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Abstract This theoretical and speculative essay addres-

ses a categorical distinction between neural events of

sensory-motor cognition and those presumably associated

with consciousness. It proposes to view this distinction in

the framework of the branch of Statistical Physics currently

referred to as Modern Critical Theory (Stanley, Introduc-

tion to phase transitions and critical phenomena, 1987;

Marro and Dickman, Nonequilibrium phase transitions in

lattice, 1999). Based on established landmarks of brain

dynamics, network configurations and their role for con-

veying oscillatory activity of certain frequencies bands, the

question is examined: what kind of state space transitions

can systems with these properties undergo, and could the

relation between neural processes of sensory-motor cog-

nition and those of events in consciousness be of the same

category as is characterized by state transitions in non-

equilibrium physical systems? Approaches for empirical

validation of this view by suitably designed brain imaging

studies, and for computational simulations of the proposed

principle are discussed.

Keywords State space � Consciousness � Emergence �
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Introduction

Two current trends in the discourse in Cognitive Neuro-

science and its participating disciplines are, first, the

realization that Cognitive Systems are intrinsically

dynamical systems (Giunti 1997; Port and van Gelder

1995; van Gelder 1998) which function in interaction with

the environment and as embodied actors (Varela et al.

1995; Chiel and Beer 1997; Thompson 2007); and, second,

the formulation of the Global Workspace Model by Baars

(1988, 1997, 2002): both have become reference points for

theory formation on brain-mind relations. Baars’ ‘‘cogni-

tive theory of consciousness’’ postulates a multitude of

special purpose processors, almost always unconscious.

Coalitions of such processors can gain access to a limited

capacity global workspace for integrating competing and

cooperating input and for recruiting additional processors

for dealing with novelty and problem solving. All this

occurs under the auspices of certain ‘contexts’ which are

themselves coalitions of processors.

In the following, I will draw on the conceptual resources

of Dynamical System Theory and the methodological tools

of Complex System Science for proposing that consider-

ations of certain aspects of statistical Physics, and of a new

outlook on the character of explanation in Physics, will

broaden the conceptual base of Cognitive Neuroscience. Its

antecedents are the investigations of state transitions at the

mesoscopic level of nervous systems by Freeman (2005a),

and the studies of pattern transitions in brain electrical

activity and behavior, conducted in the spirit of Coordination

Dynamics (Kelso et al. 1992; Wallenstein et al. 1995; Jirsa

2004; Kelso and Engstrom 2006), and linking global brain

events and behavior. However, in distinction, I will

emphasize that aspect of state transitions from one level of a

hierarchical system to the next, which are associated with

changes of scales and dimensionality, and the origin of

qualitatively new properties at the next higher level.

Atmanspacher and Kronz (1999) have examined some of the

relevant ontological and epistemological issues.
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The following sections present a brief sketch of obser-

vational and conceptual benchmarks from the

Neurosciences, limited only to such aspects in recent lit-

erature and current debates as are required for clearing the

way to characterizing the theoretical framework which I

here propose. This will be followed by an outline of the

conceptual framework of relevant aspects of Statistical

Physics as basis for considering the conceptual and heu-

ristic implications of viewing the Neuroscience of

Cognition and Consciousness in this framework. For con-

sistency, I will adopt the convention in Statistical Physics

for designating ‘micro-’ and ‘macro-state’ as two levels of

a system’s organization, prior to and after state a transi-

tions; thus, in the present context, ‘microscopic’ stands for

the neuronal brain configuration associated with cognition,

and ‘macroscopic’ for that of conscious states.

Oscillatory neural activity

Oscillatory neural activity is widely accepted as subserving

communication among cell assemblies across a wide range

of spatial and temporal scales (Basar et al. 2004; Buzsaki

2006). Pursuing Freeman’s (1975) notions of ‘‘mass

action’’ in the Nervous System, Varela (1995) subsumed

the result of a large number of investigations of their own

and of other authors, at first, under the notion of Resonant

Cell assemblies, and subsequently under the idea of the

Brain Web (Varela et al. 2001). Thus originated the

Research Program of the Dynamic Core (Le VanQuyen

2003) at meso- and macroscopic scales. Neuronal oscilla-

tory patterns comprise spike discharges and local field

potentials (LFP). Their role is thought to be twofold:

dynamically constituting functionally interacting neuron

assemblies, and acting as communication links in virtue of

phase synchrony. These generalizations rest on a wealth of

analytical, numerical-computational and empirical data:

mechanism of oscillatory coupling are discussed in great

detail by Pikovsky et al. (2001), and, amongst others, also

by Tass and Haken (1996) and Mirollo and Strogatz

(1990). Mutual synchronization is reviewed in detail in

Chapter 6 of Mikhailov and Calenbur (2006). Onset of

oscillations are often viewed in terms of Kuramoto’s self-

organizing synchronization (Acebron et al. 2005).

From among the numerous experimental and clinical

observations of functional roles of oscillatory activity

under a large variety of circumstances, I cite merely a few

recent sources, by way of illustration and with pointers to

prior reports: Schnitzler and Gross (2005) review normal

and pathological oscillatory communication in the brain.

Bressler and Kelso (2001) underscore the metastable

dynamics and coordination of cortical areas in relation to

phase relationship of oscillatory activity. Bypassing the

voluminous literature of the 1980s and 90s on a putative

role of oscillatory neural activity for perception and cog-

nition, I mention here merely two recent contributions on

their role in attentional mechanisms: Saalman et al. (2007)

show that selective attention in a visual masking task is

associated with synchronizing neuronal activity in the

monkey’s parietal and mediotemporal cortical areas, and

Buschman and Miller (2007) report that synchrony of

neural discharges between prefrontal and posterior parietal

cortices occurs at different frequencies which apparently

signify different modes of attention, supplementing earlier

brain imaging data on anti-correlation pattern of spont-

anoeus activity in ventral and dorsal attentional system

(Fox et al. 2006). In simulation studies, Bibbing et al.

(2002) established a purely cortical mechanism capable of

generating synchronicity at beta range frequencies, poten-

tially acting in parallel to the thalamo-cortical and cortico-

thalamic interactions for long-range synchronization via

recurrent, reciprocal neuronal connections (also referred to

as ‘‘reentry’’, Sporns et al. 1989).

Long-distance synchronization of brain activity in

human subjects engaged in perceptual-cognitive tasks was

reported, among others, by Rodriguez et al. (1999). These

and the numerous related observations can now be sup-

plemented with the findings of Koenig et al. (2005):

combining electroencephalographic records with functional

magnetic resonance imaging identified transient ‘‘binding’’

(see below) between different brain regions through syn-

chronized oscillations. Synchronization of neural activity

in disparate cortical regions may then be thought of as a

mechanism for constituting transient functional neurocog-

nitive networks. At least in one instance, it was possible to

demonstrate in the awake monkey that oscillations in the

beta frequency range carry Granger causal influences from

primary somatic sensory and inferior parietal cortices to

motor cortex (Brovelli et al. 2004).

The ‘communication-through-coherence’ hypothesis of

Fries (2005) proposes to close the gap between the sug-

gestive evidence for the functional efficacy of neuronal

oscillatory activity on the one hand, and a detailed

understanding of its mechanism, on the other: phase-

locking among oscillations of neuron assemblies is

thought to enable their effective communication by acting

as windows of frequency-specific interaction, as a kind of

gating mechanisms. This could constitute an intricate

dynamic communication structure for selective routing of

neuronal activity. The hypothesis can draw on the fact

that gamma-band synchronization of synaptic inputs

enhances their effective synaptic strength (Salinas and

Sejnowski 2001), and is also supported by the recent

finding of Womelsdorf et al. (2007): in a set of elegant

experiments on the cortices of awake cats and monkeys,

the precise timing between rhythmic activity of neuronal
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groups determined the strength of their mutual interaction,

presumably due to frequency specific rhythmic modula-

tion of synaptic inputs. Hence, effective connectivity can

be regulated upward and downward through synchroni-

zation, depending on the phase relation. One can readily

visualize how the temporal and spatial pattern of syn-

chronization imposes a distributed pattern of synaptic

gains (a grid of traffic lights, if you will) on the infra-

structure of anatomic connections, with the effect of

dynamically modifying interactions among neuronal

groups. The significance of this point of view will become

even more apparent in later sections if this essay.

Although the focus of interest is generally on the syn-

chronicity (phase locking) of oscillatory interrelation

among neuron assemblies, alternating periods of asyn-

chronous coupling are of equal importance for it is these

which make dynamic re-configuration of communicating

neuron assemblies possible: an interrupt mechanisms, as it

were, for enabling swift adaptive changes by shifting

coherence patterns from one communicating cell assembly

to another (Breakspear et al. 2004; Friston 2000). The

capacity for alternation between synchrony and asynchrony

is also one aspect of the metastable coupling/uncoupling of

integration and differentiation in coordination Dynamics

(Kelso and Engstrom 2006). Simulated adaptive network

controllers evolve towards increasing ‘‘fitness’’ with shift-

ing the dynamical integration/differentiation balance (Seth

and Edelman 2004), reflecting changes in mutual infor-

mation of interacting neuron pools which was originally

proposed as measure of brain complexity (Tononi et al.

1994) and index of consciousness (Tononi and Edelman

1998). However, it now appears that neither this nor any

other thus far considered measure of the brain’s multidi-

mensional complexity adequately reflects the temporal and

spatio-temporal dynamics of neural systems (Seth et al.

2006).

The coordinating function of neuronal oscillatory

activity is traditionally described in terms of the intuitively

appealing notion of ‘‘binding’’ (von der Malsburg 1981/

1994, 1999) between neuron pools. The salient feature of

this intuitive notion can now be stated in more specific

terms. In a series of papers, Maye and Werning (Maye

2003; Maye and Werning 2004; Werning and Maye 2006)

demonstrated feature compositionality in networks of

coupled oscillators: oscillators which represent objects that

share features do also synchronize. Thus, features are

‘recognized’ as constituents of objects, and pass their

causal properties (upward, so to say) on to complex

(object) representations. In this sense, synchronizing

oscillators have the capacity for compositionality.

How synchronicity is mediated between disjoint neuron

assemblies is the subject of the next section.

On brain network connectivity

Earlier investigation of the brain’s network structure and

connectivity patterns (e.g., Mesulam 1998) are now enri-

ched by the insights into the statistical mechanics (Albert

and Barabasi 2002), the development (Dorogovtsev and

Mendes 2003) and structure and function (Newman 2003)

of complex networks. Investigations of Hilgetag et al.

(2000) and others generated a wealth of neuroanatomical

data which, together with the application of methods of

graph theory (Bollobas 1985) and computational analysis

of network configurations (Hilgetag et al. 2002) came to

constitute the field of Computational Neuroanatomy

(Sporns et al. 2000). It is concerned with establishing the

relations between classes of network connectivity, network

dynamics, and measures of the brain’s complexity. One of

the principal objectives of research in this field is to

identify the conditions under which structural-anatomical

connection patterns become functionally engaged, and

what the properties of the resulting functional networks are.

For the purposes of the following, it suffices to consider

two classes of networks: small-world, and scale-free. The

characteristic connection topology of the former class of

networks was first described by Watts and Stogatz (1998)

and Strogatz (2001). It consists in the prevalence of highly

clustered, short (near- and next-near-neighbor) connections

over long range shortcuts to distant nodes. Their connec-

tivity is intermediate between completely regular and

completely random, and their short characteristic path

length accounts for what is described by the evocative term

of ‘‘cliquishness’’. Scale-free networks, on the other hand

are characterized by a scale-free statistical distribution of

numbers of edges per network node, which implies their

being poised towards critical state transitions.

In a recent review, Sporns and Zwi (2004) reaffirmed

and extended the previously established small-world

characteristics of the anatomical inter-area cortical con-

nection patterns, as has Humphries et al. (2006) for the

structure of the brain stem reticular formation. Sporns

(2006) also compared brain organization at different levels

of scale, ranging from local neuronal groups to patterns of

intra- and inter-area connections up to extended cortical

systems, and determined that it displays self-similarity, i.e.

a fractal patterns, that is, the pattern of network connec-

tivity is identical at all levels of the central nervous system,

safe for changes in scale. The small-world properties of

anatomical brain networks can be viewed as a develop-

mental compromise between keeping the ‘cost’ of wiring

length small, and yet secure also the efficiency of long-

distance connections. Within complex networks, recurring

patterns of interconnections form ‘motifs’ which appear to

function as elementary building blocks (Milo et al. 2002).
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A small repertoire of such structural motifs can also be

identified in brain networks (Sporns and Koetter 2004).

Network topology and network dynamics are decisively

interdependent (Grinstein and Linsker 2005). Therefore, it

is essential to ask: what role does the functional brain

network architecture play in brain dynamics?

On theoretical grounds, simulation studies attribute

significance to features of small-world networks insofar as

it supports fast response and temporally coherent oscilla-

tions of the network nodes (Lago-Fernandez et al. 2000;

Wang and Chen 2002). This is thought to be of relevance

for ‘feature binding’ (Masuda and Aihara 2004), efficiency

in local and global information exchange (Latora and

Marchiori 2001; Bassett and Bullmore 2006), and for

facilitating global synchrony of coupled phase oscillators

(Watts 1999; Barahona and Pecora 2001). In general, this

collective behavior presupposes the non-locality of at least

some connections (Gade and Sinha (2006): a requirement

which, of course, small-world networks meet. However,

small-word networks (graphs) comprise several classes

depending on their vertex connectivity; one of them is

identical with ‘scale-free networks’ (Amaral et al. 2000;

Newman 2000). Thus, labeling a network merely as ‘‘small

world’’ is not necessarily a complete characterization of its

functional repertoire.

Observational data obtained with PET and fMRI imag-

ing methods and their interpretation in terms of network

theory have generated important insights into intra-area

functional connectivity, and its role for human brain

function, both in a so-called ‘resting’ state and states of

experimenter-elicited activity. However, ‘Resting State’

needs to be taken with a grain of salt (Gusnard and Raichle

2001). Consider, for instance the brain activity of ‘wan-

dering minds’ (Mason et al. 2007).

Measuring correlations between ‘‘voxel’’ in MGE’s of

brains in subjects carrying out a finger tapping task, Eg-

uiluz et al. (2005) identified functional brain small world

networks with scale-free properties. Stam (2004) was gui-

ded by the idea that network synchronization at different

frequency bands may reflect functional differences; in no-

task, eye closed conditions, he found that connectivity

patterns below 8 Hz and above 30 Hz display small world

properties, but they did not in the alpha—and beta range.

Frequency dependent difference in functional network

connectivity were also found by Salvador et al. (2005a, b).

A major methodological advance in the form of discrete

wavelet decomposition of fMRI time series of the human

brain (Bullmore et al. 2004) in combination with graph

theoretical methods make it possible to extend the frequency

band of analysis over a physiologically relevant range.

Achard et al. (2006) found small-world topology of sparse

connections most salient in the frequency range of 0.03–

0.06 Hz. The degree distribution of the highly connected

hubs of uni- and heteromodal association cortex reflects an

exponentially truncated power law. Extending the scaling

regime up to 75 Hz, Bassett et al (2006) identified functional

networks with small-world topology and critical dynamics

over a frequency range from 1 to 75 Hz. Connectivity

between brain regions varied with the frequency range, long

range functional connectivity in the resting state being

stronger at low frequencies. With task performance, long

range functional connections emerge more strongly at higher

frequencies, associated with a significant motor task related

increase in characteristic length scale of edges in high fre-

quency motor networks. The network dynamics is thus seen

as supporting task-related reconfiguration, potentially also

drawing on the reserve of uncommitted connections in the

otherwise sparse networks. Adaptive and rapid reconfigu-

ration is possible because the synchronizability of the

networks is in all states and at all scales close to the order-

disorder transition. Under more complex conditions, tested

as ‘task sets’ which require initiation, maintenance and

adjustments, a fronto-parietal and a cingulo-opercular net-

work participate, operating independently and on different

time scales (Dosenbach et al. 2006, 2007; Fair et al. 2007);

their life-span development is associated with decrease of

short-range, and increase of long-range connections (Fair

et al. 2007).

Computational simulations of relations between network

structure and activity patterns add insights into an amaz-

ingly intricate and specific dynamics in the temporal and

spatial domain. In a network model reflecting segregated

regions and interregional pathways of the macaque cortex,

based on the database CoCoMac (Koetter 2001), Honey

et al. (2007) simulated the distribution pattern of sponta-

neous (i.e. in absence of external stimulation) cortical

dynamics. The neuronal dynamics within each of the cor-

tical regions was emulated as a neural mass model with

self-organizing oscillations, serving as a spontaneously

active motor, as it were, that drives the entire system.

Interregional interactions were measured as Transfer

Entropy (Schreiber 2000) and transient synchrony between

pairs of regions was expressed as phase locking value

(Lachaux et al. 1999). The cortical ‘resting’ state displayed

a rich temporal structure at multiple time scales: at time

scales of 10 Hz, the system dynamics consists of multiple

metastable states; at lower frequencies, fluctuations in the

strength of correlated coupling occur, with regions partic-

ipating in one or the other cluster in an anticorrelated

manner. The group of Zhou and associates (Zhou et al.

2006, 2007; Zemanova et al. 2006) performed a compa-

rable study with similar methodology, based on a model of

the cat brain. Their results underscore the sensitive

dependence of the network organization into functional

synchronizing communities on the degree of coupling, and

on the network topology.
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The observations cited in the foregoing section point to

the brain’s extraordinary capacity for routing the oscilla-

tory activity of neuronal centers into different channels,

and over different ranges to different destinations,

depending on the oscillation frequency of the signals they

convey: a communication system, dynamically structured

by the property of the signals it carries. Equally amazing is

the interplay between the brain’s small-world network

feature supporting synchonization, and its being near crit-

icality (the later also associated with scale invariance of

node degrees which, in the theory of Albert and Barabasi

(2002), may be due to local re-wiring, addition or removal

of nodes): while criticality favors state transitions, it also

constrains the small world synchronizing propensity of the

networks, thus preventing ‘seizures-like’ loss of network

frequency specificity (Percha et al. 2005): a proper balance

of opposing trends must be maintained.

Albeit held in balance, the scale-free aspect of the

functional justifies Chialvo’s (2006) evocative expression

of ‘‘ the brain near the edge’’. This is also evident from

appropriate analyses of the encephalogram. In numerous

publications, Freeman (2004a, b, 2005a, b, 2006) provided

solid support for the view that the brain state space

dynamics is poised towards a global state of self-organized

criticality which affords the possibility for virtually

instantaneous reorganization upon changes in external or

internal variables. Evidence for scale-free brain dynamics

of EEG as signature of self-organized criticality was also

obtained by Linkenkaer-Hansen et al. (2001), Gong et al.

(2003), and Stam and de Bruin (2004). Transcranial mag-

netic stimulation was shown to induce switches between

two distinct modes of behavior (Meyer-Lindenberg et al.

2002). The totality of these observations is also consistent

with qualitative predictions from Baars’ model which

envisions the possibility of abrupt activation of a Global

Workspace under appropriate conditions. Werner (2007a)

attributes this abrupt activation to self-organized criticality.

On cognition and consciousness

This section singles out those aspects of cognition and

consciousness that are relevant for the proposed brain the

state transition. They are: their categorical distinction; the

nature of neurophysiological process plausibly associated

with consciousness; and the sudden and abrupt onset of

conscious events.

In the first place, the reactive behavior of organism’s

sensory-motor interaction with the environment must be

clearly differentiated from the qualitative subjective states

and processes of sentience and awareness; the latter having

their own, distinct Ontology (Searle 2000). In Neurosci-

ence, Lamme (2003) and Dehaene et al. (2006) assembled

several lines of evidence which converge to differentiating

conscious from unconscious processing, as do the findings

with blind sight (Weiskrantz 1986) and semantic priming

(Dehaene and Nagache 2002). I adopt Searle’s (l.c.) notion

of the state of wakefulness as basal (background) con-

sciousness, a kind of unified field, presumably identical or

overlapping with the condition of vigilance in the termi-

nology of Dehaene et al. (2003). Specific sensory events

would then punctuate, as it were, the steady state of the

unified field, as the basis of discrete subjective experiences.

This notion of discrete events in Consciousness tallies with

observations of Fingelkurts and Fingelkurts (2001, 2005,

2006) of discontinuities in the EEG which they identify as

transient operational brain microstates, signaling shifting

activation of neuronal networks. Independently, Lehmann

and associates (1998, 2006; Michel et al. 1992; Koenig

et al. 2005) characterized at the brain-scale level a seg-

mentation of global brain electrical activity into discrete

units which are interpreted as functional microstates of the

brain. They may correspond to basic constituents of con-

scious events. Detailed quantitative analysis of these brain

electrical microstates identified a repertoire of classes of

brain topographic maps of which Koenig et al. (2002)

determined normative data for resting EEG, varying with

differences in age-dependent developmental stages of

cognitive styles. Werner (2007a) suggested that the records

of these functional microstates may reflect self-organizing

state transitions in neural circuits.

In an extended series of studies designed to delineate

conscious from non-conscious brain processing in neuro-

physiological terms, Dehaene et al. (1989, 1991, 1997,

2003; Changeux and Michel 2006), developed the

hypothesis of the Neuronal Global Workspace. Two

prominent features emerged: one, that events in con-

sciousness are predicated on a ‘brain scale’ co-activation of

multiple brain areas in reciprocal interaction; and, second,

that this coactivation abruptly ‘‘ignites’ (in the apt termi-

nology of Changeux) because of ‘‘self-amplifying recurrent

activity’’ in widely distributed cortical regions. Accord-

ingly, Dehaene et al (2006) consider conscious perception

to be systematically associated with surges of neural

activity in parieto-frontal cortical regions Edelman (2003)

also considers dynamic reentrant interactions across corti-

cal circuits as the medium for synchronous linking and

binding among widely distributed brain areas. Comparing

computational neural models with perceptual phenomena,

Dehaene and Changeux emphasize the suddenness of the

transition to conscious and reportable registration of stim-

ulus events. Sergent and Dehaene (2004) and Del Cul et al.

(2007) take their findings with the attentional blink test and

backward masking, respectively, to be concordant with the

notion of a discrete threshold for access to consciousness.

Abruptness of onset of conscious experience is also an
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essential aspect of the extended psychophysical studies of

Breitmeyer and Ogman (1984/2006).

A different (perhaps complementary?) point of view is

represented by a group of investigators who attribute the

distinction between unconscious and conscious vision to

recurrent processing: Lamme and associates (Lamme and

Roelfsema 2000; Super et al. 2001; Lamme 2006a, b)

claim that reportable conscious visual experiences require

that the ‘‘feedforward sweep’’ of neural activation from

visual towards motor areas become extended to a ‘‘back-

ward sweep’’ which consists of widespread recurrent

activation of frontal, prefrontal and temporal cortex, putt-

ing ‘‘visual information into the context of the system’s

current needs, goals and full history’’ (Lamme 2003;

Pascual-Leone and Wals 2001).

In addition to the foregoing considerations, it appears also

required that the somatically embodied and environmentally

reactive behavior be associated with adaptive autonomy and

internal bioregulatory processes of emotional embodiment.

Based on thoughtful analysis of extended clinical observa-

tions, Damasio (1994, 1999, 2001, 2003; Damasio et al.

2000), and more recently Rudrauf and Damasio (2006) view

subjectivity and the experiencing ‘‘I’’ as essential aspect of

Consciousness. It is a ‘‘feeling of knowing’’ that makes the

relation to a perceived object salient to the organism. Feel-

ings are grounded in the multidimensional, moment-to-

moment shifting physiological internal body environment,

associated with the subcortical regulatory structures of, for

instance, Hypothalamus and Brain Stem Tegmentum, and

the cortical formations of Insula and Cingulate regions. The

act of a subject’s conscious cognition is thought to consists of

two mutually interdependent and interacting components:

sensory events in transaction with the external world, and a

‘feeling’ which is the concurrent reading of the body’s

internal environment; the latter in some sense anchoring the

subject’s ownership of the former. This theory is consistent

with a wealth of observations in Clinical Neurology, and

with neuro-anatomical and neuro-physiological data (Craig

2002).

The foregoing brief overview is intended to underscore

the two principal characteristics of the origin of events in

consciousness: abruptness of onset, and the active engage-

ment of substantial portions of brain; the latter supporting the

basic idea of Baars ‘ Global Workspace Theory’ of associ-

ating consciousness with widespread access among

otherwise independent brain functions (Baars 1988, 2002).

The state space: concept and application

The rich source of recent observations with Brain Imaging,

together with the long standing evidence on oscillatory brain

activity from Electroencephalography and Coordination

Dynamics contributed in the past two decades to the growing

realization that the brain should be viewed as a complex

dynamical system of unprecedented complexity (John

2002). This recommends adopting the state (phase) space

approach for characterizing the brain’s state as points (or

circumscribed regions), and changing activity unfolding in

time as trajectories in a high dimensional space. It is then also

possible to conceive of behavior, cognitive functions and

phenomenal experience similarly in terms of state space

dynamics, and to examine corresponding trajectories in brain

and mental spaces. Examples of this are: Wackermann’s

(1999) assessment of electroencephalographic field changes

as state space trajectories, Hobson’s (2000) view of different

stages of wakefulness and sleep in terms of state space

dynamics; the demonstration of global brain state transitions

occurring simultaneously across multiple forebrain areas

(Gervasoni et al. 2004; Fell’s 2004) mappings between brain

states and phenomenal experience, and Churchland’s (1989,

2006) long standing explorations with comparing human

phenomenological with neural-network activation spaces.

As indicated in the Introduction, application of state space

concepts in the form of Coordination Dynamics has signifi-

cantly enriched the understanding of relations between

global brain dynamics and behavior.

A state space as such is merely the repository of all

potentially accessible states a system can assume. Each

dimension of the state space corresponds to an independent

system variable. System variables can also be considered as

components of a state vector in state space. What makes

thinking in terms of state space dynamics a powerful tool is

the manner of progression in time of state vectors in state

space, describing the trajectory of the system’s evolution.

Singularities (discontinuities) of the trajectories are asso-

ciated with state space transitions at which point many

conservative (equilibrium) physical systems can undergo a

deep structural modification. It occurs when a certain

system parameter reaches a ‘critical’ value. The study of

these modifications is the subject of the (classical) Theory

of Dynamic Critical Phenomena (Hohenberg and Halperin

1977; Stanley 1999). At the critical transition, the system

presents qualitatively novel properties which warrant new

descriptors and obey new physical laws: presenting, in fact,

a new physical reality. The state transition of magnetiza-

tion of ferromagnets is an illustrative example as is the

familiar transition from water to ice.

How does this new physical reality come into being, and

what does it entail? At the critical point of state transition,

the system undergoes a profound reconfiguration which,

among other features, is expressed as change of the cor-

relation function of micro system elements. The correlation

function characterizes how the value at one point in state

space is correlated with the value at another point,

reflecting the micro level’s fine structure. While under
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stable conditions extending over short distances, correla-

tion length progressively increases as the critical point of

state transition is approached. At the critical point itself,

correlation length diverges to the extent that only correla-

tions extending over larger scales remain. This implies that

the system, metaphorically speaking, looses a detailed

‘memory’ of its microscopic structure. Thus, the macro-

scopic manifestation is at the critical point essentially

based on a kind of abstraction from the original micro

level, with all but those micro level features preserved that

now determine the novel macroscopic observables. This is

also the point of drastic reduction of microscopic degrees

of freedom. The change in correlations among the micro-

scopic features at state transition can also be viewed as

change to a coarser state space topology with new neigh-

borhood relations among features, and thus associated with

novel physical manifestations. Concurrently, the micro-

scopic structure looses any characteristic length scale for

system specific variables: it becomes scale invariant, i.e.

fractal (Stanley 1999; Yeomans 1992/2002).

Recent observations of Chialvo et al. (2008) point to the

relevance of these considerations for brain processes:

applying the technique of Fox et al. (2005), voxel based

correlations of BOLD activity of different brain regions

were obtained in fMRI studies of humans (Baliki et al.

2008). These correlation maps were similar to those

obtained computationally with Ising models in critical state

transitions displaying long-range spin correlations. This

observation supports the notion that long range correlations

among neural groups may also obtain in the brain, as sign

of it being in a critical state.

For complex systems far from equilibrium, most of the

analytical and numerical methods of the ‘classical’(equi-

librium) theory remain useful, except for some restrictions:

relaxing the balance condition of conservation and the

absence of thermodynamic energy parameters. But lack of

analytical solutions requires that in most instances

numerical simulations must be used to identify a system’s

critical behavior. However, on the positive side, new pos-

sibilities arise in the form of state transitions to absorbing

(i.e. irreversible) states, and to novel spatial structures

which are influenced by the system’s history (Hinrichsen

2006; Luebeck 2004; Odor 2004).

One of the amazing features of state transitions is that

material systems of diverse physical properties at their

microscopic level fall on state transitions in but a small

number of classes with identical macroscopic properties,

thus forming Universality classes; a corollary is the prin-

ciple of multiple realizability, that is, a given system’s

macroscopic phenomenology may be shared by the

microscopic states of many physically different systems.

Universality and multiple realization designate that: (1)

some details of the system which would figure in a detailed

causal-mechanistic explanation of the system’s behavior,

are in the limit largely irrelevant for characterizing the

macroscopic phenomenology of interest; and (2) different

systems with vastly different ‘‘micro’’ details can exhibit

identical behavior at the macroscopic level. The methods to

elucidate both aspects are ‘‘coarse graining’’ (e.g., Schul-

man and Gaveau 2001) and the strategies of

Renormalization Group Theory (Wilson 1979): the latter

essentially, dimensionality reduction by successively

coarse graining while maintaining self-similarity. Renor-

malization theory is a ‘‘general framework for extracting

phenomenological relations among macroscopic observ-

ables from microscopic models that may not be precisely

definable ‘‘ (Goldenfeld et al. 1989). Thus, if what one is

interested in is the macroscopic phenomenology, then the

adoption of renormalization-like procedures and of

asymptotic arguments is the path to follow.

Examples of notable universality classes of far-from-

equilibrium systems are: Directed Percolation and the so-

called voter universality class. Coupled map lattice models for

spatiotemporal intermittency under an asymmetrical updating

regime belong to the universality class of directed percolation

(Rolf et al. 1998). Universal critical behavior is also reported

for two-dimensional coupled map lattices (Kuznetsov 1992;

Marcq et al. 1996; Just and Schmueser 2005). As a bridge to

self-organization, absorbing state transitions in directed Per-

colation can occur with some systems under appropriate

circumstances (Dickman et al. 1998).

As stated earlier, Topology and dynamics are inseparably

linked in the constitution of networks and reflected by their

universality class’s defining scaling relation (Albert and

Barabasi 2002; Dorogovtsev et al. 2000). One of the most

intensely studied processes taking place on networks is

Percolation (Stauffer and Aharony 1991/1994). Basically, a

percolation process consists of the evolution of patterns in

arrays of elements under a given dynamics. For reasons

stated earlier, models of this kind on small-world networks

are of particular interest (Newman and Watts 1999; Moore

and Newman 2000; Newman et al. 2002). In computational

models, the task consists in determining rules of transfor-

mation (i.e., a dynamics) that would generate certain types of

patterns (e.g. so called Giant Components, i.e. certain pat-

terns of connectivity within the network, as state transitions).

It is then possible to determine computationally certain

critical parameters, and compare with known Universality

classes of physical matter.

Recent empirical findings and computational results

suggest the neurobiological relevance of these consider-

ations: ‘avalanches’ of neuronal activity occur

spontaneously in superficial layers of cerebral cortex under a

variety of experimental conditions; the power law distribu-

tion of avalanche sizes suggest that the tissue samples are in a

dynamic state of criticality, possibly attributable to
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branching processes (Beggs and Plenz 2003, 2004; Hald-

eman and Beggs 2005); but other dynamic models such as

phase transitions in percolation are conceivable (Plenz and

Thiagarajan 2007). Percolation transitions were also

described by Breskin et al. (2006) in cultures of brain tissue

and acute cortical slices. Franovic and Milkovic (2007)

determined that spike packet propagation in form of synfire

chains (Gewaltig et al. 2001; Bienestock 1995) exhibit

critical behavior corresponding to percolation phase transi-

tions. Kozma et al. (2004, 2005) applied models of

percolation to explore the dynamics of neuropil.

Discussion and conclusions

The aim of this essay is to assemble evidence suggestive

for viewing the transition from neural processes of sensori-

motor cognition to those associated with consciousness in

the framework of critical brain state transitions. Brain

states of reactive sensory-motor cognition and those asso-

ciated with subjective awareness would differ as a result of

a state transition which, in the framework of the Modern

Critical Theory signifies fundamental differences in their

respective physical realizations, not deducible from one

another by continuous transformations. As a program of

research (in the sense of Lakatos 1978) the foregoing

framework would situate brains squarely into the domain

of the Physics of Condensed Matter, as alternative to the

conventional views of ‘information flow’ along neural

relay stations, and related views (Werner 2007b).

This point of view places Cognitive Neuroscience into an

entirely different framework of Scientific Reasoning which

rests on the basic outlook in contemporary physics that one

level of a system’s organization can be viewed as coarse

grained approximation of another level, each expressed on its

own intrinsic scale. In this view, reality is composed of a

hierarchy of scales: the intrinsic scale emerges at each level

from that of the next finer scale by ignoring some of the

(irrelevant) details of the latter (Laughlin 2005; Sokal and

Bricmont 2004). In actual practice, the approach consists of

delimiting the dominant from irrelevant parameters that

shape the system’s behavior, for the purposes of categorizing

universality classes: i.e. classes of systems which approach

asymptotically in the limit identical macroscopically

observable behavior despite diversity at the microscopic

level. As a corollary, what is of interest is the multiple

realizability of emergent new macroscopic phenomena

despite microscopic diversity (for details, see Batterman

2002). In this approach, the so called higher level description

is not an approximation of the fundamental (low level) the-

ory, but represents (qualitatively) new patterns of reality

(Primas 1998). Most of the successful applications of this

framework come from Thermodynamics and Statistical

Mechanics near critical state transitions, but the principle can

be illustrated as a generalization of Probability Theory: when

sets of multiple independent population samples are sub-

sumed under a Gaussian Distribution, then the parameters of

the distribution characterize a (kind of) Universality Class

(i.e. the ensemble), of which the individual sets of samples

are independent realizations.

The foregoing sections applied this conceptual stance to

the relation between brain states in four stages: (1) reviewing

the evidence that the dynamics of the brain is poised towards

critical stet transitions; (2) suggesting that critical state

transitions may entail the principle of a ‘‘backward sweep’’

such as envisaged by Lamme and associated for the visual

system, and/or involve the inclusion of interoceptive func-

tionality in the active brain state; (3) that at certain ‘tipping

points’ (Gladwell 2000), a brain state transition to a new

qualitatively new configuration would occur; (4) that brain

states before and after state transition differ in the respective

scales of their description, with the post-transition state in the

asymptotic limit being a coarse grained approximation of a

universality class: a class at which microscopic details

become largely inivisible, and where multiple realizability

and different laws obtain. In this view, the neural structure of

brains of adequate size belong to a Universality Class which

can on state transition exhibit at a macro level a neural

organization which can support the phenomenal attributes

associated with consciousness.

The state space framework of micro- and macro levels

implies inevitably an intersection of Complexity Science

with the perennial philosophical problem of Emergence

(Bedau 2002). Kim (1999) identified five main tenets of

‘‘the doctrine of Emergentism’’, singling out as defining

features the coming-together of lower-level entities in new

structural configurations; the origin of ‘‘higher level’’

properties, their unpredictability and irreducibility and,

finally, the causal efficacy of emergent properties of their

own. Bedau (2002) distinguishes strong and weak emer-

gence: the former having irreducible causal powers—a

dramatic form of ontological novelty—the latter being

consistent with and functioning via micro level laws.

However, in light of the foregoing discussion of the sin-

gular nature of the limiting asymptotic relation between the

finer and the coarser level, it appears that the singular limits

are in fact the interface where new objects, properties and

laws originate. Taking the view of reality as a hierarchy of

scales as basis, objects and properties in reality appear at

each level in the hierarchy with their own organizational

laws and structure, and with the propensity to undergo

sharp state transitions (Laughlin 2005). States are cases of

emergence, based on levels of organization in Nature

having walls of scales: a set of rules can operate at one

level and, yet, be largely invisible (and, thus, irrelevant) at

another.
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What, if anything, can be learned from applying this line

of thought to the neurology of Cognition and Conscious-

ness? The intent all along was to adduce plausibility to

viewing the neurology of episodes in consciousness as

global brain state space transitions: the emergence, under

certain circumstances, of a new organizational structure

with novel qualitative phenomenology, distinct from the

level of the neurology of cognition. At the latter level, the

state transition would consist of including additional neu-

ronal centers in the zone of active neural processing (see

e.g., Baars et al. 2003), or redirecting the processing flow

(Lamme 2006b). Could such ‘backward flow’ be compa-

rable to the activation of V1 in the imagination of visual

scenes (Kosslyn et al. 1997, 2001; Ganis et al. 2004;

Mechelli et al. 2004)?; and could such configuration

changes be considered as a kind of ‘downward causation’?

The general outline of this proposal entails practical

consequences for the conduct of research: in the first place, to

seek evidence in the temporal evolution of magnetoen-

cephalographic signals from human brain that could reflect

the accretion of Giant Components, especially those which

would also encompass brain regions which signal intero-

ceptive physiological conditions of the body. An illustrative

example of the type of study design that may be informative

is provided by the work of Braeutigam et al. (2001, 2004) on

identifying stages in real life decision processes. Deahaene

et al. (2006) list several methodological refinements which

would also yield illuminating insights.

The second consequence follows, in principle, the rec-

ommendation of Atkinson et al. (2000) to investigate

(loosely stated) ‘computational correlates of conscious-

ness’. Numerous specific questions arise the answers to

which are beyond one’s intuitive grasp: take for instance

the observations of Basset, Achard, Salvador and other

investigators cited earlier, indicating the presence of mul-

tiple functional small-world networks, each carrying

oscillatory activity of different frequencies. What is the

space of potential dynamic evolutions such a highly dif-

ferentiated system can undergo? What are their ‘‘tipping

points’’ (Gladwell 2000) for state space transitions and

Giant Component formation? What is the space of potential

reconfigurations that such a systems can undergo under

perturbation? How could reversal of activity flow in net-

works come about? Under what conditions sustain such

systems stability? What forms of interactions may obtain

among networks conveying different oscillatory frequen-

cies? What if different active networks share some nodes?

Being poised towards instability, how would state transi-

tion in one network affect others? Or are the frequency-

specific networks functionally segregated to the extent that

one may view them as chords in a string instrument?

Surely, to come to appreciate the space of possibilities in

brain dynamics, these kinds of questions need exploring in

their own right. In addition, one may also expect that

simulations probing these kinds of questions will provide

useful pointers for interpreting imaging data and, perhaps,

also raise probing questions for empirical analysis.

Whatever the specific question under study, it amounts in

the interpretive framework of this essay to exploring the

space of brain-like non-equilibrium dynamical systems on

lattices, identify universality classes, and establish the con-

ditions for state space transitions. This approach is guided by

the ground rules of Renormalization and asymptotic argu-

ments in the study of the phenomenology of macrostates of

complex dynamic systems, where microscopic details

become to some extent invisible and/or irrelevant.

Bear in mind that the main thrust of this essay is the notion

of emergence of new patterns of reality in the evolution of

complex hierarchical multilevel dynamic systems that can-

not be deduced from their lower level configurations, but

can, at best, be approximated by equivalence classes of

microscopic models. It is then a pragmatic issue to select

from among candidate models those with best predictive

value for macrosystem performance, and in closest accord

with features and constraints imposed by the system’s known

micro- and mesoscopic organization.

Summary

The relation between neural processes thought to be asso-

ciated with cognition and consciousness is discussed in

terms of the theory and concepts of Critical State Transi-

tions. Cognition and consciousness are viewed as a lower

and a higher level, respectively, in the brain’s multilevel

hierarchic neural organization. Empirically established

landmarks of brain dynamics, network configurations and

their role for conveying oscillatory activity of certain fre-

quencies bands are reviewed to propose that the relation

between neural processes of sensory-motor cognition and

those of events in consciousness are of the same category

as is characterized by state transitions in non-equilibrium

physical systems. The heuristic merits and approaches for

empirical validation of this view by suitably designed brain

imaging studies, and for computational simulations of the

proposed principle are discussed.
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