for integrated simulation of neural biochemistry,

neurodevelopment and neural activity within a unifying

framework of genetic control, called NeuroGene (Stor-

johann and Marcus 2005). NeuroGene is designed to

simulate a wide range of neurodevelopmental processes,

including gene regulation, protein expression, chemical

signaling, neural activity and neuronal growth. Central is a

computational model of genes, which allows protein con-

centrations, neural activity and cell morphology to affect,

and be affected by, gene expression. Using this system, the

authors have developed a novel model for the formation of

topographic projections from retina to the midbrain,

including activity-dependent developmental processes

which underlie receptive field refinement and ocular

dominance column formation. The authors also imple-

mented the learning rule introduced by Elliott and

Shadbolt (1999) to model the competition among presyn-

aptic terminals for the postsynaptic protein. The learning

rule is encoded entirely in simulated genes. NeuroGene

simulations of activity-dependent remodeling of synapses

in topographic projections had two results in accordance

with experimental data. First, retino-tectal arbors, which

initially form connections to many tectal cells over a large
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area, become focused so that each retinal ganglion cell

connects to only one or a few tectal cells. This improves

the topographic ordering of the projection. Second, the

tectum, which receives overlapping topographic projec-

tions from both eyes, becomes subdivided into domains

(known as ocular dominance columns) which receive

neural input exclusively from one or the other eye. In

addition, NeuroGene successfully modeled the EphA

knockin experiment in which the retinal EphA level was

increased and the resulting retino-tectal projections were

specifically disrupted (Brown et al. 2000). NeuroGene can

be considered to be a neurogenetic model in spite it does

not include interactions between genes. Genes obey the

known expression profiles and these can be changed as a

consequence of mutation, gene knockout or knockin, and

thus the model can be used for predictions of some neu-

rodevelopmental disorders of the visual tract in vertebrates.

To summarize, models using the gene network frame-

work can be formulated as optimization tasks that look for

the model parameters so that the model optimally fits

biological data or behaves in a certain desired manner.

Optimization seeks the minimum of the objective (or error)

function E(p), which depends on the state variable values.

An example of the objective function can be the least-

squares error function, as in Marnellos and Mjolsness

(2003):

EðpÞ ¼
X

i;a;t

pi
aMODELðtÞ � pi

aDATAðtÞ
� �2 ð1Þ

which is the squared difference between gene product

levels in the model and those in the data, summed over all

cells (i), over all gene products (a) and over all times (t) for

which data are available. The objective functions in gene

network models typically have a large number of variables

and parameters, are highly nonlinear and cannot be solved

analytically or readily optimized with deterministic meth-

ods. Therefore, the more appropriate methods for

optimization are stochastic optimization methods like

simulated annealing (Cerny 1985) or evolutionary com-

putation (Goldberg 1989). What is actually being

optimized is the set of adjustable parameters of the GRN

that is the gene interaction weights, activation thresholds,

protein production and decay rates, etc., depending on a

particular GRN model.

Optimization leads to optimal hidden parameter values,

like interactions between genes that constitute the main

prediction of the model. Construction of the hidden gene

regulatory network enables predictions about consequences

of gene mutations. After introducing the general frame-

work for modeling brain dynamics, we illustrate the above

optimization and predictions on a particular example of

modeling local field potential (LFP) in wild type and PV

knockout mice.

Methods

Discrete computational neurogenetic model of neural

dynamics

This methodology has been developed over years in Ka-

sabov and Benuskova (2004, 2006), Benuskova et al.

(2006), Benuskova and Kasabov (2007). In general, we

consider two sets of genes: a set Ggen that relates to proteins

of general cell functions and a set Gspec that codes specific

neuronal information-processing proteins (e.g. receptors,

ion channels, etc.). The two sets form together a set

G 5 {G1, G2, …, GN} that forms a gene regulatory network

(GRN) interconnected through matrix of gene interaction

weights W. Proteins that mediate general cellular or specific

information-processing functions in neurons are usually

complex molecules comprised of several subunits, each of

them being coded by a separate gene (Burnashev and Rozov

2000). We assume that the expression level of each gene

gj(t?Dt) is a nonlinear function of expression levels of all

the genes in G. Relationship can be expressed in a discrete

form using the sigmoid function r (Weaver et al. 2001), i.e.:

gjðt þ DtÞ ¼ wj0 þ r
XNG

k¼1

wjkgkðtÞ
 !

ð2Þ

where NG is the total number of genes in G, wj0 C 0 is the

basal level of expression of gene j and the gene interaction

weight wjk represents interaction weight between two genes

j and k. The positive interaction, wjk [ 0, means that

upregulation of gene k leads to the upregulation of gene j.

The negative interaction, wjk \ 0, means that upregulation

of gene k leads to the downregulation of gene j. We can

work with normalized gene expression values in the

interval gj(t) [ (0, 1). Initial values of gene expressions can

be small random values, i.e. gj(0) [ (0, 0.1).

In a living cell, including neurons, gene expression, i.e.

the transcription of DNA to messenger RNA followed by

translation to protein, occurs stochastically, as a conse-

quence of the low copy number of DNA and mRNA

molecules involved. It has been shown at a cell level that

the protein production occurs in bursts, with the number of

molecules per burst following an exponential distribution

(Cai et al. 2006). However, in our approach, we take into

account the average gene expression levels and average

levels of proteins taken over the whole population of cells

and over the whole relevant time period.

We assume a linear relationship between protein levels

and gene expression levels. The linear relationship in the

next equation is based on findings that protein complexes,

which have clearly defined interactions between their

subunits, have highly correlated levels with mRNA

expression levels (Greenbaum et al. 2003; Jansen et al.
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2002). Subunits of the same protein complex show sig-

nificant co-expression, both in terms of similarities of

absolute mRNA levels and expression profiles, e.g., sub-

units of a complex have correlated patterns of expression

over a time course (Jansen et al. 2002). This implies that

there should be a correlation between mRNA and protein

concentration, as these subunits have to be available in

stoichiometric amounts for the complexes to function

(Greenbaum et al. 2003). Thus, the protein level pj(t?Dt)

reads

pjðt þ DtÞ ¼ zj0 þ
XNpj

k¼1

zjkgkðtÞ ð3Þ

where Npj is the number of protein j subunits, zj0 C 0 is the

basal concentration (level) of protein j and zjk C 0 is the

coefficient of proportionality between subunit gene k and

protein j (subunit k content). Time delay Dt corresponds to

time interval when protein expression data are being

gathered. Determining protein levels requires two stages of

sample preparation. All proteins of interest are separated

using two-dimensional electrophoresis, followed by iden-

tification using mass spectrometry (MacBeath and

Schreiber 2000). Thus, in our current model the delays Dt

represent the time points of gathering both gene and protein

data.

Some protein levels are directly related to the values of

neuronal parameters Pj such that

PjðtÞ ¼ Pjð0Þ pjðtÞ ð4Þ

where Pj(0) is the initial value of the neuronal parameter at

time t = 0, and pj(t) is a protein level at time t. An example

can be the membraneous conductance for Na? ions being

directly proportional to the concentration of voltage-gated

Na? channels in the axonal membrane and to concentration

of AMPA and NMDA receptors in the synaptic membrane.

These concentrations are in turn proportional to the rate of

their biosynthesis. After induction of LTP (long-term

potentiation, the main mechanism of long-term memory

formation), the genes for AMPA and NMDA receptors are

upregulated (Abraham and Williams 2003) and receptors

inserted into the postsynaptic membrane (Shi et al. 1999).

Hence, we assume that if there is an increase in synthesis of

ion channels or postsynaptic receptors, it is because they

are needed to be inserted into the membrane to enhance the

function, hence the linear relationship in Eq. 4. In such a

way, the gene/protein dynamics is directly linked to the

dynamics of artificial neural network (ANN).

The discrete CNGM model is a general one and can be

integrated with any neural network model, depending on

what kind of neural activity one wants to model. In the

presented model we have made several simplifying

assumptions:

• Each neuron has the same GRN, i.e. the same genes and

the same interaction gene matrix W.

• Each GRN starts from the same initial values of gene

expressions.

• There is no direct feedback from neuronal activity or

any other external factors to gene expression levels or

protein levels.

This generic discrete neurogenetic model can be run

continuously over time in the following way:

1. Choose initial expression values of the genes G,

G(t = 0), in the neuron and the matrix W of the GRN,

basal levels of all genes and proteins, and the initial

values of neuronal parameters P(t = 0).

2. Calculate the next vector of expression levels of the

gene set G(t?Dt) (Eq. 2).

3. Calculate concentration levels of proteins that are

related to the set of neuronal parameters (Eq. 3).

4. Calculate the values of neuronal parameters P (Eq. 4).

5. Update the activity of neural network based on new

values of parameters (taking into account all external

inputs to the neural network).

6. Go to step 2.

The biggest challenge of our approach and the key to the

predictions of CNGM is the construction of the GRN state

transition matrix W, which determines the dynamics of

GRN and consequently the dynamics of the ANN. There

are several ways how to obtain W:

1. Ideally, the values of gene interaction coefficients wij

are obtained from real measurements through reverse

engineering performed on the microarray data using

Kalman filter and genetic algorithm (Kasabov et al.

2004), evolving connectionist systems (Chan et al.

2008), ICA (Lutter et al. 2006) or its nonlinear

extension to network component analysis (Chang

et al. 2008).

2. The values of W elements are iteratively optimized

from initial random values, for instance with the use of

genetic algorithm (Whitehead et al. 2004) to obtain the

desired behavior of the ANN. This behavior would be

used as a ‘‘fitness criterion’’ in the GA to stop the

search process for an optimal interaction matrix W.

3. The matrix W is constructed heuristically based on

some assumptions and insights into what result we

want to obtain and why. For instance, we can use the

theory of discrete dynamic systems to obtain a

dynamic system with the fixed point attractor(s), limit

cycle attractors or strange attractors (Katok and

Hasselblat 1995).

4. The matrix W is constructed from databases and

literature on gene–protein interactions.
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5. The matrix W is constructed with the use of a mix of

the above methods or other methods.

The above method 2 of obtaining coefficients of W

allows us to investigate and discover relationships between

different GRNs and ANN states even in the case when gene

expression data are not available, and therefore, we will use

it for our study. An optimization procedure to obtain this

relationship can read:

1. Generate a population of CNGMs, each with randomly

generated values of coefficients for the GRN matrix

W, initial gene expression values g(0), and initial

values of ANN parameters P(0);

2. For each set of parameters run the CNGM over a

period of time T and record the activity of the neurons

in the associated ANN;

3. Evaluate characteristics of the ANN behavior (e.g.

connectivity, level of activity, spectral characteristics

of LFP, etc.);

4. Compare the ANN behavior characteristics to the

characteristics of the desired ANN state (e.g. normal

wiring, level of activity, etc.);

5. Repeat steps (1)–(4) until a desired GRN and ANN

model behavior is obtained. Keep the solution if it

fulfills the criterion;

6. Analyze all the obtained optimal solutions of GRN and

the ANN parameters for significant gene interaction

patterns and parameter values that cause the target

ANN model behavior.

In step 1, which is the generation of the population of

CNGM, we can apply the principles of evolutionary com-

putation with the operations of crossover and mutations of

parameter values. In such a way we can simulate the pro-

cess of evolution that has led to the neural GRN with the

gene interactions underlying the desired ANN behavior. In

the following we apply our theory to the case study of LFP

generation in wild type and gene knockout mice.

Simplified computational neurogenetic model of LFP

The overall sum of electric activity of billions of neurons in

the brain is recorded as EEG. EEG is the sum of many

LFPs which are in turn sums of electrical activities of

thousands of neurons summed locally (Freeman 2000).

Genetic studies show that human EEG has a strong genetic

basis (Buzsaki and Draguhn 2004; Porjesz et al. 2002; van

Beijsterveldt and van Baal 2002). We can assume that this

feature holds also for animals, since in this study we use

animal data. In the presented work, we want to use our

method of CNGM to model the dependency of neural

electrical activity upon internal gene interactions in order

to account for the spectral differences in the LFP in wild

type and gene knockout mice. In particular, we use the data

measured in the laboratory of A.E.P. Villa on gene-

knockout mice that are prone to epilepsy (Schwaller et al.

2004; Villa et al. 2005) to seek the underlying genetic

interactions.

Let each spiking model of neuron is characterized by its

instantaneous membrane potential ui(t). Then LFP is the

sum of membrane potentials of all neurons in the spiking

neural network (SNN), i.e. U(t) = Ri ui(t). Each model

neuron within SNN possesses an internal model of the gene

regulatory network (GRN) (Fig. 1). Genes are related to

neuronal parameters like excitation and inhibition and thus

their expression levels determine the value of these

parameters (Eq. 4). For simplicity, we assume all GRN to

be the same. We can optimize the GRN interactions W to

match the SNN output with the real signal, i.e. LFP. Based

on the target LFP signal with particular spectral charac-

teristics, we want to predict the underlying interactions W

W = ?

GABRA GABRA

SCN AMPAR

KCN

CLC

NMDAR

PV

ANN

output

GRN

Fig. 1 Computational neurogenetic model (CNGM) as an abstract gene regulatory network (GRN) embedded in each neuron of a SNN model

with particular output behaviour, for instance local field potential (LFP)

Cogn Neurodyn (2008) 2:319–334 323

123



between selected subset of genes for further experimental

verification.

Proteins in neurons like receptors and ion channels are

complex proteins comprised of several subunits each of

them is coded for by a separate gene (Burnashev and

Rozov 2000). These genes are expressed in a coordinated

manner so we will treat them as a one gene group Gj with

the overall normalized expression level gj(t). For simplicity

we assume that the gene expression level is constant but at

the same time depends on expression levels of all gene

groups in the selected subset of genes such that

gjðtÞ ¼ r
Xn

k¼1

wjkðtÞgkðtÞ
 !

ð5Þ

where r is the sigmoid function between 0 and 1; gk(t) is

the expression level of gene group k at time t and wjk [ (-

1, 1) is the coefficient of an abstract gene interaction matrix

W. Positive interaction between two genes means that the

upregulation of one gene leads to an upregulation of the

other gene. The negative interaction means the opposite

influence. Interactions are abstract ones and represent the

whole chain of molecular events.

Neuron’s parameter value Pj(t) is proportional to gene

expression level gj(t) such that

PjðtÞ ¼ Pjð0ÞgjðtÞ ð6Þ

where Pj(t) is the value of parameter j at time t, Pj(0) is the

initial value of that parameter and gj(t) [ (0, 1) is the

normalized level of expression of the jth gene group in the

model GRN. In such a way, the gene/protein dynamics is

linked to the dynamics of SNN. Neuronal parameters and

their corresponding proteins are summarized in Table 1.

The linear relationship in Eq. 6 is justified by findings that

protein complexes, which have clearly defined interactions

between their subunits, have highly correlated levels with

mRNA expression levels (Greenbaum et al. 2003; Jansen

et al. 2002). Subunits of the same protein complex show

significant co-expression, both in terms of similarities of

absolute mRNA levels and expression profiles, e.g., sub-

units of a complex have correlated patterns of expression

over a time course (Jansen et al. 2002). This implies that

there should be a correlation between mRNA and protein

concentration, as these subunits have to be available in

stoichiometric amounts for the complexes to function

(Greenbaum et al. 2003). This is exactly the case of pro-

teins in our model, which are receptors and ion channels,

comprised of respective ratios of subunits.

Spiking neural network model

Our neuron spiking model is derived from the spike

response model (SRM) (Gerstner and Kistler 2002; Maass

and Bishop 1999). The total somatic postsynaptic potential

of a neuron i is denoted as ui(t). When ui(t) reaches the

firing threshold 0i(t), the neuron i fires, i.e. emits a spike

(see Fig. 2a). The moment of the threshold 0i(t) crossing

defines the firing time ti of an output spike. The value of

ui(t) is the weighted sum of all synaptic postsynaptic

potentials (PSPs), PSPijðt � tj � Dax
ij Þ, such that:

uiðtÞ ¼
X

j2Ci

X

tj2Fj

Jij PSPijðt � tj � Dax
ij Þ: ð7Þ

The weight of synaptic connection from neuron j to

neuron i is denoted by Jij. It takes positive (negative) values

for excitatory (inhibitory) connections, respectively. Dax
ij is

an axonal delay between neurons i and j. Delay linearly

increases with Euclidean distance between neurons. The

positive kernel expressing an individual postsynaptic

potential (PSP) evoked on neuron i when a presynaptic

neuron j from the pool Ci fires at time tj has a double

exponential form, i.e.

PSP
type
ij ðsÞ ¼ Atype exp � s

stype
decay

 !
� exp � s

stype
rise

 ! !

ð8Þ

where stype

decay=rise
are time constants of the fall and rise of an

individual PSP, respectively, A is the PSP’s amplitude, and

index type denotes one of the following: fast_excitation,

fast_inhibition, slow_excitation, slow_inhibition and

late_PSP. These types of PSPs are based on neurobio-

logical knowledge. Fast excitation is mediated through the

AMPA receptor-gated ion channels for sodium (Destexhe

1998; Kleppe and Robinson 1999), slow excitation is

mediated through the NMDA receptor-gated ion channels

for sodium and calcium (Destexhe 1998; Kleppe and

Table 1 Neuron parameters and related proteins

Amplitude A and

time constants srise

and sdecay of

Proportional to

expression level

of the gene or genes

Optimized

expression values

in the model

Fast excitation AMPAR 0.46

Slow excitation NMDAR 0.60

Fast inhibition GABRA 0.42

Slow inhibition GABRB 0.47

Late excitatory PSP PV 0.72

Resting firing threshold

and its decay constant

after firing

SCN, KCN, CLC 0.48, 0.66, 0.52

AMPAR amino-methylisoxazole-propionic acid (AMPA) receptor,

NMDAR N-methyl-D-aspartate acid (NMDA) receptor, GABRA
gamma-aminobutyric acid (GABAA) receptor, GABRB GABAB

receptor, SCN sodium voltage-gated channel, KCN kalium (potas-

sium) voltage-gated channel, CLC chloride channel, PV parvalbumin

324 Cogn Neurodyn (2008) 2:319–334
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Robinson 1999), fast inhibition is mediated through the

somatic GABAA receptor-gated ion channels for chloride,

and slow inhibition is mostly mediated through the den-

dritic GABAB receptor-gated ion channels for potassium

(Connors et al. 1988) and in part by the dendritic GABAA

receptor-gated ion channels for chloride (Wendling et al.

2002; White et al. 2000). However, in our model we con-

sider only the dominant effect of GABRB for slow-

inhibition. In addition, when the inhibitory synapse is

stimulated, late depolarizing potential, late_PSP is evoked,

which is dependent upon parvalbumin, PV, because its size

is about one-third bigger when the PV gene is knockout

(Vreugdenhil et al. 2003). Thus, when there is a presyn-

aptic spike at excitatory synapse, both fast and slow

components of excitatory PSP are activated and when a

presynaptic spike arrives at inhibitory synapse, fast, slow

and late PSPs are activated. Table 1 links parameters Pj to

appropriate genes gj, such that the expression level of that

gene or genes calculated according to Eq. 5 determines the

value of parameter Pj be it the amplitude or time constants

of various types of PSPs, parameters of the firing threshold

for Eq. 9, etc. In case of the firing threshold, we assume its

parameters, i.e. 00, k and sdecay (see below), are propor-

tional to KCN and CLCN, and inversely proportional to the

level of SCN.

Immediately after firing the output spike at ti (only the

last firing time is considered), neuron’s firing threshold

0i(t) increases k-times and then returns to its resting value

00 in an exponential fashion:

Jiðt � tiÞ ¼ k � J0 exp � t � ti

sJ
decay

 !
ð9Þ

where sJ
decay is the time constant of the threshold decay. In

such a way, absolute and relative refractory periods are

modelled.

Figure 2b illustrates the architecture of our SNN.

Spiking neurons within the network can be either excit-

atory or inhibitory. There can be as many as about 10–25%

of inhibitory neurons positioned randomly on the rectan-

gular grid of N neurons. Lateral connections between

neurons and input connections have weights that decrease

in value with distance from neuron i according to a

Gaussian formula:

Jijðdistði; jÞÞ ¼ J
exc=inh
0

rexc=inh
exp � distði; jÞ2

rexc=inh
2

 !
ð10Þ

while the connections can be established at random with

the probability equal to 0.5. External inputs from the input

layer are added to the right hand side of Eq. 7 at each time

step. Each external input has its own weight Jext input
i and

PSPfast excitation
i ðtÞ, i.e.

uext input
i ðtÞ ¼ Jext input

i PSPfast excitation
i ðtÞ: ð11Þ

We employed a uniformly random input to capture low-

frequency, non-periodic and non-bursting firing of

thalamocortical inputs. Table 2 contains the values of

neuron’s and SNN parameters, respectively, used in our

simulations. These values were inspired by experimental

and computational studies (Charpier et al. 1999; Deisz

1999; Destexhe 1998; Wendling et al. 2002) and were

further adjusted by experimentation.

For optimization of the GRN model a genetic algorithm

is used implemented as part of a neurogenetic simulator

(Fig. 3). The optimization procedure consists of following

steps:

• Generate a population of N CNGMs, each with

randomly generated values of coefficients for the

GRN matrix W, wjk [ (-1, 1), initial gene expression

values g(0) [ (0, 0.1), initial values of parameters P(0),

and other model parameters (like connectivity, input

frequency, etc.), which are chosen uniformly randomly

from ranges specified in Table 2;

• Run each CNGM over a period of time T (in our case

T = 5 s) and record the LFP for each associated SNN;

• Calculate the distribution of phase-coupled frequencies

in LFP using the methodology described in Villa et al.

u i ( t )

Time (ms)

ϑ 0

t i
1 t i

2

ϑ i ( t  –  t i
2 )(a)

Spiking neural
network

One-to-many feedforward
input connections

Input layer

Ji j ( 0 )

σGaussian lateral and input
connections

(b)

Fig. 2 (a) SRM model neuron; (b) SNN architecture with N = 120

neurons. 90–75% are excitatory neurons that are randomly positioned

on the grid (white circles), others are inhibitory (black circles). The

input from thalamus are random spikes with low frequencies
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(2005), referring to Nikias and Raghuveer (1987) and

Brillinger (1965);

• Compare the characteristics of each SNN LFP to the

quantitative characteristics of the target LFP signal of

the wild-type PV?/? mice. Evaluate the closeness of

the LFP signal for each SNN to the target LFP signal by

means of the Euclidean distance between characteristic

vectors consisting of distribution of relative

frequencies;

• Find CNGM models that matches the LFP spectral

characteristics better than other solutions, i.e. Euclidean

distance \0.1;

• If no such solution found, repeat the above steps if

necessary or use operators of genetic algorithm to

generate new solutions by operations of crossover and

mutation;

• For the winner solutions that lead to the PV?/? LFP

characteristics, simulate the PV knockout by removing

the PV gene from GRN and record the changes in the

LFP characteristics. Removal of the PV gene is

implemented by putting the initial expression value of

PV = 0.0, all interaction weights in GRN to and from

PV = 0.0 and by increasing the amplitude of late PSP

by 1/3 (Vreugdenhil et al. 2003);

• Choose those solutions of GRN that match the PV-/-

LFP characteristics after PV gene removal. Analyse the

GRN interaction matrices W for significant patterns

that lead to the desired behaviour.

• If none of the solutions matches the PV-/- LFP

characteristics, repeat the above optimization from the

beginning.

Results

Results of simulations of wild-type and PV-/- mice

data

The CNGM described above has been implemented in the

C?? simulator1 (Fig. 3). We have optimized parameter

values to match bispectral characteristics of the mouse LFP

for the wild type (PV?/?) mouse and for the PV-knockout

mouse (PV-/-). One-channel experimental results (dis-

tribution of phase-coupled frequencies) to be used for the

cost function were taken from (Villa et al. 2005). We

performed GA optimization for 100 solutions in the pop-

ulation for the maximum of 20 generations. Offspring

solutions were produced by operation of crossover, in

which new values of CNGM parameters were produced by

arithmetic averaging of parameter values of parent solu-

tions. Selection was done with replacement, meaning that

the same solution can be selected more than once to

become a parent. Mutation had probability of 0.1 and

meant adding or subtracting of 10% of the offspring

parameter value. If the new values fell out of the allowed

range they were moved towards the closest border (mini-

mal or maximal range value). Parents were chosen

according to the roulette wheel. The whole generation was

replaced with newly generated solutions and all solutions

with Euclidean distance \0.2 from every generation were

kept. The optimization was stopped, if the Euclidean dis-

tance between any of the solutions and the target solution

(distribution of phase-coupled frequencies) dropped below

0.1 before the limit of 20 generations was reached. Fig-

ure 4 shows evolution of average and best fitness during

optimization. All the stored solutions (total of 187) were

Table 2 Model parameters, their value ranges and the initial value

for optimized model

Model parameters (initial values Pj(0)) Value

range

Optimal

value

Fast excitation: amplitude

Fast excitation: tau rise/tau

decay

5.5–25.0

1–3/2–7

12.5

1.5/3.0

Slow excitation: amplitude

Slow excitation: tau rise/tau

decay

0.5–15.0

5–20/8–35

6.5

9.5/19.0

Fast inhibition: amplitude

Fast inhibition: tau rise/tau

decay

1–30

1–3/3.5–8

9.5

1.5/6.0

Slow inhibition: amplitude

Slow inhibition: tau rise/tau

decay

0.5–15

6–20/9–35

7.0

13.5/23.5

Late PSP: amplitude

Late PSP: tau rise/tau decay

0.5–10

2–10/5–15

5.0

6.5/10.0

Resting firing threshold

Threshold decay time constant/rise

after spike

10–30

1–20/1–10

20.0

13.0/6.0

Mg block threshold for slow excitation 0.1–3.0 1.35

Proportion of inhibitory neurons 0.15–0.25 0.19

Probability of external input firing 0.001–0.02 0.009

Peak/sigma of external input

weight

1–20/0.1–5 9.0/2.4

Peak/sigma of lateral excitatory

weights

5–20/1–6 11.0/3.0

Peak/sigma of lateral inhibitory

weights

20–60/1.5–10 41.0/5.5

Unit delay in excitatory spike

propagation

1–15 ms 10 ms

Unit delay in inhibitory spike

propagation

2–20 ms 10 ms

Probability of connection 0.5 0.5

Number of neurons 120 120

1 Available from http://aratika.aut.ac.nz/adpgn_movies/KCIR/CSS/

frameset.html.

326 Cogn Neurodyn (2008) 2:319–334

123

http://aratika.aut.ac.nz/adpgn_movies/KCIR/CSS/frameset.html
http://aratika.aut.ac.nz/adpgn_movies/KCIR/CSS/frameset.html


tested by simulating the PV gene knockout. PV gene

knockout was simulated by removing the gene variable for

PV from GRN, and by increasing the amplitude for late

depolarizing potential by one-third (Vreugdenhil et al.

2003). Gene for PV was removed by putting all incoming

and outgoing weights in GRN to zero and also by putting

the gene expression of PV equal to zero. Then the SNN

LFP was compared with LFP recorded in PV-/- mice.

Below we describe results for the only CNGM that passed

the test of simulated knockout of gene variable for PV and

produced the LFP that resembled the characteristics of

experimental LFP for PV-/-. Values of gene expressions

can be found in Table 1 and values of neural parameters of

this optimized model in Table 2. It is notable to mention

that these results do not depend on a particular realization

of network connectivity, when its parameters (peak and

sigma of Gaussian distribution of weights) are like those

listed in Table 2.

In Fig. 5, we show the real LFP data from mouse. The x

axis denotes the frequency bands for phase-coupled fre-

quencies in the following order: 0–10 Hz (0), 10–20 Hz

(1), 20–30 Hz (2), …, 90–100 Hz (9). The y axis expresses

the proportion of the given phase-coupled frequency band

in the LFP bispectrum (Villa et al. 2005). In Fig. 6, we

show the distribution of phase-coupled frequencies of the

LFP generated by the model SNN, in which the neuronal

parameters depend on gene levels in the optimized GRN.

Interactions within GRN were optimized as described

above, so that the SNN output has the most similar bi-

spectral characteristics to the real LFP signal recorded from

mice. As we can see in the optimized model, there is a shift

towards higher frequencies in the LFP spectrum when the

GRN is complete (Fig. 6a) as is the case of the wild-type

mouse data (Fig. 5a). After the removal of the PV gene

from the GRN (Fig. 6b) there is a shift towards lower

frequencies like in the real mouse data (Fig. 5b). However,

we must note that the actual power of different frequencies

does not exactly match real data, which is to be expected

with such a simplified model.

In various other computational models of epilepsy,

desired epileptic behavior of the model is achieved by

changing the values of model parameters that express the

neuronal inhibition (Destexhe 1998; Robinson et al. 2002;

Wendling et al. 2002; Kudela et al. 2003). This approach is

fully justified if there is no genetic cause involved (which is

indeed the case of many epilepsies) or when there is no

relevant underlying genetic interaction involved in that

condition. The parameter regulated by PV in our model is

the late PSP. In the next test, we will see what happens

when we change the value of amplitude of late PSP by one-

third but leave the underlying GRN intact, i.e. we do not

take out the gene for PV. In Fig. 7, we show the resulting

distribution of phase-coupled frequencies in the model LFP

spectrum. If we compare this outcome with the simulated

normal LFP characteristics depicted in Fig. 6a, we can see

that there is not much change in the distribution. That is, a

Fig. 3 Snapshot of the CNGM

simulator used in this work
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simple change in parameter value is not enough in this

model, to achieve the shift in the frequency distribution

that would correspond to PV-/- data. We need also to

simulate gene variables that mutually interact and optimize

this interaction network to lead both the normal and altered

behavior.

Figure 8 shows the underlying abstract GRN that leads

to the model LFP, which fits best the experimental data for

both PV?/? and PV-/- mice. The found GRN constitutes

the main prediction of the model for further experimental

testing. Figure 8a illustrates all interactions that are stron-

ger than 0.2, in absolute value. However, we are interested

in what consequences will follow after taking the gene for

PV out, therefore, we illustrate in Fig. 8b all outgoing

interactions from PV gene that are stronger than 0.1. As we

can see in Fig. 8b, the optimized GRN solution has a

negative interaction from gene for PV to gene for GABRB,

which means PV suppresses expression of GABRB.

GABRB is responsible for slow-inhibition and also for

slow waves in the brain electrical activity (Destexhe 1998).

When PV is absent in simulated PV-/- gene knockout,

then due to the absent negative interaction from PV, sim-

ulated expression of GABRB and consequently the

magnitude of slow inhibition both increase, leading to more

slow oscillations in the LFP spectrum, and thus, the overall

shift towards lower frequencies in the spectrum (Fig. 6a).

This model prediction albeit intuitively plausible, remains

to be experimentally tested, for instance by microarray

measurement of gene expression data from wild-type and

PV-/- mice. To conclude, this example demonstrates the

type of theoretical predictions that can be obtained with

CNGM models about gene expression levels and gene-to-

gene interactions.

Discussion

Complex interactions between genes and proteins in neu-

rons affect the dynamics of neural networks in the brain.

Gene expression values may change due to internal

dynamics of gene regulatory networks or due to external

factors, like hormones, electrical activity, etc. We can

expect that different initial gene expression values, and

even different gene interactions can lead to the same out-

come in terms of neuronal activity. However, in the

diseased brain, either altered initial expression values,

mutated genes and/or altered interactions within GRN lead

to abnormalities in the network activity. We have presented

a simplified approach how to model these complex rela-

tionships. The presented model can be considered to be a

first step, with many suggestions for improvements at every

level, starting from the dynamics of GRN, and ending with

more sophisticated parameter optimization design. How-

ever, one has to bear in mind the huge number of degrees

of freedom associated with each level of this multi-level

approach. We have illustrated our extremely simplified

approach on the case study of simulating the changes in

LFP in PV-/- gene knockout mice. Previously, we have

applied the same methodology to simulate human EEG

data (Benuskova et al. 2006). In the present study, we

demonstrated that to obtain the match with the experi-

mental data, it is not enough just to manipulate the value of

Fig. 4 Evolution of an average

and best error in the GA

optimization of CNGM

parameters
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a neuronal parameter that is related to the knockout gene,

but it is necessary to simulate the underlying GRN and the

change in gene expressions, which follow after one gene

from GRN, namely PV, is absent. To simulate the effect of

gene knockout by neural network model, in which we

manipulate only neuronal parameters would be possible

only in that case if there were no underlying interactions

between the knockout and other genes that influence neural

activity in question.

In real neural networks neuronal parameters that define

the functioning of a neural network depend on genes and

proteins in a complex way. Gene expression values change

due to internal dynamics of the gene regulatory network

(which in fact involves proteins, transcription factors,

regulatory RNAs, etc.), initial conditions of the genes and

external conditions. All this may affect gradually or

quickly the functioning of the neural network as a whole.

Realistic models of gene networks within neural networks

should account for these processes. Future research should

be linked to real gene data obtained from for instance

microarray experiments in order to be able to address the

following issues:

Fig. 5 Distribution of phase-coupled frequencies of the (a) LFP from

the wild type mouse, PV?/? and (b) LFP from the gene knock-out

mouse, PV-/-. The x axis represents the frequency bands: (0)

0–10 Hz, (1) 10–20 Hz, (2) 20–30 Hz, etc.

Fig. 6 Distribution of phase-coupled frequencies of the (a) SNN LFP

for the complete GRN, (b) SNN LFP with gene knockout PV-/-

GRN. The x axis represents the frequency bands: (0) 0–10 Hz, (1) 10–

20 Hz, (2) 20–30 Hz, etc.

Fig. 7 Distribution of phase-coupled frequencies of the SNN LFP for

the complete GRN with the increased amplitude of late PSP
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1. ‘‘What-if analysis’’. What happens if one or few

particular genes are erased or mutated (i.e. data are

collected from knock-out gene technology)? What

happens if interactions within the GRN change? What

happens if external factors are included? In such a way

our approach can serve as a noninvasive test system.

2. Exploration of possibilities of modeling genetically

caused brain disorders such as epilepsy, Parkinson’s

disease, etc. The goal is to make predictions about

gene interactions to aid experimental research on gene

interactions in various states and conditions of the

brain.

3. Extension of the approach to model genetic influences

upon brain cognitive functions and their disorders.

Basic genetic data are presented and some ideas are

conceived in the last chapter of (Benuskova and

Kasabov 2007).

There are successful computational models of mental

diseases, for instance of impaired associative learning in

schizophrenia (Diwadkar et al. 2008) or sleep disturbance

in autism (Matsuura et al. 2008) or other disorders (Reggia

et al. 1999). However, these models should be taken one

step further as recent genetic studies show that serious

mental diseases manifested as compromised cognitive and/

or affective status are thought to be linked to mutations of

genes. Table 3 contains some of the brain disorders that

have cognitive symptoms and which are attributed mainly

to underlying genetic causes. Thus, suggesting further

developments, presented general framework of CNGM can

be extended to model the dependence of cognitive state

upon genes as presented below:

Let the future state of a molecule M0 or a group of mole-

cules (e.g. genes, proteins) be represented as a nonlinear

function Fm of its current state M and external signals Em

M0 ¼ Fm ðM; EmÞ ð12Þ

A future state N0 of a neural network is represented as a

nonlinear function Fn of its current state N, the state of the

molecules M (e.g. genes) and external signals En

N 0 ¼ Fn ðN; M; EnÞ ð13Þ

A future cognitive state C0 of the neural network is

represented as a nonlinear function Fc of its current state C,

the neuronal N, and the molecular M state and the external

stimuli Ec:

C0 ¼ Fc ðC; N; M; EcÞ ð14Þ

The above set of equations is a general one and it can be

implemented differently, as mentioned in Benuskova and

Kasabov (2007):

• one gene—one neuron/brain function model;

• multiple genes—one neuron/brain function, no interac-

tion between genes;

• multiple genes—multiple neuron/brain functions where

genes interact in a gene regulatory network (GRN) and

neurons also interact in a neural network architecture;

• thousands of genes—complex brain/cognitive function/

s where genes interact within GRN and neurons interact

in several hierarchical neural networks.

These advanced scenarios should probably involve the

framework of modelling the large scale dynamics of the

brain (Bressler and Kelso 2001; Haken 2007; Freeman

2007; Seth and Edelman 2007) although identifying vari-

ables that may be under genetic influence will be tricky. Or

one can opt for the Blue Brain (Markram 2006) as it is a

project underway to create a biologically accurate, detailed

GABRA GABRB

AMPAR

NMDAR

PVCLC

SCN

KCN

GABRA GABRB

AMPAR

NMDAR

PVCLC

SCN

KCN

(a)

(b)

Fig. 8 (a) Abstract optimized GRN that leads to the most similar

LFP to the real data for the complete genome and for PV gene

knockout. Dashed lines denote negative interactions between genes

and solid lines denote positive interactions. Only the interactions with

the absolute value above 0.2 are shown. (b) Outgoing interactions of

the gene for PV that are stronger in the absolute value than 0.1. Line

thickness reflects the strength of interaction
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model of the brain using the IBM’s Blue Gene super-

computer. In the future, information from the genetic level

is planned to be added to the algorithms that model indi-

vidual neurons. Then, the simulations can be used to

explore what happens when genetic information is altered.

However, even in case it is intractable and practically

impossible to include all molecular influences, we believe

this avenue of modeling will be further developed in the

future. Clearly, the model and results presented in our

paper are only the first small step towards this ambitious

goal of modeling cognitive neurodynamics using the novel

approach of computational neurogenetics.
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