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Abstract Electroencephalogram (EEG) is often used in the

confirmatory test for brain death diagnosis in clinical prac-

tice. Because EEG recording and monitoring is relatively

safe for the patients in deep coma, it is believed to be valuable

for either reducing the risk of brain death diagnosis (while

comparing other tests such as the apnea) or preventing

mistaken diagnosis. The objective of this paper is to study

several statistical methods for quantitative EEG analysis in

order to help bedside or ambulatory monitoring or diagnosis.

We apply signal processing and quantitative statistical

analysis for the EEG recordings of 32 adult patients. For EEG

signal processing, independent component analysis (ICA)

was applied to separate the independent source components,

followed by Fourier and time-frequency analysis. For

quantitative EEG analysis, we apply several statistical

complexity measures to the EEG signals and evaluate the

differences between two groups of patients: the subjects in

deep coma, and the subjects who were categorized as brain

death. We report statistically significant differences of

quantitative statistics with real-life EEG recordings in such a

clinical study, and we also present interpretation and dis-

cussions on the preliminary experimental results.

Keywords Brain death � Quantitative EEG �
Independent component analysis � Approximate entropy �
Detrended fluctuation analysis � Pattern classification

Introduction

Nowadays, multi-channel and multivariate neurophysio-

logical signals, such as electroencephalogram (EEG),

electrocorticogram (ECoG), magnetoencephalogram (MEG),

and functional magnetic resonance image (fMRI), have been

widely used in clinical medicine (e.g., Cao et al. 2002, 2003;

Cao 2006; Chen et al. 2007). Applying signal processing and

statistics tools to biomedical fields has become increasingly

popular (Akay 2001). Applications of which include signal

detection or extraction, denoising, image enhancement,

disease diagnosis, and disease classification, etc.

Brain death, briefly speaking, is referred to the com-

plete, irreversible, and permanent loss of all brain and

brainstem functions. Brain death implies the termination of

a human’s life; correspondingly, the diagnosis of brain

death is very important (Ad hoc committee of the Harvard
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medical school to examine the definition of brain 1968).

Although there remain some social disagreements or dif-

ferent diagnosis criteria in clinical practice around the

world (Wijdicks 2002), some standard tests are widely

used, such as the apnea test and brainstem function

examination. Notably, it is commonly agreed that EEG

might serve as an auxiliary and useful tool in the confir-

matory tests, for both adults and children (Wijdicks 1995;

Taylor 1997; Schneider 1989). Typically, isoelectric EEG

recording is required at least 30 min and may last 3–24 h

(Wijdicks 2002); the positive response of EEG tests sug-

gests functioning of the brain. Consequently, the patient in

deep coma might show some EEG electroactivity, while

the brain-dead patient will not.1

Because EEG recordings are easily accessible and safe,

it was mostly recommended in clinical practice in many

countries. However, the downside of EEG is that its sig-

nificance for evaluating comatose states of the brain is

limited by the fact that the outcome is often not determined

by the brain affection itself. For instance, EEG examination

of the patient who uses anesthetics or other central nervous

system (CNS) depression drugs might be misleading

(Niedermeyer 1991). On the other hand, as criticized by

some medical doctors (Pallis and MacGillivray 1980), EEG

recordings might also be corrupted by some artifacts or

various sources of noise interference, therefore the poten-

tial value of EEG was often underestimated. Despite all of

the criticisms, there is no doubt that a systematic and

quantitative study of EEG measurements would be much

invaluable in neurology and clinical medicine (Buchner

and Schuchardt 1990). It is our belief that if the EEG

examination is reliable and its analysis results are infor-

mative, it can provide a simple and risk-free diagnosis tool

in the intensity care unit (ICU) of the hospital.

A brain death diagnosis is often made according to some

precise criteria following a well-defined procedure. Since

the process of brain death determination usually takes a

long time and involves certain risks (e.g., removing the

breath machine during the apnea test), a practical yet safe

method would be desirable for the pre-test of the patient’s

brain-state status. In this paper, we present an empirical

study on the real-life EEG recordings of some patients that

were at different comatose states; we are particularly

interested in studying the differences between two groups:

deep coma and brain death. When referring to the ‘‘brain

death’’ here, it might be more careful and accurate to use the

term ‘‘qausi-brain-death’’ or ‘‘brain-death syndrome’’ (at

least at the time of EEG examination), because we are really

referring to the situation that the brain death diagnosis was

made at an early stage (not the same as EEG confirmatory

test), which was judged independently by two medical

doctors or physicians. However, depending on specific

scenarios, it might be necessary that more tests follow

afterwards to reach the final clinical decision (see Fig. 1).

The objective of this paper is to study several statistical

methods for EEG analysis with an aim to using EEG to help

bedside or ambulatory monitoring or diagnosis. To our

interest, signal processing (qualitative analysis) and quan-

titative analysis were both applied to the EEG recordings

that were collected in the hospital for adult patients.

Although the data at this stage are still limited and the

analysis remains preliminary, we believe such an empirical

study on the data available to date is still invaluable. The

main motivation of this study is to apply statistical and

signal-processing tools for quantitative EEG (qEEG) anal-

ysis (especially on this specific medical field), which might

reveal interesting findings for medical practice. Hence, the

paper is written as more technique-oriented instead of

physiology-oriented. To our best knowledge, very few

qualitative and quantitative statistical analysis has been

conducted to this biomedical field, particularly with EEG

recordings (e.g., Lin et al. 2005; Wennervirta et al. 2007

Chen and Cao 2007). This might be partially due to the fact

that the topic of qEEG study for brain death diagnosis is still

under debate in clinical practice (e.g., Pallis and MacGil-

livray 1980) and in the meantime, the EEG data recorded in

the real field (such as from the ICU of the hospital) are

difficult (if not impossible) to access for most researchers,

since different countries might have distinct regulations

regarding the access or the use of such confidential data.

A brief background of brain death

Brain death is strictly defined medically and legally (Ad

hoc committee of the Harvard medical school to examine

the definition of brain 1968; Taylor 1997); it is defined as

the cessation and irreversibility of all brain and brainstem

functions. Specifically, brainstem controls basic functions

essential to survival, such as breathing and heart rate.

Nowadays, despite the differences of clinical practice

across countries (Wijdicks 2002), the standard diagnosis

procedure depends on three cardinal neurological features:

coma, absent brainstem reflexes, and apnea (Ad hoc

committee of the Harvard medical school to examine the

definition of brain 1968).

Because a complete brain death implies the irreversibility

of brain function cessation and exclusion of the possibility of

recovery of any cerebral and brainstem functions, the irre-

versibility of coma was emphasized in the report of the ad

hoc committee of the Harvard Medical School (Ad hoc

committee of the Harvard medical school to examine the

1 Nevertheless, it was pointed out in Wijdicks (1995) that most

patients meeting the clinical criterion for brain death might still have

isoelectric EEGs (B2 lV at a sensitivity of 2 lV/mm).
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definition of brain 1968). However, the Harvard criterion

was presented in a narrative rather than an algorithm form.

Nowadays, the Harvard criterion of brain death was not fully

agreed and still remained controversial (Niedermeyer 1991).

Brainstem is the lower portion of the brain between the

cerebrum and the spinal cord, which controls breathing,

swallowing, seeing, hearing, and other vital functions. The

examination of brainstem functions in clinical practice

might be sophisticated and vary in practice (e.g., pupillary

response to light, fixed or variation pupils, corneal reflex,

gag reflex, cough reflex, irrigating the ears with cold water,

presenting painful stimuli, etc.). The examination of the

absence of spinal reflexes will also include the test of ocular

movement, facial sensation and facial motor response,

pharyngeal and tracheal reflexes. In clinical practice, many

physicians request additional confirmatory tests before

announcing brain death. The two most common confirma-

tory tests are the EEG and the cerebral blood flow (CBF)

study.2 Compared to the CBF test, the EEG test is much

simpler, and therefore is well recommended in practice

(Niedermeyer 1991). In spite of certain shortcomings dis-

cussed earlier, EEG still proved to be invaluable in the

evaluation of brain death. Mostly, shortcomings involve the

technical concern of artifacts or conceptual misunder-

standings like with brainstem death; however, real cerebral

EEG waves exclude brain death per definition (Niedermeyer

1991). Moreover, the technical problem of artifacts can be

solved by advanced signal processing methods, which we

will also address in this paper.

Experimental data and recording protocol

The EEG measurements in our present study were col-

lected in the Shanghai Huashan Hospital in affiliation with

the Fudan University, Shanghai, China. The EEG data were

directly recorded at the bedside of patients in the ICU of

the Huashan Hospital, where the level of environmental

noise could be fairly high. The EEG recording machine

was a portable NeuroScan ESI-64 system (El Paso, TX).

Depending on the operator’s need, the NeuroScan device

can be supported by either DC or AC power. In the system,

a total of nine electrodes were placed on the forehead of the

patient lying on the bed, which mainly cover the non- or

least hairy area of the scalp. Specifically, six channels are

placed at Fp1, Fp2, F3, F4, F7, F8, according to the stan-

dard 10/20 system;3 two electrodes that connect the two

deep coma

brainstem

reflexes test

pupil test

EEG
wave?

medical

care

apnea test

YES 

further

monitoring
A2

  F3F4

GND  
Fp2 

F8 F7 
Fp1 

NO 

A1

Fig. 1 Left: the portable

NeuroScan system and the

electrode layout. Right: the

experimental protocol

procedure

2 The CBF test involves the injection of a mild radioactive isotope into

the blood stream. By placing a radioactivity counter over the head, one

can measure the amount of blood flow into the brain. The cerebral blood

flow study takes 20–30 min to perform. If there is no blood flow to the

brain as demonstrated by this study, the brain is dead. A negative

cerebral flow study is indisputable evidence of a dead brain.

3 The layout of the electrodes on the frontal regions of the brain is

simply for the technical convenience without interfering with other

medical treatment or moving the patient’s body. However, the EEG

confirmatory test conducted at later stage (see the flowchart of Fig. 1)

will require the electrodes cover the whole scalp.
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ears are used as reference, namely (A1+A2)/2; the addition

channel, GND, serves as the ground (see Fig. 1 for illus-

tration). The sampling rate of EEG was 1,000 Hz, and the

resistances of electrodes were set under 8,000 ohm. During

the clinical measurements, no gel or any other conductive

pastes was used during all sessions of EEG recording.

A total of 35 adult patients have been examined by using

EEG from June 2004 to March 2006, with age range from

17 to 85 years old. Because the health conditions of

patients vary, we had different kinds of EEG recordings for

different patients. In particular, four categories are distin-

guished here:

– The subject was recorded only in one session.

– The same subject was recorded in several sessions

within the same day.

– The same subject was recorded in several sessions in

different days without status change.

– The same subject was recorded in several sessions in

different days with status change (e.g., from coma to

brain death, or from coma to awake recovery).

Notably, all subjects appeared in deep coma (some were

prejudged as brain death by two physicians) before the

EEG recordings. Patients were all lying down in the bed

with eyes closed during the measurements. Correspond-

ingly, no ocular or muscle artifacts was observed. In some

occasions, the heart beat rhythm can be observed from

specific patients. In the current experimental recordings,

only the DC power was used, so the interference from

power noise is somewhat minimized (compared to the AC

power).

In China, there was still no legal regulation or instruc-

tions regarding to the brain death diagnosis at the time of

data collection. In our case, the medical classification

between coma and (quasi) brain death were predetermined

independently by two experienced physicians or medical

doctors based on the continuous observations and several

typical tests (e.g., pupil’s light response, brainstem reflexes

test). The EEG recordings were supervised by one physi-

cian (neurologist) and operated by either medical doctor or

medical staff.

The experimental protocol was approved by the local

ethics committee of the hospital, and all recorded data were

used with permission of patients’ family. Although in total

we have recorded 47 sessions of 35 patients’ EEG mea-

surements, not all recordings have equally good quality

(some were extremely noisy or the measurements had poor

fidelity due to technical reason, and in some cases

recordings from few channels were missing). The EEG

data used in the present study were carefully scrutinized

and only 32 patients were included; the statistics of

selected patients are summarized in Table 1.

Signal processing: independent component analysis

and spectrum analysis

Upon obtaining the raw EEG measurements, no specific

preprocessing was applied prior to the qualitative evalua-

tion. The reason for that is twofold. First, because the noise

is usually broadband, it is difficult to apply any standard

filtering technique (except for the notch filter). Second,

because the recording conditions differed from different

subjects, it is our intention to investigate the robustness of

our proposed statistical method regardless of levels of

environment noise. Hence, all the signal processing tools

employed here were applied to the raw recordings (but with

Table 1 The summarized list of patients under study (C denotes

coma; D denotes brain death; F denotes female; M denotes male; N/A

denotes not available; d band: 1–4 Hz; h band: 4–8 Hz; a band: 8–

12 Hz; b band: 13–30 Hz)

Patient no. Gender Age No. of sessions Identified brain waves

C1 M 18 3 d,h,a

C2 M 40 1 h

C3 M 85 2 h,a

C4 M 65 1 h

C5 F 65 1 h

C6 F 23 1 d

C7 M 48 1 h

C8 F 17 3 a

C9 M 18 1 d,h

C10 M 66 1 h

C11 F 84 3 d,h,a,b

C12 M 79 1 h

C13 M 48 1 h,a

C14 F 73 1 h

C15 M 64 1 h,a

C16 M 83 1 d,h

C17 F 67 1 h,a

C18 F 82 1 d

C19 M 37 1 h,b

D1 F 17 3 N/A

D2 M 57 1 N/A

D3 M N/A 1 N/A

D4 F 56 2 N/A

D5 M N/A 1 N/A

D6 M 58 2 N/A

D7 F 56 1 N/A

D8 M 74 2 N/A

D9 M 19 3 N/A

D10 M 48 1 N/A

D11 F 69 1 N/A

D12 F N/A 2 N/A

D13 F 22 1 N/A
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relatively ‘‘clean’’ EEG traces according to human visual

inspection).

Independent component analysis

Independent component analysis (ICA) is a powerful signal

processing tool for blindly separating mutually indepen-

dent sources (Cichocki and Amari 2002). Various ICA

methods have been widely used in biomedical fields for

data analysis, such as the EEG, MEG, or fMRI (e.g., Cao

et al. 2002; Makeig et al. 2002, Calhoun et al. 2002;

Pockett et al. 2007). Without going much details, we

briefly describe a robust ICA method that was developed in

Cao et al. (2003), which first applies a robust prewhitening

procedure, and then uses a parameterized t-distribution

density model to separate the mixture of sub-Gaussian and

super-Gaussian signals.

The observed multi-channel signals are assumed to be

generated by a probabilistic generative model

xðtÞ ¼ AsðtÞ þ �ðtÞ; ð1Þ

where t denotes the discrete-time index; the vector xðtÞ ¼
½x1ðtÞ; . . .; xmðtÞ�T 2 R

m denotes the observed multi-channel

signals at time t measured in the electrodes; sðtÞ ¼
½s1ðtÞ; . . .; snðtÞ�T 2 R

n denotes a set of independent and

hidden ‘‘source’’ components of interest, which are all

assumed to have zero mean and unit variance statistics; and

�ðtÞ 2 R
m denotes the additive uncorrelated white noise that

corrupts the measurements, which is also assumed to have

zero mean statistic. The mixing matrix A ¼ faijg 2 R
m�n

can be thought to be modeling the mixing or scattering effect

between the sources and the sensors (electrodes) in the scalp.

In this paper, we assume m = n = 6 for simplicity.

Let ‘ denote the number of data samples in time,

equation (1) can be written in matrix form:

Xðm�‘Þ ¼ Aðm�nÞSðn�‘Þ þ Nðm�‘Þ: ð2Þ

Provided E½sðtÞsTðtÞ� ¼ I , when the sample size ‘ is

sufficiently large, then the covariance matrix of xðtÞ can be

estimated by

C ¼ AAT þW; ð3Þ

where C ¼ XXT=‘; and W ¼ NNT=‘ describes a diagonal

matrix. For convenience, we assume that X has been

divided by
ffiffi

‘
p

so that the covariance matrix is given by

C ¼ XXT :

When W cannot be ignored in the model, we may

employ the following cost function for optimization

LðA;WÞ ¼ tr ½AAT � ðC�WÞ�½AAT � ðC�WÞ�T
� �

where trð�Þ denotes the trace operator. In order to

minimize the above cost function, we use the following

iterative estimation:

Â ¼ UnR
1=2
n ; ð4Þ

Ŵ ¼ diag C� ÂÂT
� �

; ð5Þ

where Rn is a diagonal matrix whose elements contain the n

largest eigenvalues from diagonalizing matrix C: C ¼
URUT ; and the columns of matrix Un are the corresponding

eigenvectors.

Upon iterative optimization and convergence to the

stable solutions of Â and Ŵ; we first estimate the prewhi-

tening matrix, denoted by Q, as follows

Q ¼ ÂTŴ�1Â
� ��1

ÂTŴ�1; ð6Þ

from which the whitened signal is given by z = Qx.

Next, we aim to find a demixing matrix, denoted by W,

such that y = Wz will recover the independent source

signals s (subject to scale and permutation ambiguities).

Specifically, the following iterative learning rule is

employed to estimate the demixing matrix:

DWðtÞ ¼ g½I� wðyðtÞÞyTðtÞ�WðtÞ; ð7Þ

where g is a small positive learning-rate parameter, and

w(�) denotes the score function, which can be derived from

a t-distribution probability density model (see Cao et al.

2003; Cichocki and Amari 2002 for mathematical details).

Fourier analysis and time-frequency analysis

After separating the independent components, we conduct

the standard Fourier spectrum analysis to estimate the

power spectra of individual independent components (see

Fig. 2 for an illustration). Notably, the amplitudes of the

separated components as well as their power spectra have

no quantitatively physical unit meaning, since the outputs

of the ICA all have scaling indeterminacy. From the power

spectra, we can empirically determine or evaluate whether

the components may contain the EEG brain waves.

For a closer examination, we also resort to the time-

frequency analysis tool, such as the Wigner-Ville distri-

bution (WVD) (Cohen 1995), to visualize the ongoing

temporal signals in a time-frequency plane. Compared to

the one-dimensional power spectrum, the two-dimensional

time-frequency map may clearly reveal the time-varying

spectral information of the specific signal of interest. See

Fig. 3 for an example of illustration.

Evaluation

Since EEG measures the ‘‘smeared’’ ensemble activity of

synchronous firings from millions of neurons in the brain, it

indicates the specific activity in which the brain is engaged

and also provides some hints about the consciousness or
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comatose status. Provided the brain is not completely dead,

it is highly likely that some brain waves might be extracted

from the ‘‘EEG’’ measurements. In our experimental anal-

ysis, we are particularly interested in the upper theta (6–

8 Hz) and alpha (8–12 Hz) waves. This is mainly because

first, the theta waves are strong during internal focus,

meditation, and spiritual awareness, they relate to sub-

conscious status that reflect the state between wakefulness

and sleep; while the alpha waves are responsible of mental

coordination, self-control of relaxation, and it is believed to

bridge the conscious to the subconscious state (Nieder-

meyer 1991). Second, the low-frequency brain waves (such

as the delta waves, 0.1–4 Hz) typically occur in deep sleep

and in some abnormal processes (e.g., experiences of

‘‘empathy state’’) is classed as ‘‘slow’’ activity, but the delta

rhythm is difficult to be distinguished from other slow non-

EEG signal sources.4 And finally, it is very rare to observe

the high-frequency range brain waves, such as the beta (12–

30 Hz) or gamma ([30 Hz) bands, considering the fact that

they are more relevant to the high-level cognitive tasks,

which seemed nearly impossible for all comatose patients.

In our experiments, we were able to extract some brain

waves (evaluated by Fourier and time-frequency analysis)

for the patients in deep coma; in contrast, the signal spectra

form the brain death group appeared to be white. The results

have been summarized in Table 1.

After loading specific raw EEG recordings (within a

temporal window with duration 5 s), the blind separation

was achieved by the above-described robust ICA algorithm,
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4 Indeed, the presence of the slow activity (\ 4 Hz) was always found

in all measurements, which created a difficulty for discrimination.
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which has been demonstrated to perform quite well for both

simulated and real-life MEG signals (Cao et al. 2003), and

proved to rather robust to noise interference as compared to

other ICA algorithms (e.g., Cichocki and Amari 2002) in

the literature, such as the fastICA algorithm, or the JADE

algorithm. However, the detailed comparison of our algo-

rithm with other ICA algorithms is beyond the focus of the

current paper. It should be noted that given the long-time

recordings of EEG signals, it was not true that the brain

(alpha or theta) waves can always be observed or extracted.

In our experimental procedure, we first conducted a human

visual inspection on the raw EEG traces, and then conduct a

moving-window based BSS procedure, followed by Fourier

analysis and time-frequency analysis.

For each coma patient, we have selected some repre-

sentative durations of EEG measurements (5 s long), which

all contained the EEG theta waves, but might or might not

contain the alpha waves. These data were further used for

later quantitative analysis and comparison with the quasi-

brain-death patients.

Quantitative analysis

After the preliminary clinical diagnosis and signal pro-

cessing analysis for the EEG recordings, the patients can be

categorized into two groups: the deep coma group and the

brain death group. For evaluating the quantitative differ-

ences between two patient groups, the qEEG analysis was

further employed. The goal of quantitative analysis is to

discover some informative features relevant to the EEG

signals that are useful in discriminating from these two

groups (deep coma vs. brain death) and to further evaluate

their statistical significances.

Relative power ratio

First, we compute a simple statistic based on the standard

Fourier analysis. Specifically, we define the the relative

power ratio (RPR) as follows:

RPR ¼ hþ aþ b ð4--30 HzÞ
total powerð1--30 HzÞ ;

where h, a, b denote the spectral power from the theta,

alpha, and beta spectral bands, respectively. Here the rela-

tive power (ratio) is preferred to the absolute power of

single spectral band because the latter directly depends on

the signal amplitude, thereby also dependent on the scaling

of the signal after signal processing (such as filtering or

ICA). The reason we exclude the low-frequency component

(1–4 Hz) in the numerator is that there always exist non-

EEG slow waves in the recorded signals (including white

noise) which is more difficult to distinguish based merely on

the power spectrum. For each subject, we computed the

RPR values from all 6 channels and only reported

the maximum value (the reason for that is to emphasize the

contribution from brain wave components—the presence of

any brain wave rhythm would make the ratio high). Com-

parison was further made between the subjects from two

groups. It was our intention to investigate whether the

simple relative power statistic can reveal any statistical

difference with regard to the qualitative observations. We

applied the one-way ANOVA (analysis of variance) as well

as the Mann–Whitney test (also known as Wilcoxon rank

sum test) to evaluate the RPR statistics between two groups.

The ANOVA is a parametric test (by assuming that the two

group samples’ distributions are both Gaussian) that com-

pares the means for two groups and returns the P-value for

the null hypothesis that the two groups have equal means;

whereas the Mann–Whitney test is nonparametric (by

assuming that the two group samples’ distributions have

similar shape) and tests the hypothesis if two groups have

equal medians. From our experiments, statistical signifi-

cance was found from both tests with our selected EEG

data, and the null hypotheses were rejected (i.e., H = 1).

The quantitative results are summarized in Table 2.

Quantitative complexity measures

The nonlinear brain dynamics can be somehow character-

ized by its outputs, where the EEG measurements might be

treated as the random time series observed from the com-

plex system (i.e., the functioning brain). Presumably, a

functioning brain and a dead brain would exhibit different

behavior in terms of their outputs and therefore have dif-

ferent degrees of ‘‘complexity’’. To characterize the

stochastic nature of the system, many stochastic complexity

measures have been proposed or developed in the literature

for analyzing neurophysiological signals (e.g., Gonzalez

Andino et al. 2000; Gu et al. 2003; Hornero et al. 2006;

Goldberger et al. 2002; Lin et al. 2005, Papadelis et al.

2007, Wennervirta et al. 2007). In our qEEG analysis, four

types of quantitative measures are under investigation:5

Table 2 Results of statistical tests on the maximum value of relative

power ratio (RPR) for two groups: coma versus brain death

Coma Brain death

Mean 0.8572 0.7469

Median 0.8515 0.7379

ANOVA P = 2.3 9 10-5, H = 1

Mann–Whitney P = 2.5 9 10-4, H = 1

5 All of quantitative analysis softwares were written in MATLAB�

(MathWorks, Natick, MA) and are available from the authors upon

request.
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(1) The approximate entropy (ApEn) (Pincus 1991),

which is a quantity that measures the regularity or

predictability of a random signal or time series.

(2) The time delay-embedded normalized singular spec-

trum entropy (NSSE) (Roberts et al. 1998), which is a

complexity measure arisen from calculating the

singular spectrum of a delay-embedded time series.

(3) The C0 complexity (Chen et al. 2000; Gu et al. 2003),

which is a complexity measure based on spectrum

analysis.

(4) The a-exponent based on detrended fluctuation anal-

ysis (DFA) (Peng et al. 1994; Little et al. 2006),

which estimates the fractal scaling exponent. Notably,

a = 1 indicates 1/f noise and long-range correlation;

a = 0.5 indicates white noise; and a = 1.5 indicates

Brownian noise.

All of complexity indices provide a quantitative metric

for the consciousness status of brain state. It is noteworthy

to point out several properties of these quantitative

measures:

– All four measures are strictly invariant to the scaling of

the signal (hence independent of the signal’s power).

– The NSSE and C0 complexity are both nonnegative and

bounded by 1.

– The fractal exponent may characterize the long-range

correlation behavior of a random signal. The a-

exponent obtained from the DFA method shall be in

principle consistent with b-exponent obtained from the

power spectrum analysis (Kaspar and Schuster 1987),

but the DFA method was claimed to be more accurate

(Goldberger et al. 2002).

Specifically, the parameter setup and calculation of the

above complexity measures in our experiments are as

follows:

– For ApEn, we chose m = 2 and r = 0.25 (consistent

with the notations in Akay (2001)) throughout the

experiments.

– For NSSE, we chose m = 10 (that corresponds to

10 ms for 1,000 Hz sampling frequency) as the time

delay parameter.

– For ApEn, NSSE, and C0 complexity, we evenly

divided the EEG signals into several (say, 10) seg-

ments, and computed their corresponding quantitative

values in each segment, and then averaged their values

to obtain the mean statistic as the final outcome.

– For a-exponent, we used the recommended setup from

Little et al. (2006).

Upon obtaining the quantitative results from the four

complexity measures, statistical tests were further applied

to evaluate their statistical significance. Specifically, the

Mann–Whitney test was applied to these quantitative

measures of two groups (coma vs. brain death) for each

electrode channel. For most subjects, there are 6 recorded

channels available for analysis. For a few subjects, only 4

channels were recorded because of technical problem

during the measurements; in such a case, they were

excluded when we analyzed the corresponding specific

channels.

We applied qEEG analysis (followed by statistical tests)

to both raw EEG signals as well as its bandpass-filtered

version (between 0.5 and 100 Hz). The bandpass filtering

operation was aimed at reducing the effect of potential low-

frequency artifacts (slow wave \1 Hz, such as myoclonic

jerks (Niedermeyer 1991)) and high-frequency non-EEG

noise. For the raw EEG data, the results of box plot are

shown in Fig. 4. In each box plot, the box has three lines at

the lower quartile (25% percentile), upper quartile (75%

percentile), and median (middle line) values. The distance

between the 25th and 75th percentiles represents the in-

terquartile range (IQR). The whiskers are lines extending

from each end of the box; the lower (or upper) whisker is at

1.5 the IQR below (or above) the 25th (or 75th) percentile.

Outliers (labeled with marker ‘+’) are data samples with

values beyond the range of the whiskers. In addition, the

overall quantitative results are summarized in Table 3. As

seen from the table, statistical tests show significant dif-

ferences in all complexity measures and all channels for the

raw EEG data. For the filtered EEG data, significant dif-

ferences between two groups are still found in the all or

majority of channels in all complexity measures.

Interpretation and visualization

The recorded EEG signals can be viewed as the multivariate

time series observed from a dynamical system (i.e., the human

brain). In order to analyze the characteristics of the dynamical

system, we may use various statistical measures (such as the

entropy, fractal dimension, etc.) to quantify the complexity or

regularity of the time series. In time series analysis, this is a

rather well-studied research field (Akay 2001).

One important aspect regarding the regularity of a time

series is the so-called self-similarity. Natural objects or

real-life physical signals often have such a ‘‘fractal-like’’

feature. Typically, the self-similarity is accompanied with a

long-range correlation behavior: C(s) * s-c. Because the

power spectrum density is simply the Fourier transform of

the autocorrelation function, we have S(f) * 1/fb (where

b = 1 - c). An illustration of the long-range correlation

and log-log power spectrum of a segment of EEG signal is

presented in Fig. 5. Notably, the scaling a-exponent is also

related to the slope parameter b (Kaspar and Schuster

1987), and both of which can be used to calculate the

fractal dimension of a self-similar signal.
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Fig. 4 Box plot of four quantitative statistics (for 6 channels) between the coma and brain death groups

Table 3 Summary of quantitative statistics applied to the raw and filtered EEG data for two groups: coma (C) versus brain death (D). For the P-

value column, * means P \ 0.05 and ** means P \ 0.01, and other numerical values show non-significance from the Mann–Whitney test

Measure Chan. Raw data Filtered data

Median (C) Median (D) P value Median (C) Median (D) P-value

ApEn Fp1 0.227 0.598 ** 0.103 0.217 *

Fp2 0.267 0.727 ** 0.123 0.362 **

F3 0.302 0.836 ** 0.115 0.362 **

F4 0.314 0.853 ** 0.135 0.331 **

F7 0.232 0.755 ** 0.097 0.263 **

F8 0.274 0.798 ** 0.097 0.305 **

NSSE Fp1 0.427 0.659 ** 0.236 0.336 **

Fp2 0.453 0.732 ** 0.256 0.412 **

F3 0.474 0.755 ** 0.264 0.411 **

F4 0.464 0.748 ** 0.270 0.398 **

F7 0.402 0.718 ** 0.223 0.363 **

F8 0.419 0.715 ** 0.228 0.393 **

C0 Fp1 0.040 0.093 ** 0.030 0.033 **

Fp2 0.043 0.109 ** 0.033 0.038 *

F3 0.043 0.1191 ** 0.030 0.042 *

F4 0.049 0.137 ** 0.034 0.043 0.055

F7 0.041 0.096 ** 0.028 0.040 **

F8 0.031 0.112 ** 0.023 0.041 **

a-exponent Fp1 1.212 1.147 * 1.277 1.217 0.071

Fp2 1.203 1.074 ** 1.251 1.152 *

F3 1.194 1.067 ** 1.250 1.161 *

F4 1.220 1.089 * 1.259 1.178 0.058

F7 1.245 1.096 ** 1.307 1.198 **

F8 1.217 1.101 ** 1.292 1.179 **
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Another important aspect regarding the regularity or

complexity of a random signal is the entropy, provided the

time series is viewed as a random process. The more

complex (or less regular) for a random signal, the greater is

its entropy. Although there are many entropy and com-

plexity measures proposed in the literature, we mainly

focus on three measures (ApEn, NNSE, and C0 complex-

ity) in this paper. In light of the results of our qEEG

analysis, it is worthy commenting several observations of

these statistical measures:

– The complexity of a time series, measured by ApEn

and C0 complexity, is lower in the coma group than the

brain death group. It should be emphasized that, for the

brain death group, the signals we truly analyzed are not

human EEG signals (otherwise the patient will not be

called brain death), but rather some non-EEG activities

(either background noise or artifacts).

– The NNSE can be viewed as a stochastic complexity

measure. Generally, if the eigen-spectrum (or singular

spectrum) of a time delay-embedded signal is flat (such

as white noise), then it is expected to have a greater

entropy value. On the contrary, if the time-embedded

signals are highly correlated, then a lower entropy

value would be obtained from the non-flat singular

spectrum. As observed, the coma group has a lower

NNSE (both median and mean) value than the brain

death group.

It seems from our study that the entropy measures are

quite robust in distinguishing between the coma and brain

death patients, which is also in agreement with the findings

reported in Wennervirta et al. (2007).

Next, we seek a statistical tool for feature extraction and

dimensionality reduction, which further leads to data

visualization in a lower-dimensional space. The most

popular method for dimensionality reduction is principal

component analysis (PCA), which attempts to find the

projection direction that has the maximum variance.

However, the standard PCA method is limited by its linear

model assumption. Provided the features are nonlinearly

correlated, then PCA will fail to reveal the inherent

structure of the data. In this case, we may resort to non-

linear statistical methods. The two statistical tools we

employ here for visualization are linear PCA and kernel

PCA (KPCA) (Schölkopf et al. 1998). The KPCA method

can be viewed a nonlinear generalization of the linear PCA

method. By virtue of the so-called ‘‘kernel trick’’, the linear

PCA method can be extended to the kernel-based nonlinear

dimensionality-reduction or feature-extraction methods.

This is done by projecting the data to a high- or even

infinite-dimensional feature space, whereas the inner

product of the feature space is induced by a positive defi-

nite kernel (Schölkopf and Smola 2002).

We arranged all quantitative features of the first 5

channels (of all subjects) into an augmented (feature-by-

subject) matrix, and then conducted the PCA analysis. The

dimensionality reduction results are illustrated in Fig. 6. As

seen, the two classes (coma vs. brain death) are quite

clearly separated, expect for a few (about 5) subjects. It is

also observed that KPCA did not bring additional dis-

crimination advantage compared to the linear PCA (as their

results are quite similar), indicating the correlations

between the extracted features are somewhat linear.

Classification

Upon computing the four complexity measures for EEG

signals per channel, we obtained 6 9 4 = 24 features in
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total for each subject. To further extract uncorrelated

features, we used the linear PCA for dimensionality

reduction. With the features at hand for the two groups, we

then feed them into a linear or nonlinear binary classifier,

such as the Fisher linear discriminant analysis (LDA) and

the support vector machine (SVM) (Schölkopf and Smola

2002). Specifically, SVM is a nonlinear classifier that is

known to have a good generalization ability by maximizing

the margin.

Let ‘ denote the total number of samples, we further

define three performance indices:

MIS ¼ FP þ FN

Total
; SEN ¼ TP

TP þ FN
;

SPE ¼ 1� FP

FP þ TN

where the above nomenclature follows: false positive (FP,

type I error), false negative (FN, type II error), true positive

(TP), true negative (TN), sensitivity (SEN), and specificity

(SPE). In addition, it is informative to compute the receiver

operating characteristic (ROC) curve, which is a graphical

illustration that shows the relation between the specificity

(1–SPE value in the abscissa) and sensitivity (SEN value in

the coordinate) of the binary classifier. The area under the

ROC curve (AUROC) reveals the overall accuracy of the

classifier (with value 1 indicating perfect performance and

0.5 indicating random guess). In our experiments, since the

available data set is rather small, thus far we only tested the

classifier’s performance accuracy using a leave-one-out

cross-validation procedure (i.e., using ‘� 1 samples for

training and the remaining 1 sample for testing, and

repeating the procedure for the whole data set). The aver-

age leave-one-out misclassification (MIS) performance was

9.2% for SVM and 11.3% for LDA. For SVM, we used a

Gaussian kernel function with a kernel width of 0.1 (chosen

from cross-validation). The optimal AUROC value we

obtained is 0.852 with the nonlinear SVM classifier; see

Fig. 7 for the illustration of ROC curves. The results are

summarized in Table 4. In addition, we also compared the

classification performance using the raw features without

PCA dimensionality reduction, the MIS results from SVM

are similar, while the performance of LDA is slightly worse

than the the one with PCA feature reduction. This is

probably because LDA is a linear classifier whereas SVM

is a nonlinear classifier, and the latter is less sensitive to the

number of linearly correlated features.

Subject-wise case study

In this section, we focus on specific individual subjects and

investigate two interesting clinical cases. These two cases

represent two different changes of consciousness state of
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the brain: one from deep coma to awake recovery, the other

from deep coma to brain death. For these two subjects, we

have relatively more recording sessions, which also pro-

vide us with more opportunity for an in-depth analysis.

From deep coma to awake recovery

The first subject (that corresponds to patient C1 in Table 1)

is a 18-year-old male patient (SJ) with a primary cerebral

disease, who was admitted to the hospital on May 20, 2004

and later diagnosed as virulent Meningitis. After one month

hospitalization, on June 11, 2004, the patient lost his

consciousness and remained in a deep coma state. On the

examining day, his pupils were dilated, and the respiratory

machine was used. The patient was completely unrespon-

sive to external visual, auditory, and tactile stimuli, and

was incapable of any communication. Although the

symptom of patient was very similar to a brain-death case,

EEG analysis indicated that the patient still had

physiological brain activities. In fact, after that day the

patient came to consciousness little by little. On August 31,

2004, the patient was able to respond to simple questions,

and was released from the hospital later.

The EEG recordings available for this subject include

three sessions (measured at different times on June 11),

each with about 5 min. In order to compute the time evo-

lution of the quantitative measures, we applied a moving

overlapping window (with 10 s duration and half window

overlap) to each channel’s recording. Furthermore, in order

to reduce the effect of non-EEG artifacts, we also filtered

the windowed signal within [0.5, 100] Hz before using

them in qEEG analysis. Then we further analyzed each

quantitative measure in 3 sessions for all 6 channels. The

box plot statistics are shown in Fig. 8. As seen from the

figure, some quantitative (median) values are rather stable

(e.g., channels Fp1, F3, and F7), since these three recording

sessions are obtained from the same day.

From deep coma to brain death

The second subject (that corresponds to patient C8 and D1

in Table 1) is a 17-year-old female patient (ZJ) with a virus

encephalitis. This subject suffered from the difficulty of

breathing, and the respiratory machine was used in the ICU

since her admittance to the hospital on March 14, 2005. On

March 16, 2005, the patient was in a deep coma state with

dilated pupils, but was found to have a very weak visual

Table 4 Summary of classification results on the misclassification

(MIS) and AUROC indices. The MIS performance is based on the

leave-one-out cross-validation procedure

LDA SVM

MIS (%) AUROC MIS (%) AUROC

With PCA 11.3 0.804 9.2 0.845

Without PCA 12.7 0.798 9.2 0.852
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response. On the same day, the EEG was recorded in the

patient’s bedside. Three sessions of EEG measurements

were recorded, each one with approximately 5 min.

On March 22, 2005, the patient was also found to be

completely unresponsive to external visual, auditory, and

tactile stimuli, and her pupils lost the light response. On the

same day, two physicians made the diagnosis as (quasi)

brain death. The EEG examination was then applied to the

patient. Three sessions of EEG measurements were recor-

ded, each one with about 5 min.

In total, the EEG recordings from 2 days have six ses-

sions, with total durations about 30 min. Again, we applied

a moving overlapping moving window (with 10 s duration

and half window overlap) to the recorded signals, followed

by bandpass filtering (within [0.5, 100] Hz). For each

session, we calculated the quantitative statistics for 6

channels in a total of 60 temporal windows. The compar-

ison of the mean and SEM (standard error of the mean)

statistics for the 6 sessions (in two days) is given in Fig. 9.

As shown in the figure, we can clearly observe a ‘‘mode

shift’’ between these two days. Specifically, the mean

values of ApEn, NNSE, and C0 complexity are increased

from March 19, 2005 to March 22, 2005, while the mean

value of a-exponent is decreased. This phenomenon is

again consistent with the early qEEG analysis results

(Fig. 4) between the coma group and the brain death group.

In addition, it was observed that for all four statistical

measures, the SEMs of the measurements are greater on

March 22 than those on March 16. It should be pointed out

that although Fig. 9 only presents the averaged statistics of

6 channels, similar trends are also observed in each indi-

vidual channel. Due to space limitation, we cannot show

the temporal evolution traces of quantitative measures of

all channels here. To give a demonstration, Fig. 10 shows

the temporal evolution of four complexity measures for

channel F4. Each point in these plots is calculated using a

shifted overlapping 10-s window. The purpose of which is

to observe the variation within specific sessions and to see

if there is any median shift between two different days.

Statistical (Mann–Whitney) test again show that the med-

ian statistics of all complexity measures are different

between the two days.

Discussion

Robustness of the quantitative measures

In this paper, we have proposed some signal processing

methods and several complexity measures for qEEG analy-

sis. One key factor in qEEG analysis is the robustness of

these statistical measures. Most importantly, the quantitative
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measures shall be somewhat robust to the existence of non-

EEG sources (such as noise, artifacts, or power interference).

In addition, the EEG signal is known to be highly non-sta-

tionary, and therefore, the quantitative values obtained from

the complexity measures are fast time-varying (e.g., see

Fig. 10). As observed in our empirical qEEG analysis, our

proposed complexity measures are somewhat robust to

noise, and they are all invariant to the amplitude scaling of

the signal. When monitoring the temporal evolutions of these

quantitative measures (as done in the subject-wise case

study), we also found that the median statistic of these

measures are relatively robust to the potential artifacts in the

measurements. Therefore, these measures are arguably

reliable for real-life applications.

Online implementation in clinical practice

In this study, we present a practical procedure for EEG

analysis for the clinical pre-testing of brain death. The

proposed EEG examination procedure (Fig. 1) can be

applied at the patient’s bedside using a small number of

electrodes. Our signal processing method can be used to

reduce the power of additive noise and to decompose or

separate the brain and interference signals.

In terms of the clinical utility, we believe that the real-

field EEG analysis would provide the medical doctor or

physicians with valuable cues of the ongoing activities of

the brain. Hence, our proposed method might be potentially

used as a diagnostic and prognostic tool in clinical practice.

In the meantime, new biomedical devices have been

developed for helping to collect high-fidelity EEG signals

in critical care setting (Litscher 1999). It is noted that most

of our algorithmic components (such as Fourier transform

or standard matrix decomposition) can be implemented

efficiently in real time, using Labview or MATLAB run on

a laptop). Although our results are still empirical (given the

limited measurements available thus far) and the solid

confirmation of our claims requires further investigation

and more data analysis, our work reported here can be

viewed as the first step towards the final goal.

Future study

We are planning to collect more real-field EEG data for

more in-depth data analysis. Besides, we are examining

methods to distinguish the low-frequency components of

EEG signals from its surrogate signals (with the same

Fourier magnitude but randomly shuffled phase). This is

important before applying any quantitative measures to

evaluate the bona fide EEG signals. We are attempting to

explore several nonlinear methods and higher order sta-

tistics to overcome the limitation of standard Fourier

analysis that is rooted in second-order statistics. The sig-

nificance of the prospective method can be tested by Monte

Carlo analysis. In addition, advanced machine learning

methods, such as the ensemble classifier method (Diette-

rich and Bakiri 1995), can be used to further improve the

classification performance especially in the case of small

size of data sample set.

In conclusion, we believe that the signal processing and

machine learning tools for qEEG analysis would shed a

light on the real-time medical diagnosis in clinical practice,

and might present themselves as a challenging research

direction.
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