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Abstract According to the experimental result of signal

transmission and neuronal energetic demands being tightly

coupled to information coding in the cerebral cortex, we

present a brand new scientific theory that offers an unique

mechanism for brain information processing. We demon-

strate that the neural coding produced by the activity of the

brain is well described by our theory of energy coding. Due

to the energy coding model’s ability to reveal mechanisms

of brain information processing based upon known bio-

physical properties, we can not only reproduce various

experimental results of neuro-electrophysiology, but also

quantitatively explain the recent experimental results from

neuroscientists at Yale University by means of the princi-

ple of energy coding. Due to the theory of energy coding to

bridge the gap between functional connections within a

biological neural network and energetic consumption, we

estimate that the theory has very important consequences

for quantitative research of cognitive function.

Introduction

Due to the limitations in current biophysical models of

neural coding, research into the mechanisms of neural

information processing remain very difficult (Quiroga

et al. 2005; Stein et al. 2005; Wang and Zhang 2003,

2005; Wang and Jiao 2006; Jiao and Wang 2005).

Because of these limitations, currently, the principles of

neural information processing underlying cognitive

processes within the brain are not completely understood

(Arbib 2002; Wilson and Keil 1999; Freeman 2000;

Crotty and Levy 2005; Jiao and Wang 2006). William B

Levy and Robert A. Baxter studied the relationship

between neural coding and energy consumption, and gave

a description of the average energy consumption required

for a given level of neural network activity according to

Shannon’s principle (Levy and Baxter 1996; Levy and

Baxter 2002). Here the role of energy efficiency was

detected in the process of neural coding (Levy and Baxter

1996; Levy and Baxter 2002). Recently, Simon B.

Laughlin and Terrence J. Sejnowski have posited that

networks of neurons increase efficiency by distributing

signals sparsely in space and time (Laughlin and

Sejnowski 2003). It was already recognized that sparse

coding improves energy efficiency. However, the func-

tional relationship between information coding and energy

consumption for neurons is not known. Does the energy-

efficient cortical neuron select signals from synapses

that are most informative? This question draws energy

efficiency into one of the most active and important areas

of neuroscience: synaptic plasticity (Laughlin and

Sejnowski 2003). The research in this paper is relevant to

this kind of question and we will focus upon this question

in a series of papers to follow (Wang and Zhang 2006).

Here we show that principle of the energy coding can

reveal intrinsic property of brain information processing by

way of a biophysically plausible model. We bring a new

perspective upon global brain information processing. We

will demonstrate that this perspective provides us a great

comprehension of the role of information coding in neural

networks.
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Biophysical model

Analysis of both neuro-electrophysiological experimental

data and the biophysical properties of neurons suggest the

following equivalent electric circuit model or the bio-

physical model that reflects the essential electronic prop-

erties of neuronal activity as in Fig. 1.

This physical model describes the interaction between

a single neuron and all other neurons connected to the

single neuron. Interaction and mutual coupling among

neurons is achieved through the total electrical current

formed by the input of N neurons to the mth neuron to

generate the sub-threshold current level. The mth neuron

in the coupling relationship under the state of firing

action potential does not react to external stimulation,

hence, the stimulation-induced electric current Im be-

comes a fixed constant (i.e. constant-current source).

Similar to the model in reference (John et al. 2000), for

the separation of positive and negative ions inside and

outside of the cellular membrane we use Cm to denote

this membranous capacitance. For the voltage formed by

charges of positive and negative ions at the cellular

membrane we use U0m to express this corresponding

potential difference. In the resting membrane state the

intensity of the magnetic field produced by the motion of

the ionic charges upon neuronal activity is very weak,

therefore, it can be neglected. However, the magnetic

field formed by the violent motion of ionic charges

during action potential is much stronger than during the

resting state, and can not be ignored. This is because the

influx of sodium ions and efflux of potassium ions

achieve extremely high rates. Motion charges formed in

this case have to produce the self-induction phenomenon.

Hence, we use the inductance Lm to denote the intensity

of the magnetic field is not only important but also

reasonable in a physical sense. And the physical phe-

nomenon of membrane current depending on membrane

potential has been confirmed by many experiments

(Arbib 2002; Freeman 2000). Therefore taking into

account the effect of inductance in electricity during the

neuronal action potential follows naturally. The site of

the inductance is designed to parallel the membranous

capacitance as in Fig. 1. Although this is a hypothesis,

the computational results obtained from the biophysical

model in this paper show that introduction of inductance

into the model agrees well with the experimental results

of neuro-electrophysiology.

The neuronal action potential requires energy for

activity, and voltage source U denotes the total energy

supplied by both the sodium-potassium pump, through

the production of charge separation and thermal noise

energy generated by water molecules having undergone

ATP hydrolysis (Wang et al. 2003). In addition, that a

neuron can maintain its resting membrane potential

shows that there exists a current source E of energy

within the cell body. The electric resistance r0m models

the loss of energy, and the electric resistance

r1m + r2m + r3m as in Fig. 1, is equivalent to the elec-

trical resistance in reference (John et al. 2000). Neuro-

physiologists pay great attention to these sites in

neuronal activities because the highest energetic demand

in the brain is centralized to sites of synaptic input

(Schwartz et al. 1979; Mata et al. 1980). Therefore the

internal energy source E for the mth neuron and the site

of total temporal-spatial input from N neurons to the

mth neuron is designed to different points in the phys-

ical model as in Fig. 1, i.e. the site of internal energy

generation and the site of total synaptic current have

associated resistances r1m and r3m, respectively, and the

electric resistance between r1m and r3m is denoted by

r2m. The physical quantities can be observed as the

membrane potential Uim and the membrane electric

current I0m in the physical model, as in Fig. 1. The

work of investigators at Yale University indicates that

most of the energy used in brain is for the propagation

of the action potential and for the restoring postsynaptic

ion fluxes after the receptors have been stimulated by

neurotransmitters (Raichle and Gusnard 2002). The

symbol Im denotes the total synaptic current formed

after temporal-spatial integration of numerous synaptic

inputs on the mth neuron—this interaction among neu-

rons in the cerebral cortex is orderable and obeys a self-

organizing rule (Haken 1996). Hence, the stimulation

induced free motion of electric currents does not take

arbitrary values. This is because the dynamic mechanism

of the ionic channel can greatly restrict the form of the

electric current Im (Koch and Segev 1998). According to

this point of view, the numerical computational results

given in the later section of the paper confirmed that the

concrete form of energy consumption for neurons is just

the Hamiltonian energy function presented below.
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Fig. 1 Physical model of mth neuron under case of coupling
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Circuit equations

We obtain the following equations in Fig. 1

Uim ¼ Cmr3m
_U0m þ U0m ð1Þ

I2m ¼ Cm
_U0m ð2Þ

Uim ¼ Lm
_I0m þ r1mI1m þ r2mðIm � I2mÞ ð3Þ

I0m ¼ I1m þ I2m � Im ð4Þ

U ¼ r0mI0m þ r1mI1m þ Lm
_I1m ð5Þ

Combination Eqs. (1)–(5) yields the model equations:

Lm
_I1m þ r1mI1m ¼ Cmðr2m þ r3mÞ _U0m þ U0m � r2mIm ð6Þ

Im ¼
1

r0m
ðCmr0m

_U0m � U þ ðr0m þ r1mÞI1m þ Lm
_I1mÞ ð7Þ

At sub-threshold state the intensity of the magnetic field

produced by the motion of the ionic charges upon neuronal

activity is very weak, therefore, it can be ignored, i.e.

Lm ¼ 0 ð8Þ

The electric current I1m is eliminated from (6, 7) we

obtain

CmR2
_U0m þ ðr0m þ r1mÞU0m ¼ R1Im þ r1mU ð9Þ

Where R1 ¼ r0mr1m þ r0mr2m þ r1mr2m ð10Þ

R2 ¼ r0mr1m þ r0mr2m þ r0mr3m þ r1mr2m þ r1mr3m ð11Þ

The electric current _I1m is eliminated from (6, 7) we

obtain

I1m ¼
1

R1

ðCmr0mr3m
_U0m þ r0mU0m þ r2mUÞ ð12Þ

At supra-threshold level, we set

Im ¼ i0 ð13Þ

The mth neuron in the coupling relationship under the

state of firing action potential does not react to external

stimulation, hence, stimulation’s the electric current Im

becomes a fixed constant i0 (i.e. constant-current source).

The numerical analysis of the biophysical model

and comparison of neuro-electrophysiological results

(1) The membrane potential at sub-threshold stimulation

The experimental condition is the following

Im ¼ io ð14Þ

One obtains the following result from (9)

U0m ¼ U0mð1Þ þ U0mð0Þ � U0mð1Þð Þe�t
s ð15Þ

Uim ¼ U0mð1Þ þ 1� Cmr3m

s

� �
U0mð0Þ � U0mð1Þð Þe�t

s

ð16Þ

where

s ¼ CmR2

r0m þ r1m
ð17Þ

U0mð1Þ ¼
R1i0 þ r1mU

r0m þ r1m
ð18Þ

Using Eqs. (14, 16), one obtains the following numerical

results in Fig. 2. i0 ¼ 0:954� 10�5A; r0m ¼ 0:004X;
r1m¼5X; r2m¼88X; r3m ¼ 2:2X;U0mð0Þ ¼�65� 10�3 V.

The above result proved that membrane potential at

sub-threshold stimulation agrees astonishingly with result

given in Figure 7.3 in reference (John et al. 2000). This

biophysical model can reproduce all kind of mem-

brane potentials given in Figure 3 in reference (John et al.

2000) as long as parameters are choosen. Therefore

the biophysical model can be used to describe the basic

Fig. 2 Plot of the subthreshold membrane potential
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characteristic of neuron’s electric activity under condition

of various different stimulations. In order to demonstrate

the validity of the biophysical model, an example is given

again in the below.

(2) The action current at supra-threshold level

The experimental condition is the following

Uim ¼ AuðtÞ þ U0mð0Þ ð19Þ

Where u(t) is a step function.

Substituting U0m into (2) one obtains

I2m ¼ Cm
_U0m ¼

A

r3m
e
� t

Cmr3m ð20Þ

Using above conditions, one obtains solution from

Eq. (6) as follows

I1m ¼ I1mð0Þe�
r1mt

Lm þ Aþ U0mð0Þ � r2mi0
r1m

1� e�
r1mt

Lm

� �
þ r2mA

Lmr3m

e
� t

Cmr3m � e�
r1mt

Lm

r1m

Lm
� 1

Cmr3m

ð21Þ

Inserting (20, 21) into (4) yields the action current

I0m¼
A�ðr1mþr2mÞi0þU0mð0Þ

r1m
þ A

r3m
1�

r2m

Lm

1
Cmr3m
�r1m

Lm

 !
e
� t

Cmr3m

� AþU0mð0Þ�r2mi0

r1m
� Ar2m

Lmr3m
1

Cmr3m
�r1m

Lm

� ��I1mð0Þ

0
@

1
Ae�

r1mt

Lm

ð22Þ

Using Eqs. (19, 22), one obtains the following

numerical results in Fig. 3. Lm ¼ 10:9� 10�3 H;
Cm ¼ 8� 10�6 F; r1m ¼ 6:5X; r2m ¼ 52:8524 X; r3m ¼
12:5167X; i0¼�2:0639� 10�4A;U0mð0Þ¼�69�10�3V;

I1mð0Þ ¼ �3:5 mA:

The above result demonstrates that the biophysical

model given in Fig. 1 can reproduce a depolarizing mem-

brane current. This membrane current is completely in

accordance with figure 6.3 in reference [John et al. 2000].

The numerical simulation of EPSP and IPSP

We know that output of the model is neuronal membrane

current from Fig. 1. The symbol Im denotes the total syn-

aptic current formed after temporal-spatial integration of

numerous synaptic inputs on the mth neuron. Hence, output

of the membrane current obtained from the biophysical

model is actually a result of interacting coupled neurons,

and energy method is used from starting dynamic theory to

discuss relationship between input and output of among N

neurons to the mth neuron. According to the biophysical

model in Fig. 1, the following result can be read at sub-

threshold level

Lm ¼ 0

The Im is result of stimulation of N neurons to the mth

neuron. This stimulation will be strictly mastered under

action of mechanism of neurodynamics, so it does not take

arbitrary values. However, the membrane current seems to

be able to take arbitrary values in the biophysical model,

but the microscopic mechanism of neuron shows that dy-

namic rule of the convergence of positive and negative ions

inside and outside of the cellular membrane can restrain

membrane current Im’s motion form. A reasonable

assumption is that choose U0m to be the generalized dis-

placement, and the power provided by U and Im to the

system is a Lagrange function or Hamiltonian function.

Accordingly, the form of Im is dominated by Hamiltonian

motion equation.

One obtains the power of the membranous capacitance

from Fig. 1

w1m ¼ CmU0m
_U0m ð23Þ

and the power of resistances

w2m ¼ C2
mr3m

_U2
0m þ r1mI2

1m þ r2mðIm � Cm
_U0mÞ2

þ r0mðI1m � Im þ Cm
_U0mÞ2

Lagrange function is structured according to Fig. 1 as

follows

LðU0m; _U0mÞ ¼ w1m þ w2m ð24Þ

Fig. 3 Plot of the depolarizing membrane electric current at

supra-threshold stimulation
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Inserting (9–12) into (23–25) yields

LðU0m; _U0mÞ ¼ a1
_U2

0m þ a2
_U0m þ a3U0m

_U0m

þ a4U2
0m þ a5U0m þ a6

ð25Þ

where

a1 ¼ C2
mr3m 1þ r3mðr0m þ r1mÞ

R1

� �
ð26Þ

a2 ¼ �
2Cmr1mr3m

R1

U ð27Þ

a3 ¼ Cm 1þ 2r3mðr0m þ r1mÞ
R1

� �
ð28Þ

a4 ¼
r0m þ r1m

R1

ð29Þ

a5 ¼ �
2r1mU

R1

ð30Þ

a6 ¼
r1m þ r2m

R1

U2 ð31Þ

We define that the generalized displacement is denoted as

qm ¼ U0m ð32Þ

and the generalized momentum is denoted as

pm ¼ 2a1
_U0m þ a2 þ a3U0m ð33Þ

According to the above generalized displacement and

generalized momentum, Hamiltonian energy function from

the power function of the electric resistance and the

capacitance can be easily obtained as follows:

Hðpm; qmÞ ¼
ðpm � a2 � a3qmÞ2

4a1

� a4q2
m þ a5qm þ a6

� �
ð34Þ

then motion equation which corresponds to the above

Hamiltonian energy function is given by

_q ¼ pm�a2�a3qm

2a1

_pm ¼ 2a4qm þ a5 þ a3

2a1
ðpm � a2 � a3qmÞ

�
ð35Þ

Let

U ¼ �E þ Ae�ht ð36Þ

Combination of circuit equation, as in Fig. 1, and the

computational results of electronic current stimulation

allow us to obtain an exact solution for the membrane

potential from motion Eq. (35).

U0m ¼ �
r1mE

r0m þ r1m
þ Ar1mð1� Cmr3mhÞ

C2
mr3mR2ðk2 � h2Þ

e�ht

þ r1m

2ðr0m þ r1mÞ
E � Akð1� Cmr3mhÞ

k� h

�

þ 2k2ðr0m þ r1mÞ
r1m

�
e�kt ð37Þ

Where k ¼
ffiffiffiffiffi
a4

a1

r
ð38Þ

h ¼ k
A� E � 2k1ðr0mþr1mÞ

r1m

Cmr3mkAþ E þ 2k1ðr0mþr1mÞ
r1m

ð39Þ

Substituting (37–39) into (1) we obtain the following

membrane potential

Uim ¼ � r1mE
r0mþr1m

þ Ar1mð1�Cmr3mhÞ2

C2
mr3mR2ðk2�h2Þ e�ht

þ r1mð1�Cmr3mkÞ
2ðr0mþr1mÞ E � Akð1�Cmr3mhÞ

k�h

�

þ 2k2ðr0mþr1mÞ
r1m

�
e�kt ð40Þ

Substituting (36, 37) into (9), we obtain stimulation

current as follows:

Im ¼
I1e�ht þ I2e�kt

R1

ð41Þ

where

I1 ¼ Ar1m
ðr0mþ r1m �CmR2hÞð1�Cmr3mhÞ

C2
mr3mR2ðk2� h2Þ

� 1

 !
ð42Þ

I2 ¼
r1mðr0m þ r1m � CmR2kÞ

2ðr0m þ r1mÞ

� E � Akð1� Cmr3mhÞ
k� h

þ 2k2ðr0m þ r1mÞ
r1m

� � ð43Þ

The exact solution describes the excitatory postsynaptic

potentials (EPSP) and the inhibitory postsynaptic

potentials (IPSP) in Fig. 4. Cm ¼ 4:2� 10�6 F; r0m ¼
0:004 ¼ X; r1m ¼ 5 X; r2m ¼ 88 X; r3m ¼ 2:2 X;U0mð0Þ ¼
�69 �10�3 V;�71� 10�3 V; _U0mð0Þ ¼ �50 V/t.
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From the above numerical results we can clearly show

that the Hamiltonian energy function can effectively

reproduce both EPSP and IPSP obtained by means of

experimental methods. In addition, we have proved that the

biophysical model given in Fig. 1 is both very effective

and accurate in Figs. 2 and 3.

The numerical simulation of action potential

at supra-threshold level

The membrane potential Uim is achieved to threshold value

due to Im = i0 under situation of supra-threshold stimulation

and the action potential is produced. After the action po-

tential is achieved to peak value, the membrane potential

Uim is dominated by rule of sub-threshold activities.

Therefore, one obtains the powers of the membranous

capacitance and the inductance from Fig. 1 as follows:

w1m ¼ CmU0m
_U0m þ LmI1m

_I1m ð44Þ

And power of resistances is the following

w2m ¼r0mðI1m þ Cm
_U0m � i0Þ2 þ r1mI2

1m

þ r2mði0 � Cm
_U0mÞ2 þ C2

mr3m
_U2

0m

ð45Þ

One obtains the result from (6)

I1m ¼ ke�at � r2mi0

r1m
þ Cmðr2m þ r3mÞU0m

Lm

þ e�at

Z 1� Cmr1mðr2mþr3mÞ
Lm

� �
U0m

Lm
eatdt

ð46Þ

Where a ¼ r1m

Lm
ð47Þ

Inserting the following Eq. (48) into integral term in

Eq. (46)

U0m ¼ k0 þ k1ep1t þ k2ep2t ð48Þ

Where k0, k1, k2, p1, p2 are adjustable parameters.

Combining (46) and (48) one obtains

I1m ¼ ke�at � r2mi0
r1m
þ Cmðr2m þ r3mÞU0m

Lm
þ gðtÞ ð49Þ

where

gðtÞ ¼ g0 þ g1ep1t þ g2ep2t ð50Þ

Fig. 4 EPSP and IPSP described by Hamiltonian energetic function
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g0 ¼
1

r1m
1� Cmr1mðr2m þ r3mÞ

Lm

� �
k0 ð51Þ

g1 ¼
1

Lm
1� Cmr1mðr2m þ r3mÞ

Lm

� �
k1

p1 þ a
ð52Þ

g2 ¼
1

Lm
1� Cmr1mðr2m þ r3mÞ

Lm

� �
k2

p2 þ a
ð53Þ

Lagrange function is structured as follows

LðU0m; _U0mÞ ¼ w1m þ w2m ð54Þ

Substituting (6), (46–53) into (54) yields the following

Lagrange function

LðU0m; _U0mÞ ¼ d1
_U2

0m þ d2
_U0m þ d3U0m

_U0m

þ d4U2
0m þ d5U0m þ d6

ð55Þ

where

d1 ¼ C2
mðr0m þ r2m þ r3mÞ ð56Þ

d2 ¼ d21 þ d22e�at þ d23ep1t þ d24ep2t ð57Þ

d21 ¼ �Cmi0 2r0m þ 2r2m þ r2mð2r0mþr2mþr3mÞ
r1m

� �

þCm 2r0m þ r2m þ r3mð þ 2r0mðr2mþr3mÞ
Lm

�
g0

ð58Þ

The symbols d1, d2, d3, d4, d5, d6 are adjustable

parameters of induction, electric resistance, and capaci-

tance in the following:.

d22 ¼ kCmð2r0m þ r2m þ r3mÞ ð59Þ

d23 ¼ Cm 2r0m þ r2m þ r3m þ
2r0mðr2m þ r3mÞ

Lm

� �
g1 ð60Þ

d24 ¼ Cm 2r0m þ r2m þ r3m þ
2r0mðr2m þ r3mÞ

Lm

� �
g2 ð61Þ

d3 ¼
Cm

Lm
Lm þ Cmðr2m þ r3mÞð2r0m þ r2m þ r3mÞð Þ ð62Þ

d4 ¼
cm

Lm
1þ cmr0mðr2m þ r3mÞ

Lm

� �
ðr2m þ r3mÞ ð63Þ

d5 ¼ d51 þ d52e�at þ d53ep1t þ d54ep2t ð64Þ

d51¼�i0
r2m

r1m
þcmðr2mþr3mÞð2r0mr1mþ2r0mr2mþr1mr2mÞ

Lmr1m

� �

þg0

ð65Þ

d52 ¼ k 1þ 2Cmr0mðr2m þ r3mÞ
Lm

� �
ð66Þ

d53 ¼ g1 ð67Þ

d54 ¼ g2 ð68Þ

d6 ¼ i2
0 r0m þ r2m þ r2mð2r0mþr2mÞ

r1m
þ r0mr2

2m

r2
1m

� �
� 2r0m þ r2m þ 2r0mr2m

r1m

� �
i0ke�at þ r0mk2e�2at

þ r2
0mg2ðtÞ � 2r0m þ r2m þ 2r0mr2m

r1m

� �
i0gðtÞ

þ 2r0mkgðtÞe�at

ð69Þ

We define that the generalized displacement is denoted as

qm ¼ U0m ð70Þ

and the generalized momentum is denoted as

pm ¼ 2d1
_U0m þ d2 þ d3U0m ð71Þ

We obtain the following Hamiltonian energy function

according to the power function of induction electric

resistance and capacitance in Fig. 1.

Hðpm; qmÞ ¼
ðpm � d2 � d3qmÞ2

4d1

� ðd4q2
m þ d5qm þ d6Þ

ð72Þ

n, electric resistance and capacitance in Fig. 1. With the

motion equation which corresponds to the above

Hamiltonian energy function given by

_qm ¼ pm�d2�d3qm

2d1

_pm ¼ 2d4qm þ d5 þ d3

2d1
ðpm � d2 � d3qmÞ

ð73Þ

According to Eq. (74) we obtain

€qm � k2qm ¼ d5�d02
2d1

k ¼
ffiffiffiffi
d4

d1

q ð74Þ
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According to the circuit equations in the physical model,

we can obtain an exact solution for the action potential

from the Hamiltonian motion Eq. (74),

U0m ¼ � d51

2d4
þ 1

2d1

1
k�a

d51

k þ
d53�p1d23

k�p1
þ d54�p2d24

k�p2
þ 4kd1l1

� �
e�at

h
� d53�p1d23

k2�p2
1

ep1t þ� d54�p2d24

k2�p2
2

ep2t
i

� 1
2d1ðk�aÞ ð

ad51

k2 þ ðp1þaÞðd53�p1d23Þ
ðk2�p2

1
Þ

þ ðp2þaÞðd54�p2d24Þ
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Where l1 ¼
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� �
e�at

h
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1

ep1t � ð1þ Cmr3mp2Þ
d54�p2d24

k2�p2
2

ep2t
i
� 1�Cmr3mk

2d1ðk�aÞ ð
ad51
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ðk2�p2

1
Þ

þ ðp2þaÞðd54�p2d24Þ
ðk2�p2

2
Þ þ 2d1ðl1ðkþ aÞ � l2ðk� aÞÞÞe�kt

ð78Þ

and the numerical simulation derived from Eq. (79) is

shown in Fig. 5. Lm ¼ 3:1� 10�3 H;Cm ¼ 2:2� 10�6 F;

r0m ¼ 0:004 X; r1m ¼ 5 X; r2m ¼ 88 X; r3m ¼ 2:2 X; i0 ¼
�0:78� 10�3 A; U0mð0Þ ¼ �67� 10�3 V; _U0mð0Þ ¼
14463 V/t.

The numerical result clearly shows that the energy

function can elegantly reproduce the action potential taken

from neuro-electrophysiological data. In other words, the

result in Fig. 5 agrees with the numerical computational

result obtained by means of the Hodgkin–Huxley equation.

The difference lies in the fact that function used here

to produce the action potential is different from the

Hodgkin–Huxley equation. The difference is that motion

Eq. (4) is linear, and the Hodgkin–Huxley equation is

nonlinear. This simplification of the biophysical model of

the action potential is significant because it models more

complex neural network modeling formerly, limited by the

nonlinear in the H–H model, possible. For this reason, the

idea of energy coding can provide a brand new research

method for understanding mechanisms of neural informa-

tion processing, as well as a scientific description of the

quantitative relationship between functional connections

within a biological neural network and energy consumption.

According to the results mentioned above, the main

conclusions are the following:

(1) We found that the Hamiltonian function of energy

consumption may be derived from a biophysical

model of the electrical properties of the neuron. The

computational results show that EPSP, IPSP and

action potential obtained by numerical simulation

agree with the experimental results of neuro-electro-

physiology. Note that value of the membranous

capacitance Cm and values of the electric resistance

r1m, r2m and r3m in Figs. 2 and 3 are the same,

respectively.

(2) We emphasize that the results of our numerical

simulation based upon the exact solution for the

membrane potential expressed by the Hamiltonian

energy function is the same as the result of numerical

computation of the Hodgkin–Huxley equations. This

discovery reveals an important phenomenon, i.e.

although the Hodgkin–Huxley equation is nonlinear

in nature, the linear element in the equation is actually

the main function.

(3) Another important consequence of our research re-

sults is that we quantitatively accessed the qualitative

relationship between the energetic consumption

associated with neural activities and neural informa-

tion processing found by means of (BOLD) fMRI

(blood oxygen level-dependent functional magnetic

resonance imaging), as observed by neuroscientists at

Yale University (Raichle and Gusnard 2002; Hyder

et al. 2002; Smith et al. 2002).

(4) The Hodgkin–Huxley equation and signal transmis-

sion with energetic coupling can be unified in the

Hamiltonian energy function by means of the energy

method presented in this paper.

Fig. 5 Action potential described by Hamiltonian energetic function
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According to the results mentioned above, we discovered

that a possible dynamic mechanism of brain information

processing is just a method of the energy coding. Due to the

energy coding model’s ability to describe mechanisms of

brain information processing in biophysical terms, this idea

and method can be applied to future research of information

encoding in neural ensembles as well as cognitive func-

tioning. In subsequent work many quantitative neural mod-

els and analytic results will be given by means of principle of

energy coding. For example, using the principle of energetic

superposition, we have obtained an evolution of the energy

coding principle by observing neuronal ensembles as we

varied the intensity of external stimulation continuously,

which results in subsets of neurons firing action potentials at

supra-threshold and others simultaneously perform activities

at sub-threshold level in neural ensembles (Wang and Zhang

2006). It should be pointed out that the main difficulty and

defect of phase encoding is that a lot of useful neural infor-

mation will be lost for a population of low-dimension non-

linear mutually coupled neurons (Wang 2003; Wang et al.

2006), but in the frame of energy coding we can use the

principle of energetic superposition for high-dimension

nonlinear mutual coupled dynamic system (Zhu 2003). An

advantage of the energy principle is that this loss of infor-

mation does not occur for the dynamic system. Frequency

coding and the energy coding also share a corresponding

relationship. This is because the energy coding can be used to

describe the intensity of frequency coding; however,

frequency coding is only an interpretation of experimental

results (Purushothman and Bradley 2005), and energy

coding can describe a rule for neural information processing

in terms of a biophysically reasonable model. By means of

the principle of the energy coding, we can understand how

some neurons to fire action potentials at supra-threshold and

simultaneously other neurons perform activities at sub-

threshold in neural ensembles. For each mode of activity the

members continuously change in a stochastic dynamic way,

so that this kind of neural model constructed with the energy

principle can completely describe an evolutionary process of

neural coding (Wang and Zhang 2006). We are going to

further study the effects of distribution functions of the en-

ergy coding model on neuronal populations in temporal and

spatial variation states. These distribution functions can ex-

press a direct relationship between the functional connection

within biological neural networks and energy consumption.

Hence, these distribution functions possess very important

consequences by providing a sound biophysical framework

for metabolic studies of neural activity, fMRI and PET

(Mayhew 2003; Taylor 2003). We are aware of no other

theory that provides such a theoretical basis for these studies.
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