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Abstract The rodent hippocampus has been thought

to represent the spatial environment as a cognitive

map. In the classical theory, the cognitive map has

been explained as a consequence of the fact that dif-

ferent spatial regions are assigned to different cell

populations in the framework of rate coding. Recently,

the relation between place cell firing and local field

oscillation theta in terms of theta phase precession was

experimentally discovered and suggested as a temporal

coding mechanism leading to memory formation of

behavioral sequences accompanied with asymmetric

Hebbian plasticity. The cognitive map theory is

apparently outside of the sequence memory view.

Therefore, theoretical analysis is necessary to consider

the biological neural dynamics for the sequence

encoding of the memory of behavioral sequences,

providing the cognitive map formation. In this article,

we summarize the theoretical neural dynamics of the

real-time sequence encoding by theta phase precession,

called theta phase coding, and review a series of the-

oretical models with the theta phase coding that we

previously reported. With respect to memory encoding

functions, instantaneous memory formation of one-

time experience was first demonstrated, and then the

ability of integration of memories of behavioral

sequences into a network of the cognitive map was

shown. In terms of memory retrieval functions, theta

phase coding enables the hippocampus to represent the

spatial location in the current behavioral context even

with ambiguous sensory input when multiple sequences

were coded. Finally, for utilization, retrieved temporal

sequences in the hippocampus can be available for

action selection, through the process of reverting theta

rhythm-dependent activities to information in the

behavioral time scale. This theoretical approach allows

us to investigate how the behavioral sequences are

encoded, updated, retrieved and used in the hippo-

campus, as the real-time interaction with the external

environment. It may indeed be the bridge to the

episodic memory function in human hippocampus.

Keywords Hippocampus � Place cell � Theta rhythm �
Theta phase precession � Asymmetric Hebbian

plasticity � Memory-guided behavior

Introduction

The concept of the cognitive map was initially pro-

posed as a global representation of the environmental

space by Tolman (1948). It is based on his evidence

that rats are endowed with map-like representations of

their environments which they use to solve spatial

tasks, an opposing theory to the stimulus-response

paradigm. In freely moving rats, O’Keefe and Dost-

rovsky (1971) discovered so-called place cells in the

hippocampus, which fire in correlation with the ani-

mal’s location in space. Thus, the hippocampus has

been thought to maintain the cognitive map. O’Keefe

and Nadel (1978) proposed the cognitive map theory

which posits that the population activity of place cells

represents where the animal is in the form of a map.

According to this theory, not only is the firing of
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different cells associated with different environmental

places, but the spatial relationship between places is

also encoded by whole sets of cells (Fig. 1). For the last

several decades, the major stream of hippocampal

studies was directed towards the elucidation of hippo-

campal cell activities which are dependent on spatial

location and the characteristics of these activities.

The following experimental observations of hippo-

campal pyramidal cells in behavior have confirmed the

fact that the hippocampus is critical in spatial learning

and memory; however, the detail learning mechanism

is still unclear. In experimental studies of the synaptic

plasticity, a temporal asymmetry in the time window of

the synaptic change has been reported in the hippo-

campal circuit (Levy and Steward 1983; Larson and

Lynch 1989; Fitzsimonds et al. 1997; Bi and Poo 1998).

This suggests that neurons are connected asymmetri-

cally rather than by symmetrical connections, which

are formed by the conventional Hebbian plasticity with

simultaneous firing. Theoretically the formation of the

cognitive map as a network of place cells is considered

to form by the conventional Hebbian rule, while the

experimental evidence of the asymmetric time window

seems to be contradictory to the memory function of

the cognitive map.

Eichenbaum (Eichenbaum et al. 1999; Eichenbaum

2001) has claimed that the role of hippocampal mem-

ory is not restricted to spatial processing and empha-

sized that the hippocampus predominantly represents

sequences of events that compose episodic memories,

even in animals. Episodic memory was initially defined

in human clinical studies as the ability to remember

specific personal experiences and is an essential func-

tion maintained by the human hippocampus (Tulving

1972). Episodic memory in animals can be defined as

neural responses that correlate past events and

behaviors, as is observed in experimental studies of the

rodent hippocampus, for instance in olfactory dis-

crimination tasks (Eichenbaum et al. 1987). Interest-

ingly, recent experimental data reported the relevance

of the hippocampal temporal firing pattern to the

behavioral sequences. Skaggs et al. (1996) showed that

the temporal firing pattern of hippocampal cells regu-

larly appears in every theta cycle. The temporal dif-

ference in firing of the cells was consistent with the

time window of the asymmetric synaptic plasticity,

suggesting a temporal coding mechanism (Skaggs et al.

1996; Yamaguchi 2003). By using mice lacking the

NMDA receptor in the hippocampal CA3 region,

which is the site of dense recurrent connections, the

experimental study proved that hippocampal synaptic

modifications are crucial for encoding of the one-time

experience (Nakazawa et al. 2003). This evidence

highlights the importance of the hippocampal memory

function for behavioral sequences.

A key question here is whether memory of the

environmental geometry, such as that encoded in the

cognitive map, and memory of behavioral sequences

are derived from distinctive neuronal mechanisms or

not. In the classical theory of rate coding, the forma-

tion of the cognitive map has been explained as the

result of linking different spatial regions, or features in

them, independent of the encoding of behavioral

sequences. However, if these memory functions are

derived from a consistent neuronal mechanism, the

better question is what neural mechanism compre-

hensively organizes both hippocampal memory func-

tions. It could be thought of as the development of

memories of behavioral sequences on the cognitive
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Fig. 1 Schematic illustration of place cells and their place fields.
Place cells, which are pyramidal cells in the hippocampus, fire in
correlation with the animal’s location in space. Different place
cells fire when the animal is in different spatial regions of the
environment, called place fields, as shown in the figure with
corresponding colors
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map in the framework of a consistent memory encod-

ing neural mechanism.

Here we review our theoretical approaches to

studying the temporal coding mechanism that enables

the hippocampal neural network to encode behavioral

sequences (Yamaguchi 2003; Sato and Yamaguchi

2003; Wu and Yamaguchi 2004; Yamaguchi et al.

2004), and the hypothesis that cognitive map formation

is an extension of memories of behavioral sequences

(Wagatsuma and Yamaguchi 1999, 2000, 2004, 2005;

2006). We focused on the biological dynamics under-

lying memory formation in the hippocampus, which is

called theta phase coding. The rate coding theory has

attempted to capture a universal form of information

represented in the brain and focused what is encoded

in the population vector of massive neurons as a sta-

tionary state. Here we attempt, as a breakthrough, to

consider how biological information emerged in the

interaction between the brain and the ever-changing

world and focused how behavioral sequences are

represented in the temporal sequence of neural events

and how they are retrieved and used even with envi-

ronmental changes.

This theoretical approach would shed light on a

developmental process of memory, from a recollection

of past experience to a consistent framework. In the

behavior of animals, or even in our daily lives, every-

thing happens in the context of the past, present, and

future, in a so-called context-dependent manner.

Looking back to the history of the developmental

psychology, Piaget (1928) describes a cognitive process

for how behavioral experiences are developed into

operational knowledge when an infant develops into a

child. In this sense, our theoretical approaches may

bridge between memory of behavioral sequences in the

animal case and episodic memory in the human hip-

pocampal study.

Associative memory neural network

for the cognitive map

The classical neural network theory assumes that

information is coded in the firing rate of neurons, a

concept called rate coding. The neural basis of hippo-

campal memory was theoretically proposed by Marr

(1971) as a framework of associative memory with rate

coding. The hippocampus has widespread recurrent

synaptic connections in the CA3 region, which enable

the network to instantaneously encode associations

among external stimuli that the animal experiences.

This recurrent network then has the ability to retrieve

the set of firing patterns, referred to as memory

patterns, after the learning. Several theoretical models

of hippocampal associative memory were proposed

(McNaughton and Morris 1987; McNaughton 1989;

McNaughton and Nadel 1989; Rolls 1989; O’Reilly and

McClelland 1994) and discussed in terms of quantita-

tive properties, such as memory capacity, the robust-

ness of the memory recall, and the interference of

similar memory patterns. Extending to the theoretical

studies, two major types of neural network models for

the cognitive map were proposed. The first one is the

goal-oriented vector map, in which directions toward a

single goal from different spatial positions are encoded

in the network, and the population vector of place

cells, then, represents where the animal should go next

to reach the goal in the environment. The other one is

the spatial vector map, in which individual spatial

positions are encoded in the network, and the popu-

lation vector of place cells in this case represents where

the animal is in the environment at each instance.

These models were proposed independent of memory

encoding to behavioral sequences.

In the former model, the function of the cognitive

map is to guide navigation toward a goal from different

spatial locations (Burgess et al. 1994; Blum and Abbott

1996; Gerstner and Abbott 1997; Redish and Tour-

etzky 1998; Trullier and Meyer 2000). In the assump-

tion of place cells in the hippocampus without learning,

they focused on the function of a temporal asymmetry

in the synaptic plasticity of hippocampal pyramidal

cells (Levy and Steward 1983; Larson and Lynch 1989;

Fitzsimonds et al. 1997; Bi and Poo 1998; see Abbott

and Blum 1996). Burgess et al. (1994) firstly proposed

the model of the cognitive map, representing the

direction toward a single goal in the environment. The

model could learn a shortcut pathway to reach the goal

location by the population vector representing where

the animal goes next, as schematically shown in

Fig. 2A. In this model, goal-oriented vectors are en-

coded in association between place cells and goal cells,

as to not form recurrent asymmetric connections

among place cells. This concept was developed into

subsequent models with asymmetric connections by

using the Hebbian plasticity with an asymmetric time

window (Blum and Abbott 1996; Gerstner and Abbott

1997; Trullier and Meyer 2000). This type of models

explains how the asymmetric synaptic plasticity con-

tributes to a specific cognitive function, such as spatial

navigation. However, it is hardly applicable for spatial

tasks with multiple goals, and place cell activities do

not always change depending on differences between

reward locations (Gothard et al. 1996). Thus, being a

single goal-fixed vector map is not likely the funda-

mental property of place cells.
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In the latter model, the function of the cognitive

map is to represent where the animal is in space, even

with the lack of sensory information. The basic concept

is that mutual connections among neighboring place

cells help them to activate together, explaining how the

population activity of place cells appears consistently

in the same environment. In recent experimental study,

the parallel extracellular recording of hippocampal

place cells enables the simultaneous recording of a

large numbers of place cell activities during the spatial

exploration of the animal (Wilson and McNaughton

1993). It clearly demonstrated that population coding

of place cells represents where the animal is, in the

form of a massive concentration of the firing pattern in

a two-dimensional plane that derived from the rear-

rangement of place cells according to their place field

locations. The concentration of the firing pattern is

sometime called the place code or self-localization

(Redish 1999), which is theoretically considered to be a

consequence of the mutual connections among neigh-

boring place cells. In experimental observations, pop-

ulation coding is reorganized drastically depending on

changes in the environment, such as the configuration

of external cues and task procedures (Muller and

Kubie 1987; Bostock et al. 1991; Gothard et al. 1996).

Then the same population pattern reappears when the

animal is returned in the original environment (Barnes

et al. 1997).

In this framework, Muller and his colleagues (Mul-

ler et al. 1991, 1996) initially proposed the idea that the

simultaneous firing of place cells forms a network

where these cells have strong synaptic connections with

neighboring place fields. Accordingly, the geometric

network of place cells, called a ‘‘chart,’’ represents the

environment through a spatial relationship among

place cells (McNaughton 1996) as schematically shown

in Fig. 2B. Such a chart formation was demonstrated

by Káli and Dayan (2000). The strength of the con-

nection between a pair of place cells represents the

distance between two corresponding locations in the

environment, and the connections must be symmetric.

Associative connections in the CA3 region serve as the

functional basis of a cognitive map during spatial

navigation, providing neural activities that are spatially

localized in the chart. Recently, Nakazawa et al. (2002)

experimentally confirmed that recurrent connections of

pyramidal cells in the CA3 region serve as associative

memory by using mutant mice with an ablated NMDA

receptor gene specifically in the CA3 region. The

ability for encoding multiple cognitive maps is

demonstrated in the model of Samsonovich and

McNaughton (1997). This type of model effectively
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Fig. 2 (A) An example of a vector field map, or directional map,
representing routes to a single goal that are stored in the
recurrent connections of the hippocampal associative network.
Open circles denote the individual positions of the place cells,
which correspond to individual place fields. A filled circle
denotes the goal position. An arrow from one circle to the other
represents an effective directional connection between them,
guiding a route to the goal. Thus, every connection between
neighboring cells is considered to be asymmetric (see Blum and
Abbott 1996; Gerstner and Abbott 1997; Trullier and Meyer
2000; Redish and Touretzky 1998). (B) Schematic illustration of
a multiple chart network. The recurrent network of place cells
has anatomically twisted synaptic connections. Blue and red
circles, respectively, denote place cells that are active in

environment A, called chart A, and the cells that are active in
environment B, called chart B. The top figure represents the
anatomical position of cells, and the bottom figures represent
imaginary arrangements of cells that are aligned according to
their place fields in environment A (blue) and environment B
(red). Twisted connections in the top figure can be straightened
in the bottom figures as neighboring connections among cells. On
each chart, neighboring cells are cooperatively active through
their mutual connections, generating a concentration of popula-
tion activity in the cognitive map as a population code of place.
Thus, every connection between neighboring cells basically
represents the distance; thus, it is considered to be symmetric
(see Samsonovich and McNaughton 1997)
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explained how recurrent connections of place cells

work to give the representation of where the animal is

in the environment, even with a change of the envi-

ronment; however these learning mechanisms are

proposed independent of experimental evidence for

the asymmetric synaptic plasticity.

As intermediate between the two types, Redish and

Touretzky (1998) proposed a combination between the

spatial vector map and the goal-orientation map. They

hypothesized that symmetric connections between

place cells are learned to represent the spatial map

when the rat explores for the first time, and then the

asymmetric property is added into the network to

represent the goal-orientation from different places.

Their model demonstrated that asymmetric and sym-

metric connections coexist in the same network, while

still in the framework of the single goal-fixed vector

map. In contrast, Rolls et al. (2002) hypothesized that

episodic memory and spatial memory are distinct rep-

resentations in the hippocampus and simplified the

concept of episodic memory to those memories of

non-spatial events that happen at a particular time,

independent of temporal sequence. By using the con-

ventional Hebbian learning rule, the model could

encode independently the continuous firing pattern of

place cells and discrete neural events as episodic

memory. Both memories are retrieved cooperatively,

either when the animal visits a specific location or

when a non-spatial cue is presented. The separation of

episodic memory and spatial memory might be plau-

sible, especially in the human hippocampus, but it is

not concerned with describing linked temporal

sequences of events in episodic memory.

Neural dynamics of memory development
in the hippocampus

In the first place, a key question presented here is

whether the cognitive map and memory of behavioral

sequences are derived from distinctive neuronal

mechanisms. We attempt to consider a possible neural

mechanism in the hippocampus that provides both

memory functions in the consistent theoretical frame-

work. Then we focus on the biological dynamics

underlying memory formation in the hippocampus,

called theta phase coding. The rate coding theory

enlightened on what is represented in the neural net-

work, while theoretical analyses of temporal coding

allow us to investigate how biological information is

formed, updated and used in relationship with the

external environment. In this framework, we hypoth-

esized that memories of behavioral sequences are

developed into the cognitive map, as schematically

shown in Fig. 3.

Here we review our theoretical approaches with the

temporal coding mechanism that we previously

reported (Yamaguchi and McNaughton 1998; Yamag-

uchi 2003; Yamaguchi et al. 2004), focusing specifically

on our work on cognitive map formation (Wagatsuma

and Yamaguchi 2004), disambiguation of memory

retrieval in the spatial alternation task (Wagatsuma

and Yamaguchi 2005) and spatial navigation with

motion control by using theta phase coding (Wagat-

suma and Yamaguchi 2006).

Real-time memory formation with temporal coding

A sequence of neural events can be stored in sequen-

tially ordered synaptic connections or in asymmetric

connection among neurons. The Hebbian plasticity

with an asymmetric time window of ~50 ms in the

hippocampus is considered to be composed of these

asymmetric connections; however, the question re-

mains as to how often a pair of neuronal firings within

50 ms happens in the hippocampus? Behavioral events

happen on the timescale of several seconds or slower.

There is a large gap between timescales of the synaptic

time window and the behavioral sequence. Thus,

asymmetric synaptic plasticity could not be directly

applicable for the encoding of the behavioral sequence.

In the rodent hippocampus, a stable oscillation of

the local field potential around 8 Hz is observed during
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Fig. 3 Schematic illustration of a developmental change of
hippocampal representation. In the working hypothesis of theta
phase coding, the neural dynamics of memory formation in the
hippocampus integrates different memories of behavioral
sequences into a consistent framework representing the rela-
tionship between the environment and the animal itself, such as a
cognitive map. It suggests that the representation would develop
in a further representation with some hierarchical structure
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running and is referred to as the theta rhythm. O’Keefe

and Recce (1993) initially discovered an advancement

of the place cell’s firing phase relative to the cycle of

the theta rhythm when a rat goes through the place

field. The phenomenon is called theta phase preces-

sion. Parallel recordings of place cells demonstrated

that phase precession is not only the phase advance-

ment of individual cells, but also retains the robust

phase difference with a sequential order in the firing of

a population of cells (Skaggs et al. 1996). The phase

difference in place cells regularly preserved in succes-

sive theta cycles has a time scale similar to the asym-

metric time window of Hebbian plasticity. It is

suggested that the phase difference of place cells’ firing

that highly aligned in every theta cycle represents the

behavioral sequence of a series of place fields in which

the animal traversed as a compression of behavioral

events into theta phases. Thus it enables memory

encoding of behavioral temporal events in asymmetric

connections among place cells by using Hebbian plas-

ticity with an asymmetric time window (Skaggs et al.

1996; Yamaguchi 2003). This property is supported by

experimental observations of the phase precession

even in the novel environment or without training

(Czurko et al. 1999; Rosenzweig et al. 2000; Ekstrom

et al. 2001; Magee 2001).

The neural mechanism has been debated exten-

sively. From early studies, proposed theoretical models

can be classified into two groups: theta phase preces-

sion caused by existing asymmetric connections (Tso-

dyks et al. 1996; Jensen and Lisman 1996; Wallenstein

and Hasselmo 1997) and phase precession in the ab-

sence of asymmetric connections (O’Keefe and Recce

1993; Kamondi et al. 1998; Bose and Recce 2001;

Harris et al. 2002, Yamaguchi 2003; Lengyel et al. 2003;

Magee 2003; Mehta et al. 2002). In particular, some

models focused on the property of phase locking for

the mechanism of theta phase precession (Kamondi

et al. 1998). Mehta et al. (2002) proposed that the

asymmetric increase of firing rate of CA1 place cells

causes the phase advancement. The firing rate is slowly

increased so that it maximizes just before the end of

the place field. They determined that this slow increase

is obtained after several trials.

These models raise two significant questions: whe-

ther several trials, or some learning property, are

necessary for theta phase precession, and where it is

originally generated, in the CA1 region of the hip-

pocampus or other regions? Melamed et al. (2004)

answered the former question by pointing out that

phase precession is seen without training (Czurko

et al. 1999; Ekstrom et al. 2001; Magee 2001).

Therefore, it is possible that in novel environments,

theta precession firstly appears and causes the mem-

ory formation (Fig. 4). Answering the latter question,

past experimental data reported that theta phase

precession is observed in the CA1 region (O’Keefe

and Recce 1993; Skaggs et al. 1996), the CA3 region

(Harris et al. 2002), the dentate gyrus (Skaggs et al.

1996), and the entorhinal cortex (Hafting et al. 2005,

2006; McNaughton et al. 2006). It may originate in the

superficial layer of the entorhinal cortex through the

hippocampal closed circuit (Skaggs et al. 1996; Yam-

aguchi 2003).

In a computational model study, Yamaguchi (2003)

has hypothesized that theta phase precession causes

the associative memory formation in the hippocampus

and that the phase precession is generated in the

entorhinal cortex, the entrance of hippocampal network.

In the entorhinal cortex, phase locking between the

theta rhythm and cells with a gradual increase in nat-

ural frequencies is phenomenologically assumed.

Under the assumption of sensory inputs in changing

environments, this model works for the real-time

generation of theta phase precession. Behavioral sen-

sory input is coded in the firing phase in the theta cycle,

called ‘‘theta phase coding.’’ Yamaguchi and her col-

leagues presented a series of theoretical models based

on theta phase coding (Yamaguchi 2003; Sato and

Yamaguchi 2003; Wu and Yamaguchi 2004; Yamagu-

chi et al. 2004; Wagatsuma and Yamaguchi 2004),

which demonstrated that theta phase coding functions

in memory encoding of behavioral experience as an

online learning system.

i. A novel experience generates an arbitral sequence

ii. Theta phase coding of the sequence by theta phase precession

Time

iii. Real-time formation of an asymmetric connection network

iv. Reactivation and integration for subsequent use

Fig. 4 A minimum function of theta phase coding for novel
sequence memory encoding in the hippocampus, based on theta
phase precession and asymmetric Hebbian rule
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In this model, the neural mechanism of the genera-

tion of theta phase precession can be compared to the

central pattern generator of animal locomotion, like

that in fish when swimming, shown in Fig. 5. Coupled

neural oscillators that contain a gradient in natural

frequencies generate the periodic bending motion

needed for swimming. In theta phase precession, place

cell firing in each theta cycle has a similar pattern to

the motion of the central pattern generator, while the

cell population changes in successive theta cycles, as

shown in Fig. 5B.

In the entorhinal–hippocampal network of associa-

tive memory, they use a simple phase model to de-

scribe the neural oscillator in the entorhinal cortex.

The robust phase locking is derived from the coupling

between a stable oscillation (LFP theta) and individual

oscillators. Assuming an oscillation state continues

when it has tonic input, the phase locking pattern is

described by

_/i ¼ xi þA sin /0 � /ið Þ; ði ¼ 1; . . . ;NÞ

_/0 ¼
1

N

XN

i¼1

xi � x0; ð1Þ

where xi is ith unit’s natural frequency. The phase

difference between individual oscillators, /i, and the

stable oscillator, /0, is defined as _hi ¼ Dxi þAsinðhiÞ
where hi = /0–/i and Dxi = xi – x0, and the solution
_hi ¼ 0 is obtained analytically as:

hsi ¼ arcsin
xi

A

� �
; if

xi

A

���
��� � 1

� �
ð2Þ

This solution means that this system is the robust phase

difference described by a value Dxi = xi – xo as shown

in Fig. 6A.

Here we assume a gradual change of natural fre-

quencies depending on input. The change is defined as:

xiðtÞ ¼
xs þ ðt � iDtÞxd if IiðtÞ ¼ I0

x0 if IiðtÞ ¼ 0

(
;

IiðtÞ ¼
I0 if iDt\t\iDt þ td

0 otherwise

(
ð3Þ

where xs and xd are positive constants, and Dt and td,

respectively, denote the time difference of input onset

and the input duration corresponding to several theta

cycles. Since the natural frequency, xi, changes slowly,

the solution hsi in the Eq. 2 describes phase locking as a

quasi-fixed point (Yamaguchi 2003). The different

onset timing of inputs gives the different value of theta

phases. Equation 3 given by a function of time can be

replaced by the distance-dependent function, which

gives the phase precession as a function of distance as

is observed in experiments (O’Keefe and Recce 1993).

This phase locking mechanism, given by Eqs. 1 and 2,

was used in the following the entorhinal–hippocampal

network model with some modification.

In the model of Wagatsuma and Yamaguchi (2004,

2005, 2006), the phase model in Eq. 1 is rewritten as a

neuronal unit with the assumption that the membrane

potential is efined by cos/i. The time evolution of the

network is described as:

where xL,bL(L = 0,1) represent the constant parame-

ters of natural frequency and stabilization, c1 and c2,

respectively, represent the effect of the local field

oscillation (LFP theta) and the coupling constant be-

tween different layers, E and G, respectively, represent

effects of the recurrent connection feedback and the

global inhibition, and kLTP, kLTD and kw, respectively,

represent constant parameters of LTP, LTD and the

learning rate. s represents the asymmetric time window

_/EC
i ðtÞ ¼ xEC

i ðtÞ þ b0 � IiðtÞ � c1 cos /EC
0 ðtÞ

� �
sin/EC

i ðtÞ;
_/EC

0 ðtÞ ¼ x0; _/CA3
i ðtÞ ¼ x1 þ b1 � f EC

i ðtÞ � c1 cos /CA3
0 ðtÞ

�
� E �

X
j
wCA3

ij f CA3
j ðtÞ þG �

X
j
f CA3
j ðtÞ

.
N
i
sin/CA3

i ðtÞ;
_/CA3

0 ðtÞ ¼ x0 � c2 cos /EC
0 ðtÞsin/CA3

0 ðtÞ;

_wCA3
ij ðtÞ ¼ kLTP f CA3

j ðtÞ � f CA3
i ðt � sÞ

� �h
�kLTD f CA3

j ðtÞ þ f CA3
i ðt � sÞ

� �i
� kw 1� wCA3

ij ðtÞ
� �2

� �
;

ð/EC
0 ;/CA3

0 mod2pÞ; ði ¼ 1; . . . ;NÞ; ð4Þ
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in the Hebbian synaptic plasticity, which is given by 0.2

theta cycles in the computer experiment (Wagatsuma

and Yamaguchi 2004). N denotes the number of units

in every layer. Equations with the suffix ‘‘EC’’ describe

the time evolution of the entorhinal unit, which cor-

responds to Eq. 1. xEC
i ðtÞ and Ii(t) are given by Eq. 3

with some modification of the input’s assumption,

depending on the model used (Wagatsuma and Yam-

aguchi 2004). Equations with the suffix ‘‘CA3’’ de-

scribe the time evolution of the CA3 unit receiving the

temporal firing activity of the EC unit. We simply

assume the one-to-one projection between layers, and

the firing, or pulse density, f L
i ðtÞ; ðL ¼ EC,CA3Þ is

given by a function of the membrane potential with the

threshold as:

f L
i ðtÞ ¼

cos /L
i ðtÞ if cos /L

i ðtÞ[0
0 otherwise

�
ð5Þ

The CA3 layer only has the modifiable recurrent

connections, wCA3
ij ðtÞ, and the connections change

according to the asymmetric Hebbian rule, which is

simply assumed here by the combination of timing

specific LTP, to maximize one fifth of the theta cycle

(~25 ms), and timing non-specific LTD.

In the EC layer, the unit starts its oscillation when it

receives a tonic input that slowly changes over several

oscillation cycles, and the gradual change of the natural

frequency gives a phase shift under the robust phase

locking. The phase model can be considered as a sim-

plified form of mathematical descriptions of neurons

with either a limit cycle solution or a fixed-point with

excitability, such as the FitzHugh-Nagumo equation

(FitzHugh 1961; Nagumo et al. 1962; see Hoppensteadt

1986). In the CA3 layer, the unit is described by the

neuronal oscillator similar to the EC unit, but it has no

change in the natural frequency and only uses instan-

taneous excitability given by input onset. In computer

experiments, CA3 units inherit the firing pattern of

entorhinal units, reproduce the phase precession, and

then the temporal pattern leads to a modification of the

recurrent connections of CA3 units in accordance with

asymmetric Hebbian plasticity (Levy and Steward

1983; Larson and Lynch 1989; Fitzsimonds et al. 1997;

Bi and Poo 1998). Ultimately, it enables temporal se-

quence storage (Fig. 7). In the phase precession, a

compressed form of behavioral sequence represented

by the firing phase, occurs repetitively in every theta

cycle and gives stably asymmetric connections in the

CA3 recurrent network by using asymmetric Hebbian

plasticity, even for a one-time experience. This result

indicates that the neural dynamics are biologically

plausible for the memory encoding of novel temporal

sequences as episodic events.

Cognitive map formation through sequence

integration

The important question here is whether sequence

learning based on theta phase precession in the pres-

ence of asymmetric synaptic plasticity can be extended

to other hippocampal memories. After a brief explo-

ration of an environment of about 10 min, pyramidal

cells in the CA3 and CA1 regions of the hippocampus

exhibit firing preferences based on the animal’s loca-

tion (Wilson and McNaughton 1993). This means that

place cells for a new location are quickly established,

and the geometry of the new environment soon be-

comes familiar. How does the hippocampus acquire the

Time

Place cells aligned in
individual place fields

Slow integrative 
change in natural 
frequency
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gradient in natural frequencies
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Fig. 5 Comparison between phase locking in the central pattern
generator of fish swimming (A) and theta phase precession in the
rat hippocampus (B). Periodic bending motion for swimming is
generated by coupled neural oscillators with a gradient in natural
frequencies. In theta phase precession, place cell firing in each

theta cycle reflects the motion of the central pattern generator,
while head-tail roles of place cells change in successive theta
cycles. The evolution from tail to head of a cell is given by a slow
increase in the intrinsic frequency
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cognitive map even after such a short running experi-

ence? Is it possible to consider that the integration of

memories of behavioral episodes develops into a rep-

resentation of the environmental geometry when the

animal explored it freely?

Wagatsuma and Yamaguchi (1999, 2000, 2004)

hypothesized that theta phase coding not only provides

memory encoding of the temporal sequence of a

behavioral experience into asymmetric connections of

the CA3 region, but also that the one-dimensional

network encoding of the sequence is integrated during

the animal’s exploration. Computer experiments

demonstrated that the memory integration of behav-

ioral experiences during the spatial exploration of the

simulated animal, ‘‘rat,’’ develops the cognitive map as

a chart by using a simplified hippocampal network

model with theta phase coding (Fig. 8).

The environmental space is given by a square field,

1 · 1 m2. In the model, the local view input is simply

assumed as a set of landmarks that are distributed on

the floor in a lattice configuration (Fig. 8A). Each

landmark is assumed as rotation-fee object or mark,

such as colored paint on the ground. The field of vision

with landmarks is restricted in the front of the rat and

is given by a semicircle shape of a one-third meter

radius. We assumed four hundred landmarks over the

environment, and 50 different landmarks in front of the

rat’s nose are seen at each instance. The local view

input is an egocentric view depending on the rat’s head

direction. The rat runs randomly for one minute with

the running velocity, 0.34 m/s. The running direction

changes once every 18 theta cycles with a random

variable, and walls in edges of the environment force to

change the direction as reflection turn. The model

simply assumed the projection from landmark-associ-

ated inputs to entorhinal units as one-to-one. The input

intensity is given by a function of the distance between

the landmark and the rat, so that near landmarks give

strong input, far landmark give weak input and land-

marks out of the visual field give no input. In the

simple projection assumption, we visualized population

LFP
(~8Hz, mean frequency)

CA3/CA1 networks 
with time asymmetric 
Hebb rule

Hippocampus
Entorhinal 
Cortex (EC) Neocortex

Time
A

B

Input
 (~sec)

Input

Phase
 coding

A

B

Fig. 7 A working hypothesis on memory formation with theta
phase precession in the hippocampus. Theta phase precession is
generated at the entrance of the hippocampus, the entorhinal
cortex (EC). For phase locking of individual units in the EC, a
unit representing local field theta oscillation (LFP theta) is
introduced. Phase locking of each unit with LFP theta instan-
taneously stabilizes the phase at each theta cycle according to the
current value of the natural frequency. This results in a constant
phase between pair units of successively active inputs (A and B
in the figure). Firing with the phase difference causes selective
synaptic plasticity in the hippocampal associative memory
network

(B)

(A)

φcos 

sinφi

i
φ

Current input

i

θi Mean phase

i -th oscillator

β ωi

Fig. 6 Phase locking of coupled oscillators. (A) N coupled
oscillators /i with different natural frequencies xi is given by
Eq. 1. The system arrives to a phase locking state where the phase
difference between each oscillator and the mean phase, hi,
depends on the natural frequency. If the natural frequency is
larger than the mean value, the phase is advanced i.e. 0 < /i < p/2,
but if it is smaller than the mean value, the phase is behind i.e.
–p/2 < /i < 0. (B) The ith unit equation in the model is given by
Eq. 4. The value cos /L

i ; ðL ¼ EC,CA3Þ represents the membrane
potential. The filled and the open circles, respectively, denote the
stable point, as the resting state, and the unstable point. The
current input appears in the equation with the factor
sin/L

i ; ðL ¼ EC,CA3Þ because of the vector relation in the figure.
In the equation with suffix EC, the resting state is replaced by a
sustained oscillation, as shown in A, when the current input is
coming. In the equation with suffix CA3, the equation has both
stable and unstable points. When the current is input, the state
exceeds the unstable point and then it goes back to the resting state
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activities of the entorhinal and the hippocampal units

in the two-dimensional plane where the units are

aligned in the same arrangement as the landmarks in

the environment, which is consistent with the methods

of Samsonovich and McNaughton (1997). We call the

arrangement of units the expected array, which

denotes ideal positions of place fields after leaning.

During the rat’s running, population activity as theta

phase precession is observed as a wave propagation in

the expected array. Within the semicircle of the local

view, an instantaneous subpopulation of EC activity

appears as a crescent shape. The population activity

propagates within the semicircle, from the near to the

far, in every theta cycle. This property of wave prop-

agation is in good agreement with the phase precession

pattern on a chart reconstructed from experimental

data (Samsonovich and McNaughton 1997). The

important point in this case is that the current local

view, or 50 landmarks, triggers the simultaneous acti-

vation of 50 units, while the instantaneous subpopula-

tions differentiate their firing timings, classifying

sensory inputs according to the temporal context, the

past, the present and the future, along the running

direction. The CA3 network receives those activities

and reproduces the two-dimensional phase wave as a

population activity with a projection delay, and it

modifies its recurrent connections according to the

relative firing timing by using the asymmetric Hebbian

rule (Eq. 4). Thus, the learning rule makes unidirec-

tional connections between subpopulations of units

that are sequentially activated with a time delay of 20–

25 ms in the phase precession.

In the beginning of spatial exploration, such as a

short run without any crossings, the distribution of

synaptic connections forms a part of the phase wave

pattern, and then it gradually forms a concentric shape

during the full exploration (Fig. 9). During chart for-

mation, the strength of recurrent connections de-

creases monotonically with respect to the distance in

the chart (Fig. 10). Thus, the CA3 recurrent network

sufficiently establishes the chart property within a

minute.

This property is consistent with the results obtained

by Muller et al. (1991, 1996) and Redish and Touretzky

(1998) using a Hebbian rule for rate coding. In these

models, simultaneous firing of neighboring place cells

produces symmetric connections proper to the chart,

while temporal coding with theta phase precession in

our model produces asymmetric connections. We ob-

tained two types of average distribution of the synaptic

weights in CA3 recurrent connections: the one is the

conventional average distribution and the other is the

rotated average distribution. The conventional average

distribution is obtained from the superposition of all

units’ weight distributions, as seen in Fig. 9, after each

weight distribution is centralized according to the

unit’s expected position, or landmark position. The

Input EC/DG
CA3

LFP 
theta

LFP 
theta

(A)

(B)

Fig. 8 Schematic illustration of the network structure and local
view input in the model of Wagatsuma and Yamaguchi (2004).
(A) Local view input is given by a set of landmarks. N landmarks
are assumed to distribute at lattice points in a two-dimensional
environment. Landmarks around and in front of the simulated
animal, ‘‘rat,’’ activate individual units in the Input layer within a
semicircle of visual field V, which covers M landmarks. N = 400
and M = 50 in the computer experiments. (B) The neural
network model has three layers, the Input, the EC, and the
CA3 layers. Each input derives from a single landmark shown in
A. Open circles in the EC and CA3 layers represent neural units.
Projections from the Input to the EC and from the EC to the
CA3 are assumed to be one-to-one connections. Black half
circles represent synaptic connections. Recurrent connections in
the CA3 layer are assumed to follow the asymmetric Hebbian
rule. The LFP theta units representing the local field theta
oscillation are shown at the bottom of the EC and CA3 layers
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rotated average distribution is obtained from the

superposition of all units’ weight distributions after

each weight distribution is centralized according to the

unit’s position and rotated to set its peak position to

the same direction, which is shown as the gray line in

Fig. 11C. Interestingly, after the spatial exploration the

conventional average distribution gives a concentric

shape with a central peak position, while the rotated

average distribution statistically deviates from the

center (Fig. 11C). This result indicates that after spatial

exploration individual weight distributions tend to

have a single peak with a certain distance from the

unit’s position and that individual peak positions have

a variety of directions so that they are finally canceled

out in the conventional average. Therefore, the overall

structure of the learned network has a two-dimensional

geometry with a two-dimensionally symmetric distri-

bution on the chart, while the asymmetry is signifi-

cantly preserved in the individual deviations derived

from the connection balance between outgoing and

incoming synapses.

The reason why asymmetric properties in connec-

tions are preserved, even after the formation of the

chart, is the presence of an effective positive feedback

of CA3 activities through ongoing established recur-

rent connections. In the classical theory of the hippo-

campal network, such recurrent feedback in the

presence of the theta rhythm is considered to be neg-

ligible. This notion derives from experimental evidence

using hippocampal slices which showed that acetyl-

choline (Ach) enhances the synaptic change but sup-

presses neuronal transmission in intrahippocampal

synapses when the theta rhythm is present (Hasselmo

and Schnell 1994; Hasselmo 1999; Hasselmo et al.

2002a). However, during in vivo observation, the

region of the environment in which place cells fire, the

place field, expands when the rat travels repeatedly

along a given path (Mehta et al. 1997), which is nec-

essary for synaptic modification in the hippocampus

(Ekstrom et al. 2001; Rosenzweig and Barnes 2003). It

suggests that the synaptic plasticity sufficiently

contributes to the change of the place cells’ firing when

the animal is running, even with acetylcholine

suppression. Therefore, we assumed a certain amount

of the positive feedback of CA3 recurrent connections,

given by E in Eq. 4, and then the result showed that the
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Fig. 9 (Top row) Trajectories in spatial exploration. Three
representative points of time, T1, T2, and T3 correspond to 35
cycles (4.375 s), 117 cycles (14.625 s), and 467 cycles (58.375 s),
respectively. Solid lines denote trajectories of the rat. The
running direction is shown as arrowheads on the line. The closed
circle denotes the starting position. The open circle, shown only in
T3, represents the final position of the exploration. The behaviors
of periods [0,T1], [0,T2], and [0,T3], respectively, correspond to a
simple trajectory, a trajectory with crossings at several points, and
well exploration. (Bottom row) Development of the efferent map
of an example unit during time T1–T3. The efferent map of a pre-
synaptic unit, i, is defined as the arrangement of the synaptic
weight values, WE

i ¼ fwji : j ¼ 1;K . . . ;Ng, so that the values are

aligned with the expected array, which is defined as locations of
landmarks distributed in the environment, as shown in Fig. 8A.
The white bar standing on the expected array indicates the
expected position of the pre-synaptic unit to which the cross mark
in A corresponds. At time T1, it is in a crescent form, which is
similar to a pattern of population activity observed in theta phase
precession. At time T2, the efferent map is in a circular form in
relation to the pre-synaptic unit (indicated by the white bar). A
concentric shape of the connection map sharpens at time T3. As
the trajectory crossing points increase, the distribution of the
connection weights on the map becomes more concentric around
the expected position of the pre-synaptic unit. Figure from
Wagatsuma and Yamaguchi (2004)
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asymmetry in connections always changes during

spatial exploration, even when the total synaptic

weights are converged (Fig. 12). The obtained distri-

bution of asymmetry in connections is quite different

from the vector field map, shown in Fig. 2A, from

previous theoretical studies (Blum and Abbott 1996;

Gerstner and Abbott 1997; Redish and Touretzky

1998; Trullier and Meyer 2000).

The importance of the investigation on the positive

feedback effect was suggested by Redish and Tour-

etzky (1998); however, no hippocampal models deal

with it directly. This property is critical for the inves-

tigation of how the hippocampal memory develops,

and it paves the way for comparison between the

results of computer simulation and experimental data

on experience-dependent changes. In the present

model, experience-dependent place cell activity is

successfully observed, as with running memory shown

in Fig. 13, and compared with theta rhythm-dependent

population activity after a short run and after spatial

exploration.

It proceeds to a prediction that the theta rhythm acts

as an internal clock, coordinating perception and

memory, with the following sub-processes, as sche-

matically shown in Fig. 14.

(1) Current perception. Representation of a local

view in the current position by the current EC

input.

(2) Pattern completion of place. Representation of

the current place based on the resulting recurrent

connections.

(3) Anticipation. Coordination between the repre-

sentations of the current perception and place.

Thus, the above sequence of computation is

repeated in every theta cycle during running, which is

called theta phase coding. This process emerges from

the harmonics between the phase wave of oscillator

synchronization and the trigger wave generated by

asymmetric recurrent connections.

Memory retrieval avoiding the interference

between past memories

The issue of how the hippocampus avoids memory

interference is the question we have to consider next.

With respect to the theta rhythm, Hasselmo et al.

(2002c) presented an interesting idea of the functional

difference in theta phases for memory encoding and

retrieval. They hypothesized that the former half cycle

of theta contributes to the memory encoding while the

latter half contributes to the memory retrieval. They

were inspired by experimental evidence from the

spatial alternation task, which is known to require

hippocampal memory. In this task, the animal is

trained in a T- or Y-shaped maze to pass through the

common pathway and to choose first one of two

branches and then the second branch. After the train-

ing, there is no cue in the common pathway to distin-

guish which branch is the correct choice. The problem

is how the hippocampus encodes the behavioral

sequence of the second choice just after the encoding

the first choice. The difficulty that they emphasized is

that the memory retrieval of the first choice disturbs

the encoding of the second choice, because two alter-

native choices have an overlap in representing the

behavioral sequence for the common pathway. Thus,

the first one must enhance itself when the animal

passes through the common pathway, preventing the

encoding of the second choice. They solved this prob-

lem by separating the theta cycle into the encoding and

retrieval stages.

Extending the problem, another question arises:

how does the hippocampus retrieves the correct choice

in the common pathway after the encoding of two

similar memories? Wagatsuma and Yamaguchi (2005)

tackled this problem and hypothesized the CA3

recurrent feedback, which carries past memories
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Fig. 10 Averaged connection weights with respect to the
distance in the environment. All efferent connections are
averaged with respect to the distance from individual pre-
synaptic units. During the spatial exploration, the strength of the
efferent connections changes, and the curve is converged to form
a monotonical decrease with a high gradient. Thus, the CA3
recurrent network sufficiently establishes the chart property
within a minute. Figure from Wagatsuma (2005)
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encoded in the synaptic connections and selectively

effects the specific range of theta phases for the dis-

ambiguation. The difficulty in this case is that even if

the correct memory is once retrieved, ambiguous sen-

sory information might reset the ongoing memory

retrieval when the rat is running in the common

pathway, as is schematically shown in Fig. 15. It is

based on the concept of continuous attractor dynamics

(Amari 1977; Amit and Tsodyks 1992; Samsonovich

and McNaughton 1997), where a behavioral episode,
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Fig. 11 Comparison between efferent maps and connection-
asymmetry maps. (A) Schematic illustration of efferent connec-
tions and connection-asymmetry. To analyze an asymmetric
property in connections, the ‘‘connection-asymmetry’’ of the unit
i is defined as the set of differences between the efferent and
afferent connection weights, given as �Wi ¼WE

i �WA
i ¼

fwji � wij : j ¼ 1;K . . . ;Ng. In the connection-asymmetry map,
these values are aligned in the same way on the efferent map.
When every value on the connection-asymmetry map is equal to
zero, every pair of connections is symmetric. (B) Top: A selected
set of efferent maps. Bottom: connection-asymmetry maps of the
same set of units as the above. Peak points in efferent maps are
consistent with positive peaks in connection-asymmetry maps.
(C) The conventional average distribution of efferent maps and

the rotated average distribution of efferent maps (bottom). Both
distributions are obtained in time T3. The conventional average
distribution is obtained from the superposition of all 400 efferent
maps (example is shown in B) after it is centralized according to
the unit’s expected position (as the white pixel in the map). The
rotated average distribution is obtained from the superposition
of all 400 efferent maps after it is centralized according to the
unit’s position and rotated to set its peak position to the same
direction (as the gray line in C). Both figures show the
coexistence of the symmetric two-dimensional distribution and
asymmetric property consistently observed in efferent connec-
tions and connection-asymmetry. Figure from Wagatsuma and
Yamaguchi (2004)
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Fig. 12 The time evolution of the directionality map during time
T1–T3. As shown in Fig. 11B, the directionality of unit i is defined
as the direction from the animal’s own position to the peak
position. The directionality map is obtained as the superimposed
image of all the directionalities. At time T1, arrows are aligned
with a short trajectory representing a single behavioral episode.
According to the time lapse, the directionality distribution does
not disappear but rather spreads out over the environment. The

directionality of each unit changes according to the evolution of
exploration, and the heterogeneous distribution of the direction-
alities in the environment is kept as a collective property. The
synaptic plasticity with a positive feedback loop through CA3
recurrent connections enhances the preservation of asymmetric
properties in connections, even after the formation of the
cognitive map. Figure from Wagatsuma and Yamaguchi (2004)
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or a cognitive map, is represented as a type of com-

bined attractor in which different places are repre-

sented as different attractor states, and an attractor

state can smoothly shift over neighboring attractors

with some input perturbation.

In the model of Wagatsuma and Yamaguchi (2005),

different running episodes in the T-maze are repre-

sented as different continuous attractors, according to

the task procedure shown in Fig. 16. It is consistent with

the training procedure of Wood et al. (2000), which

experimentally reported the existence of different

groups of place cells that represent right-turn and left-

turn running episodes independently after the training.

In this computer experiment, two factors are necessary

for the correct memory retrieval: one is the selection of

the correct group, either a right- or left-turn, with re-

spect to the current behavioral context, and the other is

the correct place cell activity with respect to the current

position of the animal. These factors are evaluated as

the retrieval correctness, EP, and position error, PE, in

the model (Wagatsuma and Yamaguchi 2005; Wagat-

suma 2005). How difficult is it for both accuracies to

coexist during the running task? As shown in Fig. 17,

without the theta rhythm, behavioral episodes of right-

and left-turns are easily retrieved by a trigger input at

the start position. In this retrieval test, the population

activity starts at right or left edges and smoothly

propagates along the experienced path. However, if the

theta modulation and sensory input change are given,

they may disrupt the memory retrieval.

EC

CA3

(after spatial 
 exploration)

CA3

(after a 
short run)

Current Perception Pattern Completion
of place 

Anticipation (current 
perception + place)

Time

Fig. 13 Temporal evolution of population activities when rats
are running on the same trajectory with different preceding
experiences, time T1 and T3. (Top) The population activity of the
EC in the T1- and T3-conditions. (Middle) The population
activity of the CA3 in the T1-condition. (Bottom) The population
activity of the CA3 in the T3-condition. Arrows in the middle-
and bottom-row figures represent the directionality of the units.

The gray-scale of the individual arrow represents the firing rate
of the individual unit. The current position is marked by the
symbol of the rat at each time. The clock displayed in the top-
right corner in each square represents the value of the LFP theta
in each layer. Each plot is given in a half theta cycle. Figure from
Wagatsuma and Yamaguchi (2004)
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Fig. 14 Schematic illustration
of information processing by
using theta phase coding
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As Hasselmo et al. (2002c) pointed out, strong past

memory retrieval sometimes disturbs the renewal of

the current position representation, as in the transition

from one place to the next. In contrast, weak memory

retrieval might help in the transition to the next place,

while it also allows for the transition to another wrong

behavioral episode. Thus, both factors should be sep-

arated in theta phases; in other words, the sensory

update and the preservation of the current behavioral

context should alternate in every theta cycle. We

investigated the best range of theta phases for the CA3

recurrent feedback by using the same computational

model of the cognitive map formation (Wagatsuma

and Yamaguchi 2004). For this analysis, we assumed a

modulator of the feedback effect as an additional theta

rhythm with a certain phase shift from the original LFP

theta. In computer experiments, the range of theta

phases with high retrieval correctness and low position

error is obtained around –0.55p of the theta cycle. It

can be suggested that the recurrent feedback that

maximizes prior to the LFP theta within a quarter theta

cycle enables the hippocampal network to update the

proper place cell activity in the correct group. This is

because the recurrent feedback preserves the current

behavioral context in the previous theta cycle, and it

restricts sensory update in the next theta cycle. Inter-

estingly, theta phase precession naturally occurs in the

best range (Fig. 18B), and spike count distribution is

smoothly modulated according to the LFP theta

(Fig. 19), which is consistent with the experimental

observation of place cell populations when theta phase

precession appears (Skaggs et al. 1996).

An important unsolved problem is how the hippo-

campus differentiates place cell populations for dif-

ferent behavioral episodes in the same location. This

has been a controversial issue, because contradictory

experimental results have been reported. Wood et al.

(2000) observed the different population activity of

place cells on places of the common pathway in the T-

maze alternation task. A similar result was observed by

Frank et al. (2000) and Ferbinteanu and Shapiro

(2003). In contrast, Lenck-Santini et al. (2001) could

not observe differential hippocampal activity in the

similar alternation task, and observed only conven-

tional place cells independent of the turning directions.

Focusing on this inconsistency, Bower et al. (2002,

2005) revealed the essential factor and demonstrated

that how the hippocampus encodes is determined by

how behavioral sequences are learned. According to

their results, the training condition with obstructive

blocks to force the animal to run along correct path-

ways gives a differentiation in the population activity

of place cells after the training. In contrast, the training

condition without obstacles, such as in the try-and-er-

ror procedure, gives a consistent firing pattern of place

cells. Bower et al. (2002, 2005) further investigated

whether the differentiation in the hippocampal place

cells contributes to the performance in the task.

Nonetheless, the rat successfully learns in both cases.

Thus, the function of the differentiation of behavioral

context in the hippocampus is still unclear. It might

relate to the animal’s strategy to solve the spatial task,

(A)

(B) B

A

B

A

Fig. 15 (A) Schematic illustration of memory retrieval in
associative memory. Solid line denotes the shape of an energy
function that has two attractors. When an ambiguous input
pattern (an open circle) is given at the hilltop, a retrieval pattern
is obtained as either of two attractors (closed circles) with an
equal probability. (B) Two continuous attractors corresponding
to two behavioral episodes in a spatial alternative task, where the
rat is required to retrieve a behavioral episode (right- or left-
turn) depending on the context even with the same sensory
inputs. When sensory inputs are updated in every theta cycle (A
and B in the figure), memory retrieval also restarts at the hilltop.
It is difficult to keep one attractor consistent with a behavioral
episode

Cogn Neurodyn (2007) 1:119–141 133

123



Input EC/DG CA3

LFP  
theta

∆φ
LFP  
theta

Training stage Test stage

In
pu

t p
at

te
rn

R-turn L-turn L&R-turn

V

y

x

C
on

di
tio

n

R-turn
L-turn

(A) (B)

(C)

Fig. 16 (A) Forced run trajectory in the spatial alternation task.
The local view input depends on the rat’s position in the running
trajectories, as shown in C. (B) Schematic illustration of the
neural network model consisting of three layers. The model is
consistent with the model in Fig. 8, with the exception of the
modulation of synaptic weights by CA3 LFP theta with a phase
shift, shown as D/ in this figure. (C) Input patterns in individual
conditions. The conditions in the training stage are characterized
by different distal cues in order to discriminate the R- and L-

turns. The landmarks are marked on the maze (top). The open
and solid circles with the semicircle V, respectively, denote the
input values 1 and 0 (bottom). In the training stage, the patterns
are assumed to be orthogonal to each other in the R- and L-turn
trials. In the test stage, the distal cues are removed in the
condition, and the input pattern is then given as the full
semicircle by assuming a mixed pattern of the R- and L-turns
in the training stage. Figure from Wagatsuma and Yamaguchi
(2005)
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Fig. 17 (A) CA3 population activities of the R- and L-groups in
the training stage. CA3 units are classified into R- and L-groups
by input patterns in the training stage, shown in Fig. 16C. Each
line denotes the summation of activities in each group, which are
averaged individual theta cycles. The R- and L-groups clearly
alternate depending on the trial. (B) Trace of the population
activity in the retrieval test. The solid circle and open circle

represent the trigger input position of the R-turn retrieval and L-
turn retrieval. The trace curves are plotted by the center of mass
of the retrieval population activity at each instance. Spontaneous
activity starts from the trigger input and moves continuously
along the trajectories of the R- and L-turn trials, depending on
the input position. Figure from Wagatsuma and Yamaguchi
(2005)
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involving memories of behavioral episodes and the

motor learning in the prefrontal cortex and the basal

ganglia. It can be replaced with the question of how

hippocampal memories are utilized with respect to

decision-making. As is seen in the remapping phe-

nomenon, where the drastic change of place cell pop-

ulations with the change of the environment has been

observed (Muller and Kubie 1987; Bostock et al. 1991;

Gothard et al. 1996), the hippocampus discriminates

context by changing the set of place cells or changing

place field locations. If hippocampal memories of

behavioral sequences are necessary in the spatial

alternation task, the similarity between different

behavioral episodes, such as the overlapping length in

task, may be an important factor. If so, the result of

Wagatsuma and Yamaguchi (2005) suggests that the

functional difference in theta phases is useful when the

hippocampal network preserves the current behavioral

context.

Neural dynamics of action selection

in the hippocampal-locomotor system

In previous chapters, we discussed how the hippo-

campus encodes behavioral episodes and how the

hippocampus retrieves these memories while avoiding

ambiguity. The next and last question in the present

article is how hippocampal memories of behavioral

sequences are used for action selection in spatial nav-

igation? Damage to the hippocampal formation is

known to impair the ability for spatial navigation,

suggesting a contribution of the cognitive map to

navigation. However, the cognitive map’s contribution

to the learning of a sequence of spatial locations

remains uncertain.

In the classical rate coding theory, a simple sequence

can be uniquely represented by the firing rate of the

cell population. This concept is useful for navigation

tracing the experienced pathway if the sequence does

not have any repeated segments in it. In the case with a

repeated segment, this concept causes ambiguity in the

space representation on the repeated segment and

requires another cell population for different contexts

(Levy 1996; Wallenstein and Hasselmo 1997; Sohal and

Hasselmo 1998). The hippocampus might need to

assign different contexts to different cell populations.

This difference in cell population firing is, however, not

always observed in experimental observations

(Lenck-Santini et al. 2001; Bower et al. 2002, 2005).

In the concept of theta phase coding, localized

activity generated on the map in every theta cycle

represents not only where one is but also where one
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Fig. 18 (A) The place representation by CA3 population
activities in theta rhythm-dependent and independent condi-
tions. The ordinate and abscissa, respectively, represent the
position of y in the maze and time. The actual current position
and decoded position of the rat are, respectively, obtained by the
sensory input pattern and the CA3 population activities. The
theta rhythm-dependent condition (D/ = –0.55p) is in good
agreement with the current position, while the theta rhythm-
independent condition (Ea=0.8) fails to trace the current
position. Figure from Wagatsuma and Yamaguchi (2005).
(B) CA3 population activities of the R- and L-groups in the

test stage with various phase shifts in the theta rhythm-
dependent modulation of the synaptic weights D/ = –0.55p
(Top) and D/ = –0.55p (Bottom). Time evolution of CA3
population activities. Each curve denotes the summation of
activities in each group, which are the averaged individual theta
cycles. In the top, the R- and L-groups irregularly alternate,
while in B, the R- and L-groups are alternatively activated
depending on the trial. The latter case shows success in
behavioral-context dependent retrieval. Figure from Wagatsuma
and Yamaguchi (2005)
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goes (Fig. 14). Thus, behavioral context is coded in the

firing phase of place cells in a compressed form, which

contains the sub-processes of current perception,

pattern completion and anticipation. This setup is

expected to enable avoidance of ambiguity in spatial

navigation. We hypothesized that current sensory

input, spatial memory and motion are concurrently

coded in the phase of every theta cycle to compute a

possible direction of motion (Wagatsuma and Yam-

aguchi 2006). Memory-guided locomotor behavior in

the eight-figure running task was investigated by

extending the model of the cognitive map formation

(Wagatsuma and Yamaguchi 2004). The model was

proposed as a hippocampal-locomotor system with

theta phase coding. It consists of five layers: EC, HP,

HD, SUB, and LC, as illustrated in Fig. 20.

Extending parts are HD, SUB, and LC. The HD

layer is the head direction system, including the ante-

rior thalamus and other related regions, which receives

visual and vestibular information and maintains rep-

resentation of the current allocentric direction of the

animal’s head, called the head direction. The SUB

layer corresponded to the subicular complex, which

receives directional and location information as out-

puts of the HD and HP layers. The LC layer is a

locomotor system, which determines the direction of

egocentric motion, right- or left-turns, by receiving the

SUB output (Fig. 20B). There are two modifiable

connections in the learning stage: the recurrent con-

nections in HP representing a sequence of places and

connections between HP and SUB layers representing

the association of place and the head-direction when

the rat was in the place. This network structure is

consistent with the model of Samsonovich and

McNaughton (1997).

This model of the hippocampal-locomotor system

can reproduce a motion of an experienced path in

two-dimensional space according to hippocampal

memory retrieval. (In the theta phase coding, the

important point is that the system provides not only
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Fig. 19 (A) Retrieval correctness (EP) and position error (PE).
P�E denotes the position error in the training stage. Correct
retrieval with a small position error is found in the theta-rhythm
dependent condition around D/ = –0.55p. (B) The propagation
of the population activity of CA3 units during theta cycles. The
traces of the center of mass of the population are averaged over
the entire time in the training or test stage. The ordinate
represents the relative position that is defined as the difference
between the current position of the rat and the center of mass of
the CA3 population in each condition. The abscissa represents
the phase of theta rhythm. In the training stage, the relative
position advances as much as the length of the local view input.
In the condition D/ = –0.55p, the relative position of the
population activity advances in the same amount as in the
training stage, as the regular phase precession; it moves with a
faster velocity, because the asymmetric connections accelerate
the propagation of population activities. On the other hand, in

the condition D/ = –0.55p, the movement of the relative position
is reduced to the half-length and is inconsistent with the result in
the training stage. (C) Spike counts of the activity of CA3 units
with respect to the phase of the LFP theta. A single spike of unit
i is defined as the theta phase when a unit has a maximum firing
rate in each theta cycle. The value in each bin, called the spike
count, is obtained by the summation of the firing of all the units
over all 10 trials with respect to each phase of the theta cycle. In
comparison with the condition of D/ = –0.55p, the envelop of the
spike density in the condition D/ = –0.55p has a smooth
oscillatory curve modulated by the theta rhythm. This result
suggests that the smoothness of the theta rhythm modulation and
the weakly distributed firing bridging components in subsequent
theta cycles are necessary for success in behavioral-context
dependent retrieval. Figures A and B are from Wagatsuma and
Yamaguchi (2005) and Figure C is from Wagatsuma (2005)
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the transformation of allocentric locational informa-

tion to egocentric directional information, but also

the transformation of the synaptic time scale, 50–

100 ms, to the behavioral time scale, several sec-

onds.) The memory of the behavioral sequence is

retrieved in every theta cycle in a compressed form.

It is then necessary to revert encoded sequences to

information in the original time scale to use for

behavioral motions, a concept called time expansion

(Fig. 21A).
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Fig. 20 Schematic illustration of the task procedure and the
network structure in the model of Wagatsuma and Yamaguchi
(2006). (A) The task procedure of the eight-figure task. In the
training stage, the rat is forced to run on the eight-figure
trajectory and the hippocampal network stores the behavioral
sequence in the recurrent connection by using theta phase
coding. Memory guided behavior is tested after learning. (B) The
schematic illustration of the dynamics of signal detection in the
LC layer, which transforms temporal sequences of head-
directions in SUB to egocentric turning directions as R- or L-
turns. The temporal sequence of red, green and then blue spikes
in theta cycles before the dashed line enhances the left-turn
signal, while the sequence with the opposite order (blue, green
and then red spikes) in theta cycles after the dashed line

enhances the right-turn signal reversely, as a transition. (C)
Three-dimensional illustration of a model of the hippocampus-
locomotor system with five layers. Black lines denote projections
between layers. Red lines denote propagation of population
activities within individual layers. In EC/HP layers, wave
propagation occurs repeatedly in every theta cycle, as theta
phase precession. In the HD layer, a sustained population
activity appears, representing the current head-direction. In the
SUB layer, location- and head-direction-dependent activity
occurs by receiving the output of HP and HD layers, and it
makes a temporal sequence of head-directions in every theta
cycle, shown in B. Finally the LC circuit receives the SUB
temporal sequence and determines the current motion by using
competitive dynamics between R- and L-turn circuits
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(A) (B)Fig. 21 (A) Schematic
illustration of synthetic
coupling of ‘‘time
compression’’ and ‘‘time
expansion’’ processes in theta
phase coding, which are
necessary for a real-time
interaction between the brain
and the environment, as
schematically shown in B
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In the computer experiment, after the learning, the rat

successfully traced the eight-figure trajectory. In the

crossing point of the eight-figure trajectory, the system

can generate the behavioral information to go to either

the right or left side. In every theta cycle, a sequence of

places in HP is transformed to a sequence of head-

directions in SUB by using learned associations. The

temporal sequence in SUB is finally transformed to a

population activity in LC. LC has two parts, R-turn and

L-turn circuits, and they competitively activate accord-

ing to mutual inhibitions. In each circuit, directional

connections make a ring structure that is either clock-

wise or counter-clockwise. Thus, the R-turn circuit

responds to SUB activities with a temporal sequence of

head-directions in the clockwise direction. In contrast,

the L-turn circuit responds to the opposite sequences, as

shown in Fig. 20C. In this simple task with a crossing

point, the hippocampal-locomotor system with theta

phase coding can generate context-dependent behav-

ioral information, while in case of the long overlap in the

common pathway, it might require some theta rhythm-

modulation of the recurrent feedback as is investigated

in the model of Wagatsuma and Yamaguchi (2005).

In the concept of the goal-oriented map (Fig. 2A),

or vector field, every position has a unique direction in

which to go next, ignoring where the animal came

from. Thus, the running direction is determined out of

context. The mechanism is effective to guide the ani-

mal to a single goal in the environment, even when

obstacles exist; however, this is not applicable to nav-

igation with multiple and/or changing goals. To explore

how a cognitive map contributes to navigation with

multiple goals, the contribution of the deep layer of the

entorhinal cortex was recently discussed. Hasselmo

and his colleagues (Hasselmo et al. 2002b; Gor-

chetchnikov and Hasselmo 2002; Koene et al. 2003)

proposed that sustained activity in the cortices repre-

sents the temporal context and the desired goal and is

transmitted to the hippocampal cognitive map through

the deep entorhinal cortex. They obtained successful

results by using the original large-scale simulation

system of the spiking neural network with the virtual

rat.

It is still unclear if unique cell populations are nec-

essary for the hippocampus to represent the same

location in different contexts. These considerations

await further experimental investigation. However, the

concept of theta phase coding sheds light on new

aspects of the functional roles of theta rhythm-dependent

neural dynamics in the hippocampus. It enables the

hippocampal network to encode and retrieve the

information of multiple contents in every theta cycle in

the form of time compression and time expansion.

These temporal mechanisms are necessary for real-

time interaction with the environment, such as on-line

sensory update and action change (Fig. 21B).

Summary and perspective

Here we have briefly reviewed the classical theory for

the cognitive map in the framework of rate coding,

discussed the potential of memories of behavioral se-

quences and focused on theoretical approaches to theta

phase coding.

In the classical theory, many conventional models

contained assumptions of a transient input, on the or-

der of several milliseconds, dealt with output by sus-

tained firing rates of neurons, and investigated neural

dynamics independently of the behavioral change that

happens in the external environment. Recently several

theoretical studies investigated the function of the

theta rhythm in memory (Lisman and Idiart 1995;

Jensen and Lisman 1996; Fukai 1999) and the contri-

bution of theta rhythm to the memory encoding (Sato

and Yamaguchi 2003; Wu and Yamaguchi 2004). Fur-

thermore, a large-scale simulation system of the spik-

ing neuron network with theta rhythm was designed

within the system of the virtual rat in the external

environment (Hasselmo et al. 2002b; Gorchetchnikov

and Hasselmo 2002; Koene et al. 2003).

The research presented here was directed towards

real-time computation based on the collective dynam-

ics of non-linear oscillations. The primary finding was

that the behavioral context of the environment, not

only where I am but also where I go, is represented in a

temporal manner in the entorhinal–hippocampal net-

work, which can be described by neural dynamics with

oscillator synchronization. In the concept of theta

phase coding, a temporal evolutional pattern of the

population activity emerges in every theta cycle,

resulting in the harmonics between the phase wave of

sensory input-driven activity and the trigger wave

generated by learned synaptic connections. It works for

reorganization of the hippocampal network and

enables on-line update of the memory content in

accordance with the current perception. Further

investigation will focus on a long-term interaction be-

tween accumulated memories and the current percep-

tion and will enlighten the development of the network

structure. This information would provide memories

with a higher complexity beyond two-dimensional

maps, as shown in Fig. 3 (Sato and Yamaguchi 2005).

These computational approaches will pave the way for

theoretical study on the cognitive processes behind

how individual experiences develop into knowledge,
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which happens not only in animal cases but also in

humans.
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