
Abstract A neural net model describing the non-

linear interactions between axonal spikes is presented.

It reconciles aspects of pattern recognition (as action

of an associative memory) with those of spike syn-

chronization and phase locking. The stability of the

synchronized state is studied in detail.

Keywords Neural net � Spike synchronization �
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Introduction

Today there is a considerable body of experimental

facts on the visual cortex of cats, monkeys and, to a

somewhat lesser extent, of humans (see, for instance

Kandel et al. 2000). As we know, the visual cortex is

composed of specific layers (called areas). The function

of the neurons of lower layers, such as area 17 etc. of

cats, is well studied and shows that neurons respond by

their firing in a specific manner to edges, bars and

corners in their receptive fields. Furthermore, neurons

are arranged in columns or hypercolumns of orientation

specific cells. One might speculate that, when going up

the layers, neurons can be found that are specific to

more complex patterns—and eventually are responsive,

say to faces, which leads to the concept of the ‘‘grand-

mother’’ cell. However, such cells have not been

found and there are theoretical reasons to dismiss their

concept. For instance, if recognition is based on such

cells, the visual system will become very vulnerable.

If such a specific cell is destroyed, the corresponding

face can no more be recognized. Thus neuroscientists

are—at least generally—convinced that pattern

recognition is achieved by the action of a whole net of

neurons. But then the questions arises how the visual

cortex can combine the various features so that, say, a

specific face or scene is recognized. Actually, the whole

problem is far more general. As we know, the different

features of an object, e.g. a lemon, such as shape,

colour, smell, weight, denotation, are processed in quite

different parts of the brain. Nevertheless, we perceive

the lemon as a whole. What binds all these features

together? On the experimental side, an interesting and

perhaps relevant effect was found, first in anesthetized

cats. For instance, when two bars with the same orien-

tation are moving in the same direction and are lying in

the receptive fields of two different groups of neurons,

these neurons fire synchronously (Gray and Singer

1989; Eckhorn et al. 1988. For a more complete list of

references cf. Haken 2002). Is synchronization the key

to the solution of the ‘‘binding problem’’ (see for

example Singer 1999a, b)?

In the wake of these experimental findings a number

of models of synchronizing neural nets were developed

(Mirollo and Strogatz 1990; Keener et al. 1981; van

Vreeswijk 1996; Bressloff and Coombes 1998, 2000;

Gerstner 1995. For a more comprehensive list of

references cf. Haken 2002)—but to the best of my

knowledge—none has been concerned with the problem

of pattern recognition. On the other hand, leaving aside

the fact that neurons interact via axonal spikes (pulses),

models on pattern recognition have been developed.

They are based on statistical mechanics, dynamic

systems theory and more specifically on synergetics
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and use the concept of attractors (Hopfield 1982; Haken

2004, where many further references can be found).

Each attractor represents a prototype pattern. When an

incomplete (test) pattern is offered to the recognition

system, this latter acts as an associative memory which is

achieved by a dynamics that pulls the test pattern into an

attractor state closest to it. In these models there is no

place for any synchronization effects, however. From

these considerations the obvious question arises: Is

there a unifying model which allows us to deal with both

pattern recognition and spike synchronization?

Above that, I wish to develop a model that captures

essential properties of realistic neurons and that can be

studied analytically. In the present paper, I present

such a unifying model and study its properties. In this

model, I start from a typical set-up of a neuron with its

coupling to other neurons. The signals from other

neurons are transformed via synapses into electric

currents of the dendrites of the considered neuron. The

dynamics of the dendritic currents is taken care of by

means of driven differential equations, the driving

force being the axonal pulses from other neurons. The

dendritic currents are summed up in a weighted fash-

ion by the neuron’s soma whereupon pulses are emit-

ted through the axon which splits and makes contact

with the dendrites of other neurons. The dynamics of

pulse generation is described by differential equa-

tions referring to a phase angle /j of neuron j whose

‘‘motion’’ (rotation speed) is determined by the

incoming dendritic currents and limited by saturation.

The model is insofar a minimal model as the saturation

which is conventionally considered is taken care of by a

quadratic term of the input. In addition to conventional

models, bilinear couplings of the dendritic currents

stemming from other neurons are taken into account.

As it turns out, the dendritic variables can be exactly

eliminated so that coupled differential equations for

the phase angles /j of the whole neural net result.

(Actually, in a neurophysiological interpretation, the

phase angles are proportional to the corresponding

action potentials.) The corresponding equations are

the starting point of our present paper (cf. 2.1). The

properties of these equations with respect to pattern

recognition are studied in my articles (Haken 2006a, b).

As is shown there, pattern recognition requires a spe-

cific choice of the coefficientskjj0 ,kjj0j00 of the Eq. 2.1

below. These coefficients are specific combinations of

so called prototype vectors representing the stored or

learned patterns. In the present paper, I want to study

in how far synchronization of pulses or, more generally,

phase locking is compatible with pattern recognition.

The quite interesting answer to this question will be

presented in the conclusions at the end of this paper.

Also the indispensable concept of quasi-attractors will

be explained there.

The synchronized state

Our starting point is the set of equations

_/jðtÞ þ c0/jðtÞmod 2p ¼
X

j0

~kjj0Xj0 þ
X

j0j00

~kjj0j00Xj0Xj00 þ pj

ð2:1Þ

that we have derived in a previous paper (Haken

2006b). For convenience we briefly recapitulate the

meaning of the individual parts. /j is the phase of the

axonal pulse of neuron j. c0 is a damping constant.

Modulo 2p means that /j must be reduced by integer

multiples of 2p until it runs in-between 0 and 2p. The

quantity/j mod 2p is proportional to the action poten-

tial of neuron j. The~ks on the right-hand side are

coupling coefficients between neurons and contain

synaptic strengths, whereas Xj is defined by

XjðtÞ ¼
Z t

0

Kðt � rÞf /jðr� sÞ
� �

dr: ð2:2Þ

pj represents the external signals that in this section

will be assumed to be independent of j. The quantity K

is a response function of the dendrites. In this paper,

we assume it in the form

Kðt � rÞ ¼ e�cðt�rÞ: ð2:3Þ

for positive (t – r) and equal to zero for negative (t – r).

c is the decay constant of the dendritic electric currents.

The function f is defined by means of

f ð/ðtÞÞ ¼
X

n

dðt � tnÞ; n : integer ð2:4Þ

where tn are the arrival times of axonal pulses (spikes).

We specialize (2.1) to the case of phase locking. In this

case, we assume that the phase angles /j are

independent of j

/j ¼ /: ð2:5Þ

The times tn in (2.4) are defined by means of

/ðtnÞ ¼ 2pn ð2:6Þ

and choosing an appropriate zero of time we may put

tn ¼ nD: ð2:7Þ
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Clearly we also have

tnþ1 � tn ¼ D: ð2:8Þ

In the following we will allow for a small time

delay s

s : time delay [ 0 ð2:9Þ

which will help us to make occasionally the

evaluation of integrals over d-functions unique. In

the first step of our analysis we evaluate (2.2)

assuming that X is independent of j. Using (2.4)

and the properties of the d-functions we may

evaluate (2.2) in the form

XðtÞ ¼
Z t

0

e�cðt�rÞ
X

n

dðr� s� tnÞdr ¼
XN

n¼0

e�cðt�nD�sÞ;

ð2:10Þ

or still more explicitly (with s fi 0)

XðtÞ ¼ e�cðtmodDÞW � e�ct

ecD � 1
; W ¼ 1

1� e�cD
:

ð2:11Þ

The steady state is obtained by dropping the term of

X(t) that decays exponentially. In the following we thus

will use the expression

XðtÞ ¼ e�cðtmodDÞ 1

1� e�cD
: ð2:12Þ

Because in the following some of the formulas will

become rather involved, occasionally we will treat

special cases, e.g.

cD� 1; XðtÞ ¼ e�cðtmodDÞ ð2:13Þ

which means that the pulse intervals are rather large.

But we will also consider the opposite case in which the

pulse intervals are small. After these preliminary steps

we may return to the solution of (2.1). In the special

case (2.5) and under the assumption that all signals pj

are the same, (2.1) reduces to

_/ðtÞ þ c0/ðtÞmod 2p ¼ AX þ BX2 þ p ð2:14Þ

where we use the abbreviations

X

j

~kjj0 ¼ A ð2:15Þ

and

X

j0j00

~kjj0j00 ¼ B: ð2:16Þ

Note that implicitly in (2.15) and (2.16) an important

assumption enters, namely that the corresponding sums

in (2.15) and (2.16) are independent of the index j which

is a requirement for the network connectivities. We shall

not dwell on the consequence of this requirement here

which we discussed elsewhere (Haken 2002). For later

purposes we evaluate _/ðt0Þ. Using the result (2.12) we

readily find

_/ðt0Þ ¼
1

1� e�cD
AþB

1

ð1� e�cDÞ2
þ p; t0 ¼ 0: ð2:17Þ

The only free parameter that occurs in (2.11), (2.12)

and (2.17) that still must be determined is the pulse-

interval D. In order to fix it we choose a time interval

tn � t � tnþ1 ð2:18Þ

and put

/ðtÞ ¼ /ðtnÞ þ xðtÞ ð2:19Þ

with

xðtnÞ ¼ 0; _x � 0: ð2:20Þ

Having an eye on (2.14) we assume that x(t) obeys

an equation of the form

_xðtÞ þ c0xðtÞ ¼ GðtÞ: ð2:21Þ

Its solution can be written as

xðtÞ � /ðtÞ � /ðtnÞ

¼
Z t

tn

e�c0ðt�r0Þ AXðr0Þ þ BXðr0Þ2
� �

dr0

þ
Z t

tn

e�c0ðt�r0Þpdr0: ð2:22Þ

Putting the upper time equal to tn+1 and using the

explicit form of X (2.12) we can cast (2.22) into

/ðtnþ1Þ � /ðtnÞ

¼
Z tnþ1

tn

e�c0ðtnþ1�r0Þ Ae�cðr0�tnÞW þ Be�2cðr0�tnÞW2
� �

� dr0 þ p

c0
ð1� e�c0DÞ: ð2:23Þ

The integrals can be easily evaluated. Thus we can

cast (2.23) using the requirement (2.6) into the form
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2p ¼ A
1

c� c0
e�c0D � e�cD
� �

W þ B
1

2c� c0

� e�c0D � e�2cD
� �

W2 þ p

c0
1� e�c0D
� �

: ð2:24Þ

This is an implicit equation for D. In order to discuss

it we consider two limiting cases, namely: (1) that the

pulse interval is small so that

Dc� 1; Dc0 � 1; (which implies p large enough):

ð2:25Þ

In this case (2.24) reduces to

2p ¼ A
1

c
þ B

1

c2D
þ pD: ð2:26Þ

This is a quadratic equation for D. Choosing the

positive root and assuming 2pc – A big enough we

obtain

D ¼ 1

p
2p�A=cð Þ þ Bj j=c � 1

2pc�A
: ð2:27Þ

Let us discuss the individual terms on the right-hand

side of (2.27). 2p
p just means that the pulse interval is

proportional to the size of the incoming signal, or in

other words, that the pulse rate is proportional to the

signal size. If there is a positive feedback A, the pulse

interval is shortened, otherwise lengthened. Further-

more, if there is a nonlinear saturation effect, i.e.

B < 0, the pulse interval is enlarged by this feedback.

(2) Let us now consider the other case, i.e. large

pulse intervals so that

cD� 1; c[c0 ð2:28Þ

holds. In this case (2.24) is reduced to

2p ¼ 1

c
e�c0D Aþ B

2

� �
þ p

c0
1� e�c0D
� �

ð2:29Þ

or after resolving (2.29) for e–cD we obtain

e�c0D ¼ A

c
þ B

2c
� p

c0

� �
2p� p

c0

� ��1

: ð2:30Þ

Because of the exponential function, the right-hand side

must be positive. This requires small enough signals, i.e.

p \ 2p=c0: ð2:31Þ

Our results can easily be generalized if not only

linear and quadratic terms in X in equation (2.14) are

taken into account but terms up to arbitrary order. In

other words, the first two terms on the right-hand side

of (2.14) are replaced by

X1

m¼1

AmXm: ð2:32Þ

Stability of the synchronized state

In the preceding section, we have seen that it is rather

simple to obtain the synchronized state and to

determine the pulse interval. There remains, however,

a basic question, namely ‘‘Is the mathematically

constructed state realizable?’’ i.e. in particular ‘‘Is it

stable?’’ Therefore in this section, we have to study the

stability, which we will do by linear stability analysis.

Though the idea is basically simple, the individual steps

are slightly complicated so that we proceed in several

steps, where we want to take care of the interests of the

speedy reader. Thus we present the basic stability

analysis equations and discuss their solutions whereas

we skip the purely technical-mathematical derivation

of the stability equations. Linear stability analysis

means that we start from the ideal solution / (t) and

superpose on it small deviations that we call nj. These

deviations are of course time-dependent. If they decay

in the course of time, the system is stable, otherwise

unstable. According to these remarks we introduce the

decomposition

/jðtÞ ¼ /ðtÞ þ njðtÞ; ð3:1Þ

which we insert in (2.1), from which we subtract the

equation (2.14) of the foregoing section. In order to

write down the right-hand side Z of the thus resulting

equation

_njðtÞ þ c0 /ðtÞ þ njðtÞ
� �

mod 2p� /ðtÞmod 2p ¼ Z

ð3:2Þ

we introduce

X̂kðtÞ ¼
Z t

0

Kðt; rÞf /ðr0Þ þ nkðr0Þð Þdr0 ð3:3Þ

with the variable

r0 ¼ r� s ð3:4Þ
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where s is an infinitesimally small quantity. We further

introduce

X̂kðtÞ �XkðtÞ

¼
Z t

0

Kðt; rÞ f /ðr0Þ þ nkðr0Þð Þ � f /ðr0Þð Þf gdr: ð3:5Þ

With these abbreviations we may write Z in the

form

Z ¼
X

k

~kjk X̂k �Xk

� �
þ
X

kl

~kjkl X̂kX̂l �XkXl

� �
: ð3:6Þ

For further evalutation we put

X̂k ¼ Xk þ ek ð3:7Þ

where we assume that ek is a small quantity. This allows

us to transform (3.6) into

Z ¼
X

k

~kjkek þ
X

kl

~kjkl Xkel þXlekð Þ: ð3:8Þ

The next steps should consist in the evaluation of

ekðtÞ ¼ X̂k �Xk ð3:9Þ

and

y ¼ /ðtÞ þ njðtÞ
� �

mod 2p� /ðtÞmod 2p ð3:10Þ

both of which occur in (3.2) with (3.8). We skip this

explicit evaluation and immediately proceed to the

basic equations for nj. As it turns out the

differential equations (3.2) can be converted into

algebraic equations for nj taken at discrete times tn
which correspond to the spiking times in accordance

with the previous section. The algebraic equations are

given by

njðtÞ ¼ I þ II þ III; t ¼ tN ð3:11Þ

where the quantities I, II, III are defined as follows. I

stems from the damping terms containing c0 and reads

I ¼ ĉe�c0t
XN�1

n�1

ec0tnnjðtnÞ ð3:12Þ

where we use the abbreviation

ĉ ¼ c02p _/ðt0Þ�1: ð3:13Þ

Note that _/ has been calculated in the previous

section (cf. Eq. 2.17). We further introduce the

abbreviations

k̂jk ¼ _/ðt0Þ�1~kjk; k̂jkl ¼ _/ðt0Þ�1~kjkl ð3:14Þ

which allows us to write II in the form

II ¼
X

k

k̂jk

XN�1

n¼0

nkðtnÞ
1

c0 � c
c0e�c0ðtN�tnÞ � ce�cðtN�tnÞ
� �

:

ð3:15Þ

Furthermore III is given by

Quite clearly (3.15) stems from terms of Eq. 2.1 that

are linear in X, whereas (3.16) stems from terms that

are bilinear in X. The relation (3.16) refers to the

general case where c, c0, D are still arbitrary. In order to

find formulas that are more handy we consider special

cases, namely

c0D� 1; cD� 1; ð3:17Þ

which corresponds to short spike intervals. In this case

III reduces to

III¼2
X

kl

k̂jkl

XN�1

n¼0

1

c0�c
e�c0ðtN�tnÞc0�e�cðtN�tnÞc
� �

WnkðtnÞ:

ð3:18Þ

The other limiting case of comparatively large spike

intervals characterized by

cD� 1; c[c0 ð3:19Þ

allows us to reduce (3.16) to the form

III ¼2
X

kl

k̂jkl

XN�1

n¼0

e�c0ðtN�tnÞ 1þ c
c0 � 2c

eðc
0�2cÞD � 1

eðc0�cÞD � 1

� ��
�e�cðtN�tnÞ c

c0 � 2c
eðc

0�2cÞD � 1

eðc0�cÞD � 1

�
WnkðtnÞ: ð3:16Þ
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III ¼ 2
X

kl

k̂jkl

XN�1

n¼0

1

c0 � 2c

� ðc0 � cÞe�c0ðtN�tnÞ � ce�cðt�
N

tnÞ
� �

nkðtnÞW: ð3:20Þ

The equations (3.11) with (3.15) and (3.16) or (3.18),

(3.20) are linear equations in the unknown variables nj

taken at discrete times tn. Leaving aside some more

technical questions we may rather simply solve these

equations which we will do in the next section.

Stability analysis continued: solution of the stability
equations

In order to solve the stability equations we make the

hypothesis

njðtnÞ ¼ bnnjðt0Þ ð4:1Þ

with a still unknown constant b. Inserting (4.1) into

(3.12) we obtain

I ¼ ĉe�c0tN
XN�1

n�1

ec0nDbnnjðt0Þ ð4:2Þ

which can immediately be evaluated to yield

I ¼ ĉnjðt0Þ
bN

ec0Db� 1
: ð4:3Þ

An additive term has been neglected as will be done

similarly in the following formulas. (For a detailed

justification cf. (Haken 2002).) The expressions II and

III can be evaluated similarly. We obtain for II

II ¼ bN c0

c0 � c
1

bec0D � 1
� c

c0 � c
1

becD � 1

� �X

k

k̂jknkðt0Þ:

ð4:4Þ

For the evaluation of III it is advisable to distinguish

between the limiting cases of short and long pulse

intervals. In the case

c0D� 1; cD� 1 ð4:5Þ

we obtain

III ¼ bN c0

c0 � c
1

bec0D � 1
� c

c0 � c
1

becD � 1

� �

� 2

cD

X

kl

k̂jklnkðt0Þ; ð4:6Þ

whereas in the case of

cD� 1; c[c0 ð4:7Þ

we obtain

III ¼ bN c0 � c
c0 � 2c

1

bec0D � 1
� c

c0 � 2c
1

becD � 1

� �

� 2
X

kl

k̂jklnkðt0ÞW: ð4:8Þ

In order to illustrate our further procedure we

consider the case (4.7). It is convenient to treat the

variables nj as components of a vectors n. Inserting

(4.1), (4.4) and (4.8) into (3.11) and dividing both sides

by bN we obtain the following vector equation

nðt0Þ¼ ĉ
1

bec0D�1
þ c0

c0 �c
1

bec0D�1
� c

c0 �c
1

becD�1

� �
Kð1Þ

�

þ c0 �c
c0 �2c

1

bec0D�1
� c

c0 �2c
1

becD�1

� �
Kð2ÞW

�
nðt0Þ:

ð4:9Þ

where L(1), L(2) are matrices corresponding to their

components k̂jk and 2
P

l

k̂jkl; respectively. In order to

facilitate our analysis we assume that the matrices L(1),

L(2) commute

Kð1Þ;Kð2Þ
h i

¼ 0 ð4:10Þ

so that they can be simultaneously diagonalized. We

assume that the eigenvalues are given by

kð1Þl ; kð2Þl ; ð4:11Þ

respectively. Choosing the eigenvectors n correspondingly

the Eq. 4.9 can be reduced to

1 ¼ a

bec0D � 1
þ b

becD � 1
ð4:12Þ

where we introduce the abbreviations

a ¼ ĉþ c0

c0 � c
kð1Þl þ

c0 � c
c0 � 2c

kð2Þl W; W ¼ 1

1� e�cD

ð4:13Þ

and

b ¼ � c
c0 � c

kð1Þl �
c

c0 � 2c
kð2Þl W: ð4:14Þ

Equation 4.12 can be considered as an eigenvalue

equation for b which is of second order and can rather

easily be solved. To get an insight into the structure of

the eigenvalues we capitalize on the specific form of

20 Cogn Neurodyn (2007) 1:15–25
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the Eq. 4.12, which means that there are specific

singularities when one of the numerators vanishes.

Note that the following approach works provided the

roots b = b1 and b = b2 are sufficiently separated. Thus

in lowest order we may put

1 ¼ a

b1ec0D � 1
ð4:15Þ

with the solution

b1 ¼ e�c0Dð1þ aÞ: ð4:16Þ

Similarly we may put

1 ¼ b

b2ecD � 1
ð4:17Þ

with the solution

b2 ¼ e�cDð1þ bÞ: ð4:18Þ

Making the further assumption

c� c0 ð4:19Þ

the expressions for the eigenvalues can be further

reduced by means of

a ¼ ĉ� c0

c
kð1Þl þ

1

2
kð2Þl ; ð4:20Þ

b ¼ kð1Þl þ
1

2
kð2Þl : ð4:21Þ

In order to obtain stability the absolute values of the

eigenvalues b1,b2 must be smaller than unity. This is

secured if a and b are smaller than 0. The case (4.20) is

rather simple, when we focus our attention on the con-

ventional procedure in pattern recognition (Haken

2004, 2006b). In this case the eigenvalues k(1) must be

positive (for pattern amplification), whereas the eigen-

values k(2) must be negative for pattern saturation. If the

corresponding eigenvalues kl
(1,2) have sufficiently large

absolute values, a is surely negative. The case (4.21) is

somewhat more intricate because the eigenvalue k(1) is

positive. In this case the eigenvalue k(2) that corresponds

to the nonlinear term must be sufficiently negative. The

situations is somewhat facilitated, however, by the pre-

factor e–cD because we are operating under the

assumption that c D� 1 so that b2 < 1 even if b > 0.

In conclusion of this section we consider the case c
D� 1, c0D� 1, where we may proceed in close analogy

to the previous case. We obtain the vector equation

nðt0Þ ¼ ĉ
1

bec0D� 1
þ c0

c0 � c
1

bec0D� 1
� c

c0 � c
1

becD� 1

� ��

� Kð1Þ þ 1

cD
Kð2Þ

� ��
nðt0Þ: ð4:22Þ

Under the assumptions (4.10) and (4.11) we then

find

1 ¼ a0

bec0D � 1
þ b0

becD � 1
ð4:23Þ

The coefficients a0, b0 are given by

a0 ¼ ĉþ c0

c0 � c
kl; ð4:24Þ

and

b0 ¼ c
c� c0

kl; ð4:25Þ

where

kl ¼ kð1Þl þ
1

cD
kð2Þl

� �
ð4:26Þ

and

b0 ¼ c
c� c0

kð1Þl þ
1

cD
kð2Þl

� �
: ð4:27Þ

Again under the assumption that the eigenvalues are

sufficiently separated from each other, in lowest

approximation they read

b01 ¼ e�c0Dð1þ a0Þ ð4:28Þ

and

b02 ¼ e�cDð1þ b0Þ: ð4:29Þ

For a further discussion, we first consider the case

c0 > c. Then the condition a0 < 0 requires kl < 0, from

which follows b0 > 0, i.e. instability (provided we ig-

nore the exponential factors in (4.28), (4.29) that are

close to unity). In the case c0 > c we need kl > 0 for

a0 < 0 which leads to b0 > 0, i.e. again instability. Let us

therefore consider the case c0 = c starting from (4.23).

There is only one root, namely

b ¼ e�cDð1þ a0 þ b0Þ ¼ ĉþ kl: ð4:30Þ

Provided kl is sufficiently negative, the pulse sequence

is stable. Since in pattern recognition kl
(2) is negative and

cD� 1 (in the present case), kl < 0 can surely be

fulfilled. Clearly, from here we may extrapolate that for

c0	 c still stability is possible.

Cogn Neurodyn (2007) 1:15–25 21

123



So far, it appears as if the process of pattern

recognition is compatible with the formation of

pulse trains. There is, however, still the conditions

(2.15), (2.16) and pj = p to be fulfilled for pulse

train formation. In the next section we therefore

want to study, in how far these conditions can be

relaxed.

From synchronization to phase locking

In the previous sections from ‘‘The synchronized state’’

to ‘‘Stability analysis continued: solution of the stabil-

ity equations’’ we have dealt with synchronization in

which case the phases /j of the neurons with indices (j)

are given by /j = /. This solution has become possible

under the assumption that all external signals are equal

and that the coupling coefficients k obey specific con-

ditions (cf. (5.4), (5.6)). In this section, we want to

extend our former results to the case in which these

conditions are violated, at least to some degree. We

still will be concerned with the case in which the

frequencies of all axonal pulses are the same but in

which phase shifts according to

/jðtÞ ¼ /þ d/j;

or equivalently,

tj;n ¼ tn þ sj ð5:1Þ

occur. Our starting point is the equations

_/j þ c0/j mod 2p ¼
X

j0
kjj0Xj0 þ

X

j0j00
kjj0j00XjXj0 þ pj � RðtÞ

ð5:2Þ

where we make the decompositions

kjj0 ¼ ko
jj0 þ jjj0 ð5:3Þ

with the constraints

X

j0
k0

jj0 ¼ k0 ð5:4Þ

and

kjj0j00 ¼ k0
jj0j00 þ jjj0j00 ð5:5Þ

with the constraints

X

j0j00
k0

jj0j00 ¼ k0
2: ð5:6Þ

The constraints (5.4) and (5.6) are the ones we had

to introduce previously in order to achieve synchroni-

zation. We further will use the decomposition

pj ¼ pþ pj: ð5:7Þ

In the following we will assume that the quantities j
and p are small enough so that we will be able to use

perturbation theory. Xj is given by

XjðtÞ ¼
Z t

Kðt; rÞ
X

n

dðr� tj;nÞdr ð5:8Þ

or because of (5.1) by

XjðtÞ ¼
Z t

Kðt; rÞ
X

n

dðr� tn � sjÞdr: ð5:9Þ

In complete analogy to our previous procedure

of section ‘‘The synchronized state’’ we integrate

the Eq. 5.2 from one pulse to the next and use

the usual Green’s function formalism. Thus we

obtain

/jðtj;nþ1Þ � /jðtj;nÞ ¼
Z tj;nþ1

tj;n

e�c0ðtj;nþ1�rÞRðrÞdr: ð5:10Þ

Making the substitution

r! rþ sj ð5:11Þ

transforms (5.10) into

/jðtj;nþ1Þ � /jðtj;nÞ ¼
Z tnþ1

tn

e�c0ðtnþ1�rÞRðrþ sjÞdr:

ð5:12Þ

To procede further we compare (5.9) with our

former expression (2.12). This allows us to write (5.9)

as

XjðtÞ ¼ e�cððt�sjÞmodDÞW ð5:13Þ

or equally well

XjðtÞ ¼ Xðt � sjÞ; ð5:14Þ

i.e. the index j appears only via sj. Because of the

modulo function in (5.13) we may use

Xðt � sjÞ ¼ Xðt þ tn � sjÞ ð5:15Þ
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because of

tn ¼ nD: ð5:16Þ

We further recall that the phase difference between

two pulses is just 2p. Using these intermediate steps as

well as the explicit form of R we can transform (5.10)

into

2p ¼
Z tnþ1

tn

e�c0ðtnþ1�rÞ
X

j0
kjj0Xðrþ sj � sj0 Þ

(

þ
X

j0j00
kjj0j00Xðrþ sj � sj0 ÞXðrþ sj � sj00 Þ

þpjðrþ sjÞ
)

dr: ð5:17Þ

Finally we introduce the transformation

r! rþ tn ð5:18Þ

which allows us to cast (8) into

2p ¼
Z D

0

e�c0ðD�rÞ
�X

j0
kjj0Xðrþ sj � sj0 Þ:

þ
X

j0j00
kjj0j00Xðrþ sj � sj0 ÞXðrþ sj � sj00 Þ

þpjðrþ tn þ sjÞ
�

dr: ð5:19Þ

Already at this moment we can observe that the

Eqs. 5.19 are invariant against the simultaneous

replacement of sj by sj + s provided pj is time-inde-

pendent which we will assume from now on. In order to

treat the Eq. 5.19 further, we use the abbreviations

Z D

0

e�c0ðD�rÞXðrþ sj � sjÞdr ¼ Gð1ÞðD; sj � sj0 Þ; ð5:20Þ

Z D

0

e�cðD�rÞXðrþ sj � sj0 ÞXðrþ sj � sj00 Þdr

¼ Gð2ÞðD; sj � sj0 ; sj � sj00 Þ
ð5:21Þ

and

Z D

0

e�c0ðD�rÞpjðrþ tn þ sjÞdr ¼ PjðD; tn þ sjÞ: ð5:22Þ

Thus the Eqs. 5.17 eventually acquire the form

2p ¼
X

j0
kjj0G

ð1ÞðD; sj � sj0 Þ þ
X

j0j00
kjj0j00G

ð2Þ

� ðD; sj � sj0 ; sj � sj000 Þ þ PjðD; tn þ sjÞ: ð5:23Þ

In order to make contact with our previous results

in which the strict synchronization conditions were

fulfilled, we introduce the decompositions

Gð1ÞðD; sj � sj0 Þ ¼ Gð1ÞðD0; 0Þ þ hjj0 � G
ð1Þ
0 þ hjj0 ; ð5:24Þ

Gð2ÞðD;sj� sj0 ;sj� sj00 Þ ¼Gð2ÞðD0;0Þþhjj0j00 �G
ð2Þ
0 þhjj0j00 ;

ð5:25Þ

PjðD; tn þ sjÞ ¼ p
1

c0
1� e�c0D0

� �
þ pjðD0;D

0Þ ð5:26Þ

as well as

D ¼ D0 þ D0: ð5:27Þ

We assume that in accordance with the results of

section ‘‘The synchronized state’’ the equations

2p ¼
X

j0
k0

jj0G
ð1ÞðD0; 0Þ þ

X

j00
k0

jj0j00G
ð2ÞðD0; 0; 0Þ

þ p
1

c0
1� e�c0D0

� �
ð5:28Þ

are fulfilled where D0 plays the same role as D in

section ‘‘The synchronized state’’. So far our

equations are exact. From now on we assume that

the quantities j,h,D0 are small. Inserting the

expressions (5.3), (5.5), (5.24), (5.25), (5.26), (5.27)

into (5.23) we arrive at

2p ¼
X

j0
k0

jj0 þ jjj0

� �
G
ð1Þ
0 þ hjj0

� �

þ
X

j0j00
k0

jj0j00 þ jjj0j00

� �
G
ð2Þ
0 þ hjj0j00

� �

þ p
1

c0
ð1� e�c0D0Þ þ pjðD0;D

0Þ: ð5:29Þ

Using (5.28) and keeping the small quantities up to

first order we eventually find

0 ¼
X

j0
k0

jj0hjj0 þ
X

j0
jjj0G

ð1Þ
0 þ

X

j0j00
k0

jj0j00hjj0j00

þ
X

j0j00
jjj0j00G

ð2Þ
0 þ pjðD0;DÞ: ð5:30Þ

In order to make the smallness assumptions explicit,

we introduce the decompositions
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hjj0 ¼ aðsj � sj0 Þ þ bD0 ð5:31Þ

and a corresponding one for hjj0j00 as well as

pjðD0;DÞ 	 pjðD0; 0Þ ð5:32Þ

Note that pj is a small quantity. From what follows it

is not difficult to convince oneself that it is sufficient to

treat only the example (5.31) because the additional

terms stemming from hjj0j00 play a similar role. Thus we

shall drop these terms. Then the Eq. 5.30 can be cast

into the form

X

j0
k0

jj0hjj0 ¼ fj ð5:33Þ

where we use the abbreviation

fj ¼ �Gð1ÞðD0; 0Þ
X

j0
jjj0 þ pjðD0; 0Þ: ð5:34Þ

Making use of (5.31) we cast (5.33) into the form

ak0sj �
X

j0
k0

jj0asj0 þ bk0D0 ¼ fj: ð5:35Þ

(Remember that
P
j0

k0
jj0 ¼ k0.) Putting the components

sj together to form a vector s we find

Ls ¼ F ð5:36Þ

where

L ¼ ðLjj0 Þ ¼ ðak0djj0 � kjj0aÞ ð5:37Þ

and

F ¼
f1

..

.

fN

0

B@

1

CA� bk0D0E: ð5:38Þ

E is the unity matrix. We are now able to make contact

with well known rules from linear algebra and

introduce the eigenvalue equations

Lsk ¼ kks
k: ð5:39Þ

One can readily identify the null vector which reads

s0 ¼ E ð5:40Þ

and possesses a vanishing eigenvalue

k0 ¼ 0: ð5:41Þ

To verify this just recall that

ak0 �
X

j0
kjj0a ¼ 0 ð5:42Þ

holds because of the definition of k0. Again using

linear algebra we can write the solution to (5.36) in

the form

s ¼MF þ as0 ð5:43Þ

where M is the Green’s function. The solvability of (3)

requires that F is orthogonal on the adjoint null

vectors0þ, i.e.

F?s0þ ð5:44Þ

or explicitly

s0þF
� �

¼ 0: ð5:45Þ

We remember that the adjoint null vector has to

obey the equations

s0þs0
� �

¼ 1 ð5:46Þ

and

s0þsk
� �

¼ dkk0 ð5:47Þ

where the right-hand side of (5.47) is the Kronecker

symbol. Inserting (5.38) into (5.45) yields

s0þE
� �

�bk0D0
� �

þ s0þf
� �

¼ 0 ð5:48Þ

which allows us to calculate D0 explicitly by

D0 ¼ ðs0þEÞðbk0Þ
� ��1

s0þf
� �

: ð5:49Þ

This result can be interpreted as follows. When

there are unequal signals, i.e. pj „ 0 and/or the con-

dition (5.4) is violated the oscillation frequency of the

phase locked state is changed and the change of the

corresponding time interval is explicitly given (5.49).

Denoting the eigenvectors of the equation (5.39) as

usual mk (instead of skÞ the Green’s function is explic-

itly given which allows us to write the solutions to

(5.36) in the form

s ¼
X

k 6¼0

mk 
 mkþ 1

aðk0 � kkÞ
F þ as0 ð5:50Þ

where 
 denotes the direct product.
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At this moment we are able to make contact with

pattern recognition by the very same model. To this

end, we proceed in several steps.

(1) In (5.50) the constant a can be chosen arbitrarily

which is a consequence of the time translation invari-

ance of (5.19). Without loss of generality we may put it

equal to zero.

(2) The vector components of F (5.38) are of smallness of

first order. This allows us to make an important step: In

(5.50), in accordance with (5.35), we may replace mk,mkþ,

kk which stem from k
jj0 , by the corresponding quantities

when the original matrix ð~kjj0 Þ in (2.1) is decomposed

into its eigenvectors. The total error made in (5.50) is

then of second order. But now, the eigenvectors of ðkjj0 Þ
are just the stored prototype vectors in the case of

pattern recognition.

(3) According to (5.38), F consists of two parts. For our

subsequent discussion, we ignore the overall frequency

shift D0 and focus our attention on the role of pj, i.e. the

derivations of the true signal pj from the constant signal

p. This means that all the signatures of the offered

pattern (‘‘test pattern’’) are carried by pj. Because of the

scalar product mkþF those configurations pj give the

essential contributions to the phase shifts sj that corre-

spond to the stored prototype patterns. We may suspect

that this effect will be enhanced (in the sense of

selection) if the nonlinear terms kjjj0 are taken into

account. The role of the contributions
P

j0jjj0 is hard to

discuss. We assume that due to compensation effects

they only play a minor role as compared to pj.

(4) As a detailed study of Eq. 5.19 reveals, their

solution becomes impossible if the pjs become too

large so that frequency locking breaks down (even if

we go beyond the smallness approximation (5.30)).

Conclusion

The results of the present paper, jointly with those I

have been publishing elsewhere (Haken 2006a, b) lead

me to the following conclusions. Hereby we proceed in

two steps. In the first step, in accordance with the

present paper, we ignore the dynamics of the attention

parameters kk, i.e. we assume that they are constant.

Then the Eq. 2.1 provide us with a model that,

depending on the stored (or learned) prototype pat-

terns as well as on the externally offered patterns,

describes two kinds of operations. If signals (i.e. pattern

features) are similar (i.e. pj in (5.26) are small) and the

conditions (2.15), (2.16) approximately fulfilled, the

responding neuronal populations synchronize, whereby

phase-shifts sj depending on pattern variations may

occur. If the signals (features) vary too strongly, the

(model) system acts like an attractor network (Haken

2006a, b). In this case, a pattern is encoded by a whole

set of limit cycle oscillators. Each such set is governed

by a specific order parameter in the sense of synergetics

(Haken 2004).

In a second step, we must take into account that

both the phase-locked states as well as the attractor

states exist only for a limited time. Thus e.g. attractors

must be replaced by what I called quasi-attractors. As

the mechanism of this fading away of phase-locked and

attractor states I suggested the saturation of attention,

i.e. the attention parameters kk, vanish after a short

time. Then new attractor states open etc. Thus, we

have to deal with a complicated dynamics that still has

to be explored in more detail.
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