
RESEARCH ARTICLE

Numerically evaluated functional equivalence between chaotic
dynamics in neural networks and cellular automata
under totalistic rules

Ryu Takada Æ Daigo Munetaka Æ Shoji Kobayashi Æ
Yoshikazu Suemitsu Æ Shigetoshi Nara

Received: 14 June 2006 / Accepted: 25 September 2006 / Published online: 7 December 2006
� Springer Science+Business Media B.V. 2006

Abstract Chaotic dynamics in a recurrent neural

network model and in two-dimensional cellular auto-

mata, where both have finite but large degrees of

freedom, are investigated from the viewpoint of har-

nessing chaos and are applied to motion control to

indicate that both have potential capabilities for com-

plex function control by simple rule(s). An important

point is that chaotic dynamics generated in these two

systems give us autonomous complex pattern dynamics

itinerating through intermediate state points between

embedded patterns (attractors) in high-dimensional

state space. An application of these chaotic dynamics

to complex controlling is proposed based on an idea

that with the use of simple adaptive switching between

a weakly chaotic regime and a strongly chaotic regime,

complex problems can be solved. As an actual example,

a two-dimensional maze, where it should be noted that

the spatial structure of the maze is one of typical ill-

posed problems, is solved with the use of chaos in both

systems. Our computer simulations show that the suc-

cess rate over 300 trials is much better, at least, than

that of a random number generator. Our functional

simulations indicate that both systems are almost

equivalent from the viewpoint of functional aspects

based on our idea, harnessing of chaos.

Keywords Chaotic dynamics � Recurrent neural

network � Cellular automata � Information processing �
Complex control � Adaptive function

Introduction

For the last several decades, biological systems have

been extensively investigated because of their excellent

functions that work in various environments. Neural

networks is one of these that has been developed both

experimentally and theoretically. The collection of

papers in Anderson and Rosenfeld (1988, 1990) is a

recognition of such historical works. Among these

developments, the discovery of chaos has had a great

impact not only on biology, but also on engineering,

brain science, and other fields of science. Now, much

interest is focused on how chaotic dynamics is related

to excellent information processing or control func-

tioning realized in biological systems, for example, in

the brain (Skarda and Freeman 1987; Kay et al. 1996).

There has been a considerable number of works about

brain functioning from the viewpoint of complex non-

linear dynamical systems. In several pioneering works

(Tsuda 2001; Kaneko and Tsuda 2001; Tokuda et al.

1997; Fujii et al. 1996), coupled map systems are

R. Takada � D. Munetaka
Department of Electronic & Information System
Engineering, The Graduate School of Natural
Science & Technology, Okayama University,
700-8530 Okayama, Japan

S. Kobayashi
Department of Electrical & Electronic Engineering,
Faculty of Engineering, Okayama University,
700-8530 Okayama, Japan

Y. Suemitsu
Kyoto School of Computer Science, Nishikujyo Minami-ku,
Kyoto 601-8407, Japan

S. Nara (&)
Department of Electrical & Electronic Engineering,
The Graduate School of Natural Science & Technology,
Okayama University, 700-8530 Okayama, Japan
e-mail: nara@elec.okayama-u.ac.jp

123

Cogn Neurodyn (2007) 1:189–202

DOI 10.1007/s11571-006-9009-2

models proposed to describe these systems related to

the functional roles of chaos. Examples include systems

composed of binary map elements, cellular automata

(Aizawa and Nishikawa 1986; Kim and Aizawa 2000),

or binary neuron networks (Davis and Nara 1990; Nara

and Davis 1992; Nara et al. 1995). Also, a globally

coupled map lattice (GCM) was proposed by Kaneko

(1990), and a chaotic neural network (CNN) was put

forward by Aihara et al. (1990). Generally speaking, it

is quite plausible that GCM or CCN generates high-

dimensional chaos, because a single element itself

includes chaotic mapping. However, it is not clear

whether a coupled binary map can provide chaos.

Therefore, it is surprising that Wolfram claimed to

have found chaotic dynamics in cellular automata

(Wolfram 1986). It was found, however, by Nara and

Davis in a recurrent neural network based on a binary

neuron model also (Nara and Davis 1992).

We support the viewpoint that chaotic dynamics are

potentially useful in complex functioning and/or con-

trolling in systems with the large but finite degrees of

freedom typically observed in biological systems. For

instance, Nara and Davis have been studying the

functional role of chaotic dynamics in a recurrent

neural network of binary neurons (abbreviated as NN

hereafter) (Davis and Nara 1990; Nara and Davis

1992; Nara et al. 1995; Mikami and Nara 2003; Nara

2003; Suemitsu and Nara 2004). They have also shown,

in their series of papers, that complex dynamics gen-

erated by Cellular Automata (abbreviated as CA

hereafter) could be useful in the sense that CA can

describe or reproduce arbitrarily given or observed

complex dynamics with use of the rule dynamics of

CA. In fact, they provided two practical examples.

First, digital sound signals (music and/or spoken

words) can be completely reproduced by a one-

dimensional two-state three-neighbors cellular auto-

mata (1-2-3 CA) (Nara et al. 1999; Wada et al. 2002;

Tamura et al. 2003). Second, two-dimensional motion

pictures can also be completely reproduced by two-

dimensional two-state cellular automata with totalistic

rules assigned to each pixel (2-2-T CA) (Tamura et al.

2003; Miura et al. 2005). In these papers, it is shown

that arbitrarily given pattern dynamics in one- and

two-dimensional systems with a large number of bin-

ary cells can be completely reproduced by extracting

appropriate rule(s). These are typical examples of in-

verse problems.

Noise robustness investigated by Nara et al. indi-

cated that dynamics starting from initial states with

including of noise gave the three cases. The first is the

converged case into the originally given pattern

dynamics (attractor regime) (Kuroiwa et al. 2005), the

second is the itinerant chaotic dynamics that are not so

far from the original pattern dynamics (weakly chaotic

regime), and the third is highly developed chaotic

dynamics (strongly chaotic regime) (Tamura et al.

2003). These would surely be related to complex

dynamics occurring in a recurrent neural network

model extensively investigated by one of the authors in

Mikami and Nara (2003), Nara (2003), and Suemitsu

and Nara (2004). Such attractor and/or chaotic

dynamics in NN and CA give us the complex pattern

dynamics sampled from intermediate state points

between embedded patterns in the high-dimensional

state space. A new idea arises from this: an application

for complex control could be possible through the use

of these dynamics, in particular, to solve ill-posed

problems.

In this paper, we focus on a heuristic application of

chaotic dynamics generated by NN and CA for mo-

tion control and report the results of our functional

simulation with the use of adaptive dynamics of NN

and CA. We pay particular attention to a specified

motion control under an appropriate coding of com-

plex dynamics in high-dimensional state space into

motions in two-dimensional space and to try to solve

a maze, where a moving object should reach a set

target in two-dimensional space under certain obsta-

cle configurations. It should be noted that this func-

tional example is taken from the behaviors of a

female cricket, which can track the directions of

males’ positions in dark fields where there are a large

number of unknown obstacles, by their chirps. We

were not able to find an appropriate word to repre-

sent the function to solve one of typical ill-posed

problems as such tracking. So, let us use the word

‘‘maze‘‘ to represent the functional simulation in this

paper. Our motivation is that we believe that chaotic

dynamics, even in systems with large degrees of

freedom, could be governed by a sequence of certain

simple deterministic rules, or by a single rule as

observed in nonlinear systems with small degrees of

freedom. By virtue of our heuristic idea, one could

obtain some insight into the dynamical mechanisms of

their functions, which could then be applied toward

realizing complex controls or complex information

processing via a certain simple rule(s).

Embedding designed attractors into a recurrent

neural network model and introducing chaotic
dynamics

Let us introduce a recurrent neural network model and

define the synchronous updating rule as follows:

190 Cogn Neurodyn (2007) 1:189–202

123

siðt þ 1Þ ¼ sgn
X

j2GðrÞ
Wij � sjðtÞ � hi

0
@

1
A; ð1Þ

where si(t) = ±1 (i = 1, … ,N) represents the firing state

of a neuron specified by index i at time t, and the

function sgn(x) takes 1 (if x ‡ 0) or –1 (if x < 0). hi is the

threshold of each neuron and is taken to be zero until

the learning rule will be introduced in the discussion in

the fourth section. Wij is a connection weight (synaptic

weight) from the neuron sj to the neuron si, where Wii is

taken to be 0. G(r) denotes a connectivity configuration

set, where each neuron has r connectivities (randomly

located fan-in number for each neuron), and the

transmission of signals from the other (N – r)

connectivities are assumed to be blocked by certain

inhibitory action. It should be noted that configuration

set G(r) indicates spatial configurations of connectivity

r, where there are NCr different combinations for

determining a specified G(r). In our model, long-term

behavior of s(t) is determined depending on a given set

of connection matrices Wij, and as is well known, an

appropriately determined {Wij} enables us to make

arbitrary chosen state vectors fng be multiple stationary

states in the time development of s(t), which is

equivalent to storing memory states in the functional

context. In our study, Wij are taken as follows:

Wij ¼
XK

l¼1

XM

k¼1

ðnkþ1
l Þi � ðn

ky
l Þj; ð2Þ

where M is the number of states included in a cycle

ðnMþ1
l ¼ n1

lÞ and K is the number of cyclic memories

(MK << N). If connectivity r is large, with r . N, the

sequences of patterns used to construct the memory

matrix are attracting sequences. Therefore, in the

absence of external input, which will be introduced in

later sections, the network can then function as a

conventional associative memory. If s(t) is one of the

memory patterns, nk
l say, then s(t + 1) will be the next

memory pattern in the cycle, nkþ1
l . If s(t) is near one of

the memory patterns nk
l, then the sequence s(t + kM)

(k = 1, 2, 3, ...) generated by the M-step map will

converge to the memory pattern nk
l. More specifically,

for each memory pattern nk
l, there is a set of states Blk,

called a memory basin, such that if s(t) is in Bl k, then

s(t + kM) (k = 1, 2, 3, ...) will converge to nk
l. In Eq. (2),

nky
l is the conjugate vector of nk

l that satisfies

nky
l � nk0

l0 ¼ dll0dkk0 and is introduced to enable us to

avoid increasing spurious memories, and is defined as

follows. If we choose arbitrary patterns as fnk
lg, then

the patterns usually have strong overlap between them,

where an overlap between the patterns is defined by

oab ¼ 1

N
na � nb ¼ 1

N

XN

i¼1

na
i n

b
i ða; b ¼ 1; . . . ;MKÞ ð3Þ

and, for case of description, the suffixes are changed to

the total numbering MK. Using this MK · MK overlap

matrix, let us define a as the inverse matrix of o, i.e., a

= o–1. Then nky is defined as nky ¼
PMK

c¼1 akcn
c. It is al-

most trivial that fnky
l g and fnk0

l0 g satisfy the orthogonal

relation nky
l � n

k0

l0 ¼ dll0dkk0 when the MK numbering

of the vectors fnmðyÞj m ¼ 1; � � � ;MKg is divided into

(M, K) numbering as fnkðyÞ
l j l ¼ 1; . . . ;K; k ¼ 1; � � � ;Mg

again.

Next, we introduce a certain system parameter and

destabilize these multi-stable attractors. The idea is

to reduce the number of synaptic connectivity r, in

other words, the fan-in number to each neuron.

When r becomes smaller and smaller, each basin

volume decreases gradually. Finally, when r reaches

some critical connectivity rc (r\rc ffi N=10), each

basin vanishes and the attractor becomes unstable.

Thus, if the number of connectivity r is sufficiently

reduced, updated network states do not converge to

any cycle even if they have been updated for a long

time. Since it can be observed that network dynamics

becomes itinerant in N-dimensional state space con-

sisting of the 2N points of an N-dimensional hyper-

cube, we will call such dynamics ‘‘chaotic

wandering‘‘. To investigate the dynamical structure,

we can calculate the basin visiting distribution in a

certain updating step interval (see Suemitsu and

Nara 2004).

It should be noted that the basin visiting mea-

sures are different from the relative basin volumes,

which means that the orbits are not distributed

uniformly in the state space but have certain

dynamical structures. Considering this result, when

connectivity r is sufficiently reduced, all the memory

cycle attractors become unstable and the network

shows highly developed chaotic dynamics. Empiri-

cally speaking, we have found that, depending on

the selections of connection numbers and their

spatial configurations, there are many cases where

dynamics are itinerant but stay in each attractor

basin for considerably longer time steps. In quanti-

tative sense, however, it is quite difficult to obtain

concrete statistical data due to the enormous variety

of complex dynamics even in this model system with

a finite but not so small number of degrees of

freedom. Therefore, it is not yet clear whether these

chaotic dynamics could be called Chaotic Itinerancy

(CI) or not. The name CI was introduced by

Kaneko, Tsuda, and Ikeda.

Cogn Neurodyn (2007) 1:189–202 191

123

Now, to demonstrate the destabilizing processes in

our model, let us simply show a bifurcation diagram of

an overlap, where an overlap is a one-dimensional

projection of state vector s(t) onto a certain reference

vector. Thus, let us define an overlap m(t) as an inner

product with an initial state (the reference vector) s(0)

and the state s(t) at time step t:

mðtÞ ¼ 1

N

XN

i¼1

sið0ÞsiðtÞ: ð4Þ

We have calculated long-term behaviors of overlap

m(t) for various connectivities r. In consequence, with

reducing connectivity r, each M period attractor (tak-

ing K = 4 and M = 6 in the present example) becomes

unstable, and periodic motions longer than M period

are generated. Finally, non-periodic dynamics occurs

(Fig. 1).

Complete description of arbitrarily given pattern

dynamics with two-dimensional CA governed
by totalistic rules

Let us begin with a brief introduction of one-dimen-

sional CA under totalistic rules. We assume many cells,

where each cell is arranged on a one-dimensional

chain. We employ the variables ai
t (=0 or 1, i = 1,…, N),

which indicate the state of the ith site in the chain at

time step t. The state of the ith site at time step t + 1,

ai
t+1 is determined by its state and those of its neigh-

boring sites at time step t, so that the updating rule can

be represented as

atþ1
i ¼ f ð. . . ; at

i�1; a
t
i; a

t
iþ1; . . .Þ; ð5Þ

where the function f(�) is called a transition function,

which updates the state of ai
t to ai

t+1. If we employ the

transition function:

atþ1
i ¼ f ðat

i�1 þ at
i þ at

iþ1Þ ð6Þ

where f(n) = 0 or 1 (n = 0, 1, 2, 3), and introduce the

rule number as

Rule number ð0--15Þ ¼ f ð0Þ þ 2f ð1Þ þ 22f ð2Þ
þ 23f ð3Þ;

ð7Þ

then it is called the one-dimensional two-state

three-neighbor CA under totalistic rule. We abbre-

viate this as 1-2-3-T-CA hereafter. It means that the

state of a cell at a certain time step is determined

by the total sum of the states of the three neigh-

boring cells.

It is quite straightforward to extend this rule to two

dimensions by introducing two-dimensional variables

aij
t+1 with the following formula:

at
ij ¼ 0 or 1: ð8Þ

The three neighbors in one-dimension are changed to,

for example, five neighbors in two-dimension:

atþ1
ij ¼ f ðat

i�1;j þ at
i;j�1 þ at

i;j þ at
i;jþ1 þ at

iþ1;jÞ ð9Þ

Rule number ¼ f ð0Þ þ 2f ð1Þ þ 22f ð2Þ þ 23f ð3Þ
þ 24f ð4Þ þ 25f ð5Þ;

ð10Þ

Table 1 and Fig. 2 show some examples of the rules

and the time developing patterns given by the rule

numbers 30, 47, and 48. The patterns are completely

different to each other in spite of the same initial

conditions.

Our idea is that we regard a sequence of arbitrarily

given binary patterns as the time development of a

corresponding 2-2-T-CA, where the number of neigh-

bors should be chosen in an appropriate way so as to

reproduce the given pattern dynamics. Now, an inverse

problem arises: how to find, for each pixel, a 2-2-T-CA

rule that can reproduce the sequence of given

(designed) bit patterns, for instance, shown in Fig. 2.

Let us briefly describe our method of extracting the

rules from the arbitrarily given cyclic pattern dynamics.

Fig. 1 The long-term behaviors of overlap m(t) at M-step
mappings as the functions of connectivity r, where the embedded
attractor patterns are different to each other. One can observe

that in both cases, the reduction in connectivity causes non-
periodic dynamics (chaos)

192 Cogn Neurodyn (2007) 1:189–202

123

Supposing certain cyclic pattern sequences, consisting

of N · N pixels (cells) and K-cycles with M-patterns

per cycle, so with a total of L(= MK) patterns, we try

to determine a totalistic rule of 2-2-T-CA to each cell

(pixel) so as to reproduce the given periodic sequence

of cell states perfectly, first, cycle by cycle and next,

K-cycles simultaneously(Fig. 3). Each rule is repre-

sented by Rule[i, j], where (i, j) indicates the two-

dimensional position in the frames. In relation to the 2-

2-T-CA used in this paper, let us write the updating

equation of the cell states as

atþ1
ij ¼ fij

X

k;l2GijðrÞ
at

kl

0
@

1
A; ð11Þ

where (i, j) represents the coordinate of the cells and

Gij(r) represents the configuration of neighboring cells

to calculate the total summation of states. Here, r

denotes the numbering that represents the specified

configuration so as to perfectly reproduce the given

binary sequence. Furthermore, fij takes 0 or 1

depending on the value
P

k;l2GijðrÞ at
kl. To specify the

Rule[i, j] in more detail, let us represent the rule of the

cell located at (i,j) as

Rule½i; j� ¼ ðr : fijð0Þ; fijð1Þ; . . . ; fijðmðrÞÞ; ð12Þ

where m(r) represents the maximum number of

neighboring configurations in a chosen configuration

specified by r. In finding a rule set { Rule[i, j] } to up-

date cell patterns according to Eq. (11) for all (i, j), we

must specify {Gij(r)} that represents the configuration

of neighboring cells to calculate the total summation

of states. So, let us take Gij(r) as shown in Fig. 4, where

r = 1, 2, 3, ... and r should be increased until the given

sequence of the cell is perfectly reproduced by apply-

ing Rule[i,j]. For computer simulation in the present

paper, we employ N = 400, K = 4, and M = 2, so L = 8

(see Fig. 2). A detailed algorithm to determine

Rule[i,j] = (r : fij(0), fij(1), ... ,fij(m(r)) is described and

explained in Miura et al. (2005). After extracting the

rules from the given cyclic patterns, we obtain, for each

Table 1 The relation between the rule number and the updated
state of the cell

n ¼
P

i;j aij Rule number:
Pn¼5

n¼0 2nf ðnÞ

0 30 47 48 63

0 0 0 1 0 1
1 0 1 1 0 1
2 0 1 1 0 1
3 0 1 1 0 1
4 0 1 0 1 1
5 0 0 1 1 1

0 � ‘5 in the table correspond to f(0)~f(5) in Eq. (10)

Fig. 2 The time developing patterns of 2-2-5-T-CA for four time
steps of 2,500 cells (50 · 50). (a) rule number 30; (b) rule number
47; (c) rule number 48. As a one-dimensional CA, there are
various time developing patterns

Fig. 3 The K-cycle patterns, each of which consists of M
patterns per cycle. Note that each pattern has a certain internal
structure as stated later. In the present case, M = 2 and K = 4,
giving a total of L = MK = eight patterns. Let us call them cycles
C1, C2, C3, and C4

Fig. 4 The configurations of neighboring cells that will be
necessary to reproduce the given bit-pattern sequence starting
from the initial configuration. Numbers 1, 2, 3, ... , represent the
configuration numbering r that specifies the spatial configuration

Cogn Neurodyn (2007) 1:189–202 193

123

set of cyclic patterns, (cycles C1, C2, C3, and C4), the

four corresponding rule sets (set R1, R2, R3, and R4)

each of which consists of the 400-rules, and { Rule[i, j] },

which corresponds to the 20 · 20 = 400 pixels and

reproduces the periodic sequences in each cycle. The

next task is to determine the rule set RC, where it in-

cludes the 400-rules that corresponds to the

20 · 20 = 400 pixels and reproduces all of the given

periodic pattern sequences. This means that once a

pattern in the total L(=MK) patterns belonging to any

cycle is given as an initial pattern, the corresponding

cyclic pattern sequence is reproduced by applying the

extracted rules to each pixel. The rules belonging to

rule set RC are called the chaos rules, and the meaning

of ‘‘chaos’’ is explained below.

The final task in this section is to consider the case

that initial states include noise. An important point is

that if noise is introduced in an initial pattern or

during the updating of patterns, non-used cases in the

possible values of
P

k;l2GijðrÞ a
t
kl occur due to the

existence of noise. Thus, one needs to determine the

rules, which state whether value 1 or 0 should be

employed in those cases. For instance, at each time

step, there could occur m(r) + 1 cases of
P

k;l2GijðrÞ at
kl

in determining each cell state at the next step, which

in a large number of cases would not occur under the

non-existence of noise. There would be many choices

because a large number of cases in m(r) + 1 are not

used in reproducing the given pattern sequences. In

the present paper, we employ the following interpo-

lated extension of totalistic rules. We propose an idea

that used cases (1 or 0 at certain specified cells)

should be extended to the neighboring non-used cases

one by one until they are fully interpolated. The re-

sult would be that any of the m(r) + 1 cases inP
k;l2GijðrÞ a

t
kl become available, even in the presence

of noise during updating. Computer experiments

indicate that the effect of noise brings the time

development not random pattern dynamics but,

depending on the five rule sets (R1, R2, R3, R4, and

RC), itinerant orbits that are, for the rule set R1, R2,

R3, R4, quite close to the cycles that we designed

(a weakly chaotic regime), and for the rule set RC,

highly delocalized chaotic orbits (a strongly chaotic

regime) in the high-dimensional state space. These

results suggests that the rules could drive new

dynamics without the complex mechanism that is

observed, say, in the neurodynamics of biological

systems. If a large deviation from the original patterns

occur, it becomes crucial to solve the maze designed,

as shown in a later section.

In the next section, we observe both chaos in NN

and CA using a certain visualizing method.

Observation of chaos in both NN and CA using

transformation of dynamics into two-dimensional
motion via a certain coding

Motion function defined from firing patterns

in NN

The detailed content in this section was previously re-

ported in our paper (Suemitsu and Nara 2004). Now, in

two-dimensional space, an object is assumed to move

from position (qx(t), qy(t)) to (qx(t + 1), qy(t + 1)) via a

set of motion functions. With use of network state (t),

the motion functions are defined, for instance, by

fxðsðtÞÞ ¼ 4
N

PN
4

i¼1 siðtÞ � siþN
2
ðtÞ and fyðsðtÞÞ ¼ 4

N

PN
4

i¼1 siþN
4

ðtÞ � siþ3
4NðtÞ. Here, fx and fy range from –1 to +1

because of the normalization by 4/N. Note that each

motion function is calculated using a self inner-product

between two parts of the network state s(t). In two-

dimensional space, actual motion of the object is given by

qx(t + 1) = qx(t) + fx(s(t + 1)) and qy(t + 1) = qy(t) +

fy(s(t + 1)). In the present example, we take N = 400,

M = 6, K = 4, and two-dimensional space is digitized

with a resolution of 0.02 because of the binary state

vector s(t) with 400 elements and the definitions of fx

and fy. A set of attractor patterns is determined as

follows. For case of description, let us represent a designed

state vector as nk
l ¼ fn

l;k
i ji ¼ 1; . . . ;Ng, where (l = 1, …

,K, k = 1, … ,M). Each attractor pattern is divided into two

parts. One is a random pattern part, where each state be-

comes + 1 or –1 with probability 0.5 (ni
l,k = ±1 : i = 1,…,N/

2). The other, (ni
l,k = ± 1:i = N/2 + 1 ,..., N), is determined

so as the relations ðfxðnk
1Þ; fyðnk

1ÞÞ ¼ ð�1;�1Þ, ðfxðnk
2Þ;

fyðnk
2ÞÞ ¼ ð�1;þ1Þ, ðfxðnk

3Þ; fyðnk
3ÞÞ ¼ ðþ1;�1Þ, ðfxðnk

4Þ;
fyðnk

4ÞÞ ¼ ðþ1;þ1Þ are satisfied. When we choose M = 6

and K = 4, the four limit cycle attractors (K = 4), each of

which has M (=6) patterns, are embedded in the synaptic

connection matrix of the network.

Figure 5 shows the used patterns in the present

experiment. Each limit cycle attractor corresponds to a

constant motion of the object toward one of the four

directions (+1, +1), (+1, –1), (–1, +1), (–1, –1). Let us

call these attractor patterns to be ‘‘prototype patterns’’,

which means they drive monotonic motions by intro-

duced coding of motion functions.

Figure 6 shows an example of two motions that are

generated by the first cycle attractor while maintaining

the full connectivity (r = 400) and under chaotic

dynamics with a low connectivity (r = 10).

Motion function defined from cell patterns in CA

According to the definition in the previous subsection,

an object is assumed to move from the position (qx(t),

194 Cogn Neurodyn (2007) 1:189–202

123

qy(t)) to (qx(t + 1), qy(t + 1)) via a set of motion

functions. Converting of cell states {ai,j
t = 0, 1} to s(t)

defined as s(t) = {sij(t) = 2aij
t – 1 | i, j = 1–20}, and

employing a slightly different definition from the pre-

vious section, the motion functions are defined by, for

instance, by

fxðsðtÞÞ ¼
1

100

Xð10;10Þ

ði;jÞ
s2i�1;2j�1ðtÞ � s2i;2j ð13Þ

fyðsðtÞÞ ¼
1

100

Xð10;10Þ

ði;jÞ
s2i�1;2jðtÞ � s2i;2j�1ðtÞ; ð14Þ

where we take N = 400, so fx and fy range from –1 to

+1 because of normalization. In two-dimensional

space, actual motion of the object is given by

qxðt þ 1Þ ¼ qxðtÞ þ fxðsðt þ 1ÞÞ; ð15Þ

qyðt þ 1Þ ¼ qyðtÞ þ fyðsðt þ 1ÞÞ: ð16Þ

In our computer simulations, two-dimensional space is

digitized with a resolution of 0.02 because of the min-

imum variation of the motion function, fx and fy, de-

fined with use of the state vector s(t) with 400 elements.

Taking K = 4 and M = 2 in the present simulation,

K (=4) cycles, each of which has M (=2) patterns, are

embedded in the state space. In other words, they are

described by the extracted CA rules. Each cycle pat-

tern (prototype pattern) corresponds to a monotonic

motion of the object toward one of the four directions

(+1, +1), (+1, –1), (–1, +1), (–1, –1) in two-dimensional

space.

In our model, each embedded pattern cycle corre-

sponds to one of four prototypical motions in two-

dimensional space. When we give a random binary

pattern as an initial state and update it by applying a

rule set, weakly chaotic output of cell pattern dynamics

is generated and the rule sets R1, R2, R3, R4 provide

monotonic motions of the object in two-dimensional

space in the four directions. Figure 7 shows the motion

of the object to move in four directions monotonically

within 20 time steps. Furthermore, if an initial cell

pattern (a random binary pattern) is updated by the

chaos rule set RC, chaotic motion of the object occurs.

Figure 8 depicts the chaotic orbit generated from

chaotic dynamics of the chaos rule set.

In closing this section, it should be noted that dif-

ferent choices of M, the number of patterns per cycle,

give qualitatively the same results for the simulation

stated in the next section. Therefore, our results can be

described as typical. However, regarding the various

Fig. 5 The embedded cycles, where each cycle consists of six
patterns. The first cycle fnk

1jk ¼ 1; . . . ; 6g is chosen so as
ðfxðnk

1Þ; fyðnk
1ÞÞ ¼ ð�1;�1Þ are satisfied. The others correspond

to (–1, +1), (+1, –1), (+1, +1), respectively

Fig. 6 (Left) An example of the object orbit from start point (0,
0) in two-dimensional space in an attractor regime (r = 400).
One of the monotonic motions embedded in synaptic connection
matrix Wij is shown. (Right) An example of the object orbit from
start point (0, 0) in two-dimensional space in a chaotic regime
(r = 10). Note that the chaotic motions strongly depend on
connectivity r

Fig. 7 An example of the object orbit driven by the four rule sets
R1, R2, R3, and R4, starting from the point (0,0) in two-
dimensional space: the four motions within 20 time steps

Cogn Neurodyn (2007) 1:189–202 195

123

choices of prototype patterns that satisfy ðfxðnk
lÞ; fyðnk

lÞÞ
¼ ð�1;�1Þ; ð�1;þ1Þ; ðþ1;�1Þ; ðþ1;þ1Þ, different rule

sets, R = {R1, R2, R3, R4, RC} perform differently in

solving the maze. Let us call R = {R1, R2, R3, R4, RC} a

‘‘Motion-Rule-Set’’, where we use the set numbering a
(a = 1, 2, 3, …) if we employ many Motion-Rule-Sets

and call them Ra. Various choices of different proto-

type patterns gave different performance when

we conducted simulations to solve the maze. Thus, we

tested a hundred of Motion-Rule-Sets ({ Ra | a = 1–100 }

and the number of corresponding designed patterns is

800 in total) in our simulations executed in the next

section, to find Motion-Rule-Sets that provide better

performance.

Motion control with adaptive switching between
a weakly chaotic regime and a strongly chaotic regime

in NN and CA

Generally speaking, from a controlling viewpoint,

chaos is considered to spoil control systems. A large

number of methods have been proposed to avoid the

emergence of chaos. It was surprising when the OGY

method was proposed (Ott et al. 1990) to stabilize an

arbitrary periodic orbit in chaos, but their successful

treatment was restricted to a system with a few degrees

of freedom.

Now, as stated in the ‘‘Introduction’’ section, we

consider chaos to be useful not only in solving ill-posed

problems but also in controlling of systems with many

but finite degrees of freedom. To demonstrate poten-

tial capabilities of chaotic dynamics generated by NN

and CA, let us try to apply it to control functioning and

select, as an example, a maze in two-dimensional

space. An object is assumed to move in the

two-dimensional maze and approaches the target via

the use of chaotic dynamics. One reason why we con-

sider the maze is that the process to solve a maze can

be easily visualized. That is, we can understand how

the dynamical structures are effectively utilized in

controlling. An object is assumed to move in the two-

dimensional maze and approaches the target with use

of chaotic dynamics. This functional simulation corre-

sponds to the behaviors of a female cricket, which can

track the directions of males’ positions in dark fields

where there are a large number of unknown obstacles,

by their chirps. Our idea, therefore, is as follows:

(1) The weakly chaotic regime in NN/CA gives

monotonic motion to the quadrant where the

target belongs.

(2) The strongly chaotic regime in NN/CA gives non-

monotonic motion, provided that there is an

obstacle in the target direction and/or the direc-

tion of the previous one-step motion does not

coincide with the target direction.

(3) A roving robot can always know the quadrant

where the target belongs, just as a female cricket

can know the directions of males’ positions in

dark fields where there are a large number of

unknown obstacles, from their chirps.

Computer simulations of motion control

using chaos in NN

In this section, we propose a control method for the

object through switching the connectivity r with a

simple evaluation. A target is assumed to be set in two-

dimensional space. Note that an exact coordinate value

of the target (Qx0, Qy0) is not introduced in the control

method proposed below. As an example of an ambig-

uous external response, a rough direction of the target

D1(t) with a certain tolerance is defined and is recog-

nized by the object. For example, D1(t) becomes 1 if

the direction from the object to the target is observed

between an angle from 0 to p/2 (the first quadrant),

where the angle is defined by the x-axis in two-

dimensional space. Similarly, D1(t) becomes n

(= 1,2,3,4) if the direction belongs to the angle (n–1)p/2

and np/2. Second, the direction of the object’s motion

D2(t) from time t–1 to t is defined as

D2ðtÞ ¼

1 ðcxðtÞ ¼ þ1 and cyðtÞ ¼ þ1Þ
2 ðcxðtÞ ¼ �1 and cyðtÞ ¼ þ1Þ
3 ðcxðtÞ ¼ �1 and cyðtÞ ¼ �1Þ
4 ðcxðtÞ ¼ þ1 and cyðtÞ ¼ �1Þ

8
>><

>>:
;

where cx(t) and cy(t) are given as

Fig. 8 An example of a chaotic orbit driven by the chaos rule
set, RC, starting from the point (0,0) in two dimensional space,
where the orbit is taken up to 500 time steps

196 Cogn Neurodyn (2007) 1:189–202

123

cxðtÞ ¼
qxðtÞ � qxðt � 1Þ
jqxðtÞ � qxðt � 1Þj ð17Þ

cyðtÞ ¼
qyðtÞ � qyðt � 1Þ
jqyðtÞ � qyðt � 1Þj : ð18Þ

Finally, with use of D1(t) and D2(t), a time-depen-

dent connectivity r(t) in the network is determined:

rðtÞ ¼ RLð¼ NÞ if D1ðt � 1Þ ¼ D2ðt � 1Þ
RSð� NÞ otherwise

�
; ð19Þ

where RL is sufficiently high connectivity (N in our

experiments) and RS is low connectivity. Therefore,

after determination of the connectivity r(t), the motion

of the object is calculated from the network state up-

dated with r(t). This motion provides a further calcu-

lation for D1(t) and D2(t). By repeating this process,

where the connectivity is switched between RL and RS,

the object moves in two-dimensional space. In this

control method, the high connectivity is maintained

with r(t) = RL if the object moves toward the target

with a tolerance of p/2. This provides stable motion

toward the target.

Figure 9 shows an example of the orbit of the object

with the control method proposed above. In the figure,

the object moves along the horizontal axis, which is not

embedded as the prototypical attractor in the network.

Furthermore, Figs. 10 and 11 show examples where the

walls, which the object is not permitted to go through,

are set in two-dimensional space like a maze. We have

assumed that the object can know D1(t) as each time

step without depending on the existence of the wall. In

our experiments, both fx(s(t)) and fy(s(t)) are taken to

be zero if the moving object hits the wall. This means

that the object cannot penetrate the wall when it hits

the wall. Various solutions to the problem that the

object approaches the target in the two-dimensional

maze can be observed.

Computer simulations of motion control

using chaos in CA

Now, let us introduce a control method for the object

that operates by switching the rule sets based on simple

evaluation at each time step (Fig.12). The set situations

are the same as those of NN, the only difference is the

method of changing the system parameters (connec-

tivity in NN). Because Connectivity Switching in NN is

replaced by Rule Switching in CA, using D1(t) and

D2(t), the time-dependent rule R(t) for updating the

cell pattern is chosen as

RðtÞ ¼ Ri if D1ðt � 1Þ ¼ D2ðt � 1Þ ¼ i
RC otherwise

�
; ð20Þ

where Ri (i = 1–4) is one of the rule sets defined in the

previous section and RC is the chaos rule set, also de-

fined in the previous section. Therefore, after selecting

the rules R(t), the motion of the object is calculated

from the cell states updated by R(t). The motion pro-

vides a further calculation for D1(t) and D2(t).

Repeating this process, where the rule set is switched

between Ri and RC, moves the object in two-dimen-

sional space. In this control method, the rule set is kept

as R(t) = Ri while the object moves toward the target

with a tolerance of p/2 and provides monotonic motion

toward the target. Figure 13 shows a block diagram of

the control method proposed above.

Now, based on this control method, let us show our

computer simulations to solve the maze. In our

Fig. 9 An example of the object orbit in two-dimensional space
with a simple control method from start point (0, 0) to target
point (20, 0): using simple switching between RS and RL, motion
toward the correct direction occurs, although that motion is NOT
embedded in the synaptic connection matrix

Fig. 10 Example of an object orbit in two-dimensional space
with a wall between start point (0, 0) and target point (20, 0):
after colliding with the wall, the object escapes and moves to the
target

Cogn Neurodyn (2007) 1:189–202 197

123

experiments, both fx(s(t)) and fy(s(t)) are taken to be

zero if the moving object hits the wall, meaning that

the object cannot penetrate the wall when it hits the

wall (Fig. 14).

Functional equivalence of chaos in NN and CA

In this section, let us show the functional equivalence

of chaos in NN and CA in the simulations to solve a

maze with respect to the three kinds of maze structures

shown in Fig. 15: (1) W-type, (2) S-type, and (3) V-type.

We prepared four variations of each maze type, which

are the mirror symmetries shown in Fig. 16

Figure 16 shows an example of successful cases.

Various solutions in which the object approaches the

target in two-dimensional maze structures can be ob-

served. The equivalent cases solved using CA are de-

picted in Fig. 17. These simulations were also executed

using the maze structures shown in Fig. 15 and their

mirror-symmetric cases. We do not indicate the results,

however, since all cases give successful approaches to

the targets, being the same as in the W-type.

These results indicate that NN and CA can solve

various mazes. Now, to evaluate the functional equiv-

alence in more detail, let us investigate the functional

performance. To show the performance of the control

method proposed above regarding solving a two-

dimensional maze from a quantitative viewpoint, we

calculate the a success rate for 300 random initial

states. The result of the control method is compared

with that of a random method (random walk), where

 0

 5

 10

 15

 20

 0 5 10 15 20

Rs=30

start

target

wall

 0

 0.1

 0.2

 0.3

 0.4

 0 10 20 30 40 50 60

Fig. 11 (Left) Example of an object orbit in a two-dimensional
maze with obstacles (walls) between start point (1,9) and target
point (19,19). (Right) The horizontal axis represents RS and the

vertical axis is the success rate. The dotted line represents the
result by means of a random pattern generator

Fig. 12 Block diagram of the controlling method using our
neural network model

Fig. 13 Block diagram of the control method with use of CA
proposed in the present paper. Note that it differs from that of
NN only from the point that the connectivity switching in NN is
replaced by rule switching in CA

Fig. 14 Example of solving a maze from the start point (1,9) to
the target point (19,19), where the object’s orbit in two-
dimensional space with walls is shown

198 Cogn Neurodyn (2007) 1:189–202

123

Fig. 17 Four solutions using
CA, which are mirror-
symmetric to each other to
investigate the validity of
chaos for solving various
mazes

Fig. 15 The three kinds of mazes (W-type, S-type, and V-type) taken in our simulations. The open square is the starting position and
the solid square is the target position

Fig. 16 The four types of
mazes taken with mirror
symmetries, and the
successful orbit in each case,
obtained using NN

Cogn Neurodyn (2007) 1:189–202 199

123

the random bit-pattern generator is used instead of

chaotic dynamics. At every time step, the network state

s(t) is replaced by a random pattern generator in the

case D1(t–1) „ D2(t–1) instead of chaotic dynamics. If

D1(t–1) = D2(t–2), then r(t) is switched onto RL = N.

The problem in the actual computer simulation is the

maze shown in Fig. 15, where 300 random patterns are

set as the initial states of the network. The rate of

successful approaches to the target within 5,000 time

steps is calculated as the success rate in Fig. 18 for NN.

The success rate for the same problem with random

walk is 0.01 (Fig. 19). The success rate of the control

method with chaotic dynamics in the network between

RS = 40 and RS = 50 is significantly larger than that

with random walk. The configuration of er;ij’s is ran-

domly chosen with the condition
P

j er;ij ¼ r. The dif-

ference of configuration er;ij’s give various results even

if the same initial condition is given, as shown in

Fig. 20.

To explain one of the reasons why our method

performs better than random walk, let us discuss time

hysteresis of the network state s(t) from a dynamical

viewpoint. In the proposed controlling method, for

instance in NN, the network’s connectivity is set to a

low connectivity r(t) = RS when the object collides with

a wall in two-dimensional space while moving toward

Fig. 18 The success rate of
solving mazes with NN, where
each figure corresponds to the
maze type in Fig. 16. The
results from using a random-
number generator are shown
by dotted lines in the figures
but they are too small for
comparison with those by NN

Fig. 19 The success rate of
solving mazes with CA, where
each figure corresponds to the
maze-type in Fig. 17. The
results using a random
number generator are too
small for comparison with
those of CA. Note that,
instead of connectivity in NN,
the horizontal axis indicates
that we employ various
Motion-Rule-Sets Ra, and the
numbering a (a = 1–100)
corresponds to each choice of
variation of the prototype
patterns

200 Cogn Neurodyn (2007) 1:189–202

123

the target. Then, in making a detour to approach the

target, the object must move in a direction that does

not take it directly toward the target. This implies that,

with low connectivity RS, chaotic wandering in the

network should remain for a while in a certain attractor

basin until the associated motion in maze can find a

detouring route to the target that avoids the wall,

which means that ‘‘attractor ruin’’ still remains in

chaos, and it gives a better performance than a com-

pletely random number generator. Actually, Fig. 21

shows an example of itinerating in attractor ruins in the

chaos of NN.

Finally, let us comment about a random method

where a random bit-pattern generator is used instead

of chaotic dynamics. At every time step, the pattern

s(t) is replaced by a random pattern generator in the

case D1ðt � 1Þ 6¼ D2ðt � 1Þ instead of chaotic dynamics.

If D1(t–1) = D2(t–2) = i, then R(t) is switched onto Ri

(i = 1–4) in NN and the rule Ri in { R1, R2, R3, R4 } in

CA. The success rate for the same problem with ran-

dom walk is 0% up to 50,000 trials of initial random

cell patterns, where a trial is regarded as unsuccessful if

it does not reach the target within 5,000 time steps of

updating. This result indicates that our idea of using

chaotic dynamics in the present method is more useful,

at least, than that using random number generator.

Concluding remarks

The following is a summary of our work.

(1) We proposed a novel method of motion control

using high-dimensional chaotic dynamics in a

recurrent neural network model and totalistic

cellular automata.

(2) Actual examples were given using computer

simulations with respect to binary bit-patterns

consisting of multi-cyclic patterns that were de-

signed for motion control.

(3) Utilizing adaptive switching of connectivity in NN

and/or in CA, the five rule sets between a weakly

chaotic regime (generating the four monotonic

motions) and a strongly chaotic regime (generat-

ing chaotic motion), we obtained better perfor-

mance than a random number generator in

solving two-dimensional mazes.

(4) We successfully performed functional computer

simulations of a roving robot to solve mazes using

chaotic dynamics in a recurrent neural network

model, and in totalistic cellular automata. An

important point is that high-dimensional firing

patterns in state space should be appropriately

coded into simple motions, then after introducing

chaotic dynamics, attractor ruins give useful mo-

tions to solve the maze.

Fig. 20 A performance comparison in NN depending on connectivity, where the three kinds of configurations er;ij’s with respect to the
same connectivity number (r = 40) are taken. The maze type is the one shown in Fig. 11

 1

 10

 100

 1000

 10000

 100000

 5 10 15 20 25 30

R.W. r = 10 r = 40 (a)

r = 40 (b)

Fig. 21 Log plot of the frequency distribution of staying-time
step length t: The horizontal axis represents the successive basin
staying length and the vertical axis is each observed frequency up
to 105. r = 10 is the case of highly developed chaos with
connectivity r = 10. r = 40(a) is the case with r = 40 and that
gives good performance for the maze shown in Fig. 11. r = 40(b)
is different from r = 40(a) for the configuration er;ij and gives bad
performance. R.W. is where a random number generator is
replaced with chaotic dynamics in the neural network model

Cogn Neurodyn (2007) 1:189–202 201

123

(5) The adaptive parameter switching between a

converging regime (or weakly chaotic regime)

and a strongly chaotic regime, depending on a

simple evaluation which includes uncertainty, is

the key idea in realizing complex functions using

chaos.

(6) The results of simulations indicate that both are

equivalent with respect to functional potentiali-

ties.

Acknowledgement This work has been supported partly by a
Grant-in-Aid for the Promotion of Science #16500131 from the
Japan Society for the Promotion of Science.

References

Aihara K, Takabe T, Toyoda M (1990) Chaotic neural networks.
Phys Lett A 114:333–340

Aizawa Y, Nagai Y (1987) Dynamics on patterns and rules—rule
dynamics. Bussei Kenkyu 48:316–320 (private communica-
tions in Japanese)

Aizawa Y, Nishikawa I (1986) In: Ikegami G (ed) Dynamical
systems and nonlinear oscillators. World scientific, singa-
pore, pp. 210–222

Anderson JA, Rosenfeld E (eds) (1988) Neurocomputing. The
MIT Press, Cambridge, MA

Anderson JA, Rosenfeld E (eds) (1990) Neurocomputing 2. The
MIT Press, Cambridge, MA

Davis P, Nara S (1990) Chaos and neural networks. Proc. First
Symp. Nonlinear Theory and Its Application, p 97

Fujii H, Itoh H, Ichinose N, Tsukada M (1996) Dynamical cell
assembly hypothesis – Theoretica possibility of spatio-
temporal coding of the cortex. Neural Netw 9:1303

Kaneko K (1990) Clustering, coding, switching, hierarchical
ordering and control in a network of chaotic elements.
Physica D 41:137

Kaneko K, Tsuda I (2001) Complex systems: chaos and beyond.
Springer-Verlag, Berlin/Heidelberg/New York

Kay L, Lancaster L, Freeman WJ (1996) Reafference and
attractors in the olfactory system during odor recognition.
Int J Neural Syst 7:489

Kim S, Aizawa Y (2000) Cluster formations in rule dynamical
systems: emergency of non-local effects. Prog Theor Phys
104:289–305

Kuroiwa J, Nara S, Ogura H (2005) RISP Int. workshop on
nonlinear circuits and signal processing, Honolulu, Hawai,
USA, March 4–6, 2005

Mikami S, Nara S (2003) Dynamical responses of chaotic
memory dynamics to weak input in a recurrent neural
network model. Neurocomput Applic 11(3&4):129–136
(double issue)

Miura T, Tanaka T, Suemitsu Y, Nara S (2005) Complete and
compressive description of motion pictures by means of two-
dimensional cellular automata. Phys Lett A 346(4):296–304

Nara S (2003) Can potentially useful dynamics to solve complex
problems emerge from constrained chaos and/or chaotic
itinerancy? Chaos 13(3):1110–1121

Nara S, Davis P (1992) Chaotic wandering and search in a cycle-
memory neural network. Prog Theor Phys 88:845–855

Nara S, Davis P, Kawachi, Totsuji H (1995) Chaotic memory
dynamics in a recurrent neural network with cycle memories
embedded by pseudo-inverse method. International Journal
of Bifurcation and Chaos 5(4):1205–1212

Nara S, Wada M, Abe N, Kuroiwa J (1999) A novel method of
sound data description by means of cellular automata and its
application to data compression. Int J Birurcation Chaos
9(6):1211–1217

Nicolelis MAL (2001) Actions from thoughts. Nature 409:403–
407

Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev
Lett 64:1196

Skarda CA, Freeman WJ (1987) How brains make chaos in order
to make sense of the world. Behav Brain Sci 10:161–195

Suemitsu Y, Nara S (2004) A solution for two dimensional maze
with use of chaotic dynamics in a recurrent neural network
model. Neural Comput 16:1943–1957

Tamura T, Kuroiwa J, Nara S (2003) Errorless reproduction of
given pattern dynamics by means of cellular automata. Phys
Rev E 68:036707-1–036707-8

Tokuda I, Nagashima T, Aihara K (1997) Global bifurcation
structure of chaotic neural networks and its application to
traveling salesman problems. Neural Netw 10(9):1673–1690

Tsuda I (2001) Towards an interpretation of dynamic neural
activity in terms of chaotic dynamical systems. Behav Brain
Sci 24:793–847

Wada M, Kuroiwa J, Nara S (2002) Completely reproducible
coding of digital sound data with Cellular Automata. Phys
Lett A 306:110–115

Wessberg J, Stambaugh CR, Kralik JD, Beck PD, Chapin JK,
Kim J, Biggs SJ, Srinivasan MA, Nicolelis MAL (2000)
Real-time prediction of hand trajectory by cortical neurons
in primates. Nature 408:361–365

Wolfram S (1986) Theory and application of cellular automata.
World Scientific Singapore. Also see the recent publication,
A new kind of science, Wolfram Media Inc., 2002

202 Cogn Neurodyn (2007) 1:189–202

123

	Numerically evaluated functional equivalence between chaotic dynamics in neural networks and cellular automata �under totalistic rules
	Abstract
	Introduction
	Embedding designed attractors into a recurrent �neural network model and introducing chaotic dynamics
	Complete description of arbitrarily given pattern dynamics with two-dimensional CA governed �by totalistic rules
	Observation of chaos in both NN and CA using transformation of dynamics into two-dimensional motion via a certain coding
	Motion function defined from firing patterns �in NN
	Motion function defined from cell patterns in CA

	Motion control with adaptive switching between �a weakly chaotic regime and a strongly chaotic regime in NN and CA
	Computer simulations of motion control �using chaos in NN
	Computer simulations of motion control �using chaos in CA
	Functional equivalence of chaos in NN and CA

	Concluding remarks
	Acknowledgement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

