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Abstract
We investigate some hydrodynamic stability problems in the context of the Navier–
Stokes–Voigt equations. It is pointed out that one should regard the usual set of
equations known as the Navier–Stokes–Voigt equations as being the Navier–Stokes
equations to which a regularizing term has been added. We investigate other models
which have features very similar to the Navier–Stokes–Voigt equations, but which
arise from proper continuum thermodynamic approaches, including employing an
objective time derivative rather than simply the Laplacian of the partial time deriva-
tive of the velocity field. It is shown that in some cases, particularly those connected
to straightforward thermal convection studies, the linear theory of the more physically
based models reduces to that of the classical Navier–Stokes–Voigt theory. However,
these are special problems and we also display other problems where the generalized
theories based on continuum mechanics principles lead to very different results from
what one finds with traditional Navier–Stokes–Voigt theory. Finally, two further mod-
els pertaining to Navier–Stokes–Voigt theory which were introduced by Oskolkov are
investigated.

Keywords Navier–Stokes–Voigt · Thermal convection · Objective derivative · Linear
instability · Global nonlinear stability

Mathematics Subject Classification 35Q35 · 76E06 · 76E05 · 76D99

1 Introduction

Studies of solutions to the Navier–Stokes–Voigt equations and very similar models
have occupied much attention in the mathematical literature, see e.g. Oskolkov [1–6],
Oskolkov and Shadiev [7], Ladyzhenskaya [8, 9], Badday and Harfash [10], Bara-
novskii [11], Berselli and Bisconti [12], Bisconti and Mariano [13], Celebi et al. [14],
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Damázio et al. [15], Di Plinio et al. [16], Kalantarov and Titi [17, 18], Kalantarov
et al. [19], Krasnoschok et al. [20], Layton and Rebholz [21], Niche [22], Pavlovskii
[23], Sviridyuk and Sukacheva [24], Sukacheva and Kondyukov [25], Sukacheva and
Matveeva [26], Sukacheva and Sviridyuk [27], Zvyagin [28, 29]. Much of this work
has been related to existence and regularity of a solution and a great deal of this is
to be found in the Russian mathematical literature. For example, a recent interesting
article of Sukacheva [30] contains pertinent references to much of this work.

In particular, thermal effects have been analysed in conjunction with Navier–
Stokes–Voigt theory, see e.g. Oskolkov [3, 4], Sukacheva and Matveeva [26].
Hydrodynamical stability analyses of thermal convection with a Navier–Stokes–Voigt
fluid may be found in Straughan [31, 32].

The Navier–Stokes–Voigt system of equations modifies the Navier - Stokes equa-
tions by addition of a term of form λ̂�∂vi/∂t , where vi is the velocity field, λ̂ > 0 is
the Kelvin–Voigt coefficient, and � is the Laplacian.

Damázio et al. [15] analyse solution properties to the Navier–Stokes–Voigt equa-
tions but they point out that it is not correct to think of the additional term λ̂�∂vi/∂t
as being part of the Cauchy stress tensor, and one should treat it as a regularizing
term, cf. Oskolkov [2], Ladyzhenskaya [9]. The reason for this is that the derivative
in the additional term is not an objective derivative. Straughan [33] also comments on
this and he observes that one could modify the offending term by replacing it with an
objective corotational derivative, which in turn leads to a Walters’ B fluid, Beard and
Walters [34]. This derivative is also incorporated in the analysis of Frolovskaya and
Pukhnachev [35], Pukhnachev and Frolovskaya [36].

In the stability analysis of higher gradient theories of Navier–Stokes equations by
Straughan [37], there are two models which are derived by continuum mechanics
principles which include naturally the Kelvin–Voigt term in the Navier–Stokes–Voigt
equations, these being the theory for a dipolar fluid, Bleustein and Green [38], Green
and Naghdi [39], Jordan and Puri [40, 41], and the theory for the gradient kinetic
energy model of Fried and Gurtin [42].

The object of this article is to examine some stability problems primarily with the
model of Fried and Gurtin [42] and draw attention to some issues which arise due to
nonlinear terms not present in classical Navier–Stokes–Voigt theory. We also comment
on two models of Oskolkov [3, 4], which are closely related to the Navier–Stokes–Voigt
equations.

2 Governing equations

In the interests of clarity we present the Navier–Stokes equations, the Navier–
Stokes–Voigt equations, and their counterparts incorporating temperature, employing a
Boussinesq approximation, Barletta [43, 44]. Throughout, we employ standard indicial
notation together with the Einstein summation convention. For example,

vi,i =
3∑

i=1

∂vi

∂xi
= ∂u

∂x
+ ∂v

∂ y
+ ∂w

∂z
,
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where v = (u, v, w) ≡ (v1, v2, v3). Also,

v jvi, j =
3∑

j=1

v j
∂vi

∂x j
= u

∂vi

∂x
+ v

∂vi

∂ y
+ w

∂vi

∂z
, i = 1, 2, 3,

and

vi, j j = �vi = ∂2vi

∂x2 + ∂2vi

∂ y2 + ∂2vi

∂z2 , i = 1, 2, 3.

Letvi (x, t)denote the fluid velocity at a pointx at time t and let ν > 0 be the constant
kinematic viscosity. The Navier–Stokes equations for an incompressible fluid are

∂vi

∂t
+ v j

∂vi

∂x j
= − 1

ρ

∂ p

∂xi
+ ν�vi + fi ,

∂vi

∂xi
= 0,

(1)

where p(x, t) is the pressure, ρ is the constant density, and fi is an external body
force. If λ̂ > 0 denotes the Kelvin–Voigt coefficient then the Navier–Stokes–Voigt
equations are

∂vi

∂t
+ v j

∂vi

∂x j
− λ̂�

∂vi

∂t
= − 1

ρ

∂ p

∂xi
+ ν�vi + fi ,

∂vi

∂xi
= 0.

(2)

In this article we shall be concerned with thermal convection and then employing
a Boussinesq approximation, Barletta [43, 44], the equations corresponding to (1) are

∂vi

∂t
+ v j

∂vi

∂x j
= − 1

ρ

∂ p

∂xi
+ ν�vi + αgT ki ,

∂vi

∂xi
= 0,

∂T

∂t
+ vi

∂T

∂xi
= κ�T ,

(3)

where T (x, t) is the temperature of the fluid at position x and time t , α is the thermal
expansion coefficient of the fluid, g is gravity which is assumed acting in the downward
direction, κ is the thermal diffusivity of the fluid, and k = (0, 0, 1). The analogous
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equations for a Navier–Stokes–Voigt fluid are

∂vi

∂t
+ v j

∂vi

∂x j
− λ̂�

∂vi

∂t
= − 1

ρ

∂ p

∂xi
+ ν�vi + αgT ki ,

∂vi

∂xi
= 0,

∂T

∂t
+ vi

∂T

∂xi
= κ�T .

(4)

As pointed out by Damázio et al. [15], it is sometimes argued that the momentum
equation (4)1 arises from the equation

v̇i = 1

ρ
σ j i, j + αgT ki ,

where a superposed dot denotes the material derivative, and σi j is the Cauchy stress
tensor. This would mean

σi j = −pδi j + 2μdi j + 2λ̂di j,t , (5)

where μ = ρν is the dynamic viscosity of the fluid, and di j is the symmetric part of
the velocity gradient, vi, j , i.e.

di j = 1

2
(vi, j + v j,i ). (6)

We also require the skew-symmetric part of the velocity gradient, ωi j , and this is,

ωi j = 1

2
(vi, j − v j,i ). (7)

In direct tensor notation we write these as D and W , i.e. D ≡ di j and W ≡ ωi j , and
� denotes σi j . Damázio et al. [15] argues that (5) is not correct because di j,t is not
an objective derivative. Straughan [33] argues that one could employ a corotational
derivative to write instead

� = −pI + 2μD + 2λ(Ḋ − WD − DWT ). (8)

The corotational derivative is objective, see e.g. Morro [45], and (8) leads to what
is known as a Walters B fluid, see e.g. Straughan [33]. However, the corotational
derivative is not the only objective derivative, there are many, see Morro [45], e.g.
di j,t could be replaced by a Cotter–Rivlin derivative

�
D = Ḋ − WD − DWT + 2D2,
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or by an Oldroyd derivative

♦
D = Ḋ − LD − DLT ,

where L ≡ vi, j . These are only some of the possible objective derivatives one may
use. The use of objective derivatives to obtain rate type theories in porous media or in
viscoelastic fluids is succinctly explained in Morro [46] and in Giorgi and Morro [47].

This clearly leads to a problem in designing a nonlinear variant of the Navier–
Stokes–Voigt equations (4). What derivative should one employ instead of di j,t? A
not dissimilar problem arises in the Navier–Stokes theory of thermal convection when
one employs a Cattaneo theory of heat transport rather than a Fourier one, see Gentile
and Straughan [48]. Perhaps the appropriate model could be assessed as suggested by
Ladyzhenskaya [49] in another fluid dynamical context, when she wrote that... “which
of these systems will be most appropriate for the description of viscous incompressible
flow will be shown by future comprehensive mathematical and physical analysis".
While these remarks were not presented directly at Navier–Stokes–Voigt theory they
are certainly very pertinent in this case.

In this work we firstly examine thermal convection in a Navier–Stokes–Voigt like
theory using three models. One is the Fried and Gurtin [42] model, the second is the
dipolar fluid model, Bleustein and Green [38], Green and Naghdi [39], and the third
is to employ a corotational derivative as in (8).

3 Thermal convection

Here we analyse the problem of thermal convection in a horizontal layer of fluid
contained between the planes z = 0 and z = d. The boundaries are maintained at
constant temperatures TL when z = 0 and TU when z = d. The steady state for all
three classes of fluid considered here is

v̄ ≡ 0, T̄ = −βz + TL ,

where β = (TL − TU )/d is positive. The perturbation equations are derived and non-
dimensionalized in Straughan [37] for the Fried and Gurtin [42] model and for the
dipolar fluid. With ui , θ, π being the perurbations to v̄i , T̄ , p̄ the non-dimensional
perturbation equations are

ui,t + u jui, j − λ(�ui,t + u j,kui, jk + u j�ui, j ) = −π,i + Rθki + �ui − ξ�2ui ,

ui,i = 0,

Pr(θ,t + uiθ,i ) = Rw + �θ,

(9)
for the Fried-Gurtin model. The coefficient of λ is written differently in Fried and
Gurtin [42, Eq. (160)]. They write it as

�u̇i − ui,k�uk − ui,k j uk, j . (10)
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However, when one recalls the dot means material derivative, the expression in (10) is
equivalent to the one in Eq. (9)1. The perturbation equations for the dipolar fluid are

ui,t + u jui, j − λ(�ui,t + u j�ui, j + u j,i�u j ) = −π,i + Rθki + �ui − ξ�2ui ,

ui,i = 0,

Pr(θ,t + uiθ,i ) = Rw + �θ.

(11)
The nonlinear terms in (11) involving λ arise because Green and Naghdi [39] derive
an inertia term which corresponds to a kinetic energy which contains in addition to the
usual velocity squared piece a term of form mkaui,kui,a . They show that their inertia
term transforms correctly as in their Eq. (15). Sometimes the isothermal equivalent of
(9) are referred to as the Navier–Stokes—αβ equations, see Kim et al. [50], Capriz and
Fried [51]. In that case α2 identifies with λ while β2 identifies with ξ . In the case of
the corotational derivative the non-dimensional perturbation equations can be shown
to be

ui,t + u jui, j − λ�ui,t − 2λ
[
(ukdi j ),k j − (ωikdk j ), j − (dikω jk), j

]

= −π,i + Rθki + �ui − ξ�2ui ,

ui,i = 0,

Pr(θ,t + uiθ,i ) = Rw + �θ.

(12)

Each of the sets of Eqs. (9), (11), (12) holds on {(x, y) ∈ R
2}× {z ∈ (0, 1)} for t > 0.

The boundary conditions are

ui = 0, θ = 0, z = 0, 1, (13)

with ui , θ and π satisfying a periodic pattern in x, y which tiles the plane. Since
the Fried-Gurtin and dipolar fluid models arise from assuming the second gradients
of velocity are present in the constitutive theory these equations contain the term
−ξ�2ui . One may also analyse the equivalent problem with a corotational derivative.
If one is interested only in Navier–Stokes–Voigt theory then one may take ξ = 0.
However, when ξ > 0 we require an extra boundary condition and we here assume

∂ui
∂n

= 0, on z = 0, 1, (14)

where the derivative indicates that in the direction of the unit outward normal. With
this choice existence of a solution follows from Degiovanni et al. [52]. There are
other boundary conditions one may employ, cf. Straughan [37], but one has to be very
careful to employ meaningful boundary conditions, cf. Ladyzhenskaya [53].

To analyse linear instability with equations (9), (11) or (12) one discards the nonlin-
ear terms and one assumes a time dependence like eσ t , i.e. one chooses ui = ui (x)eσ t ,

θ = θ(x)eσ t , π = π(x)eσ t . Then the resulting set of equations is the same for each
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of the three systems and is

σui − σλ�ui = −π,i + Rθki + �ui − ξ�2ui ,

ui,i = 0,

Prσθ = Rw + �θ.

(15)

The boundary conditions are (13) and (14), and ui , θ, π are periodic in x, y. Let V be
a period cell for the solution. Since σ is at the outset possibly complex we suppose
ui , θ, π are complex. Multiply (15)1 by u∗

i , where the ∗ denotes complex conjugate,
and integrate over V . Likewise, multiply (15)3 by θ∗ and integrate over V . With (·, ·)
and ‖ · ‖ denoting the inner product and norm on L2(V ), we add the results after
integration by parts to obtain

σ(‖u‖2 + λ‖∇u‖2 + Pr‖θ‖2)

= −‖∇u‖2 − ξ‖�u‖2 − ‖∇θ‖2 + 2R
[
(θ, w∗) + (w, θ∗)

]
.

(16)

Let σ = σr + iσ1 and take the real and imaginary part of (16) to find

σ1(‖u‖2 + λ‖∇u‖2 + Pr‖θ‖2) = 0.

Thus, for a non-zero solution we must have σ1 = 0. Hence, the strong principle of
exchange of stabilties holds and the transition to instability is by stationary convection.

To analyse nonlinear stability we return to (9), (11) or (12) and multiply the momen-
tum equation by ui , the temperature equation by θ , we integrate each over V and add
the results. After some integrations by parts one finds

dE

dt
= RI − D, (17)

where

E = 1

2
‖u‖2 + λ

2
‖∇u‖2 + Pr

2
‖θ |2,

and
I = 2(θ, w),

together with
D = ‖∇u‖2 + ξ‖�u‖2 + ‖∇θ |2.

Define now RE by
1

RE
= max

H

I

D

where H consists of ui ∈ W 2,2(V ), θ ∈ W 1,2(V ), together with periodic boundary
conditions in x, y and (13) and (14). This maximum problem is analysed in Straughan
[37] where it is shown that the Euler–Lagrange equations are the same as those for
linear instability. Thus, one has the optimum result that the linear instability boundary
is the same as the nonlinear stability one and subcritical instabilities cannot arise.
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Straughan [37] shows the nonlinear terms in (9) and (11) vanish in the energy
stability analysis. To show the nonlinear terms arising from (12) also do not contribute
we observe that they are

(uiu j , ui, j ) + (ui , θθ,i )

+ 2λ(ui , [ukdi j ],k j − [ωikdk j ], j − [dikω jk], j ),

where

di j = 1

2
(ui, j + u j,i ), ωi j = 1

2
(ui, j − u j,i ).

The first two terms vanish by standard calculations. For the remaining terms, observe
that

2λ(ui , [ukdi j ],k j ) = − 2λ

∫

V
ui, j ukdi j,kdx

= − λ

∫

V
ukui, j ui, jkdx − λ

∫

V
ukui, j u j,ikdx

= − λ

2

∫

V
uk(ui, j ui, j ),kdx − λ

∫

V
ukui, j u j,ikdx .

The first term on the right vanishes after integration by parts, since uk,k = 0. Then,

−λ

∫

V
ukui, j u j,ikdx =λ

∫

V
ukui, jku j,i dx

=λ

∫

V
uku j,ikui,kdx,

where we integrated by parts with respect to xk and then i and j have been reversed.
Hence, ∫

V
ukui, j u j,ikdx = 0.

For the remaining two terms write as

2λ

∫

V
(ui, jωikdk j + ui, j dikω jk)dx . (18)

In the second of these switch i, j so it becomes

∫

V
u j,i d jkωikdx =

∫

V
u j,i dk jωikdx,

since d jk = dkj . Then (18) becomes

4λ

∫

V
di j dk jωikdx .
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Next, switch i, k so this becomes

4λ

∫

V
dk j di jωki dx = −4λ

∫

V
dk j di jωikdx,

since ωi j = −ω j i . Thus, the sum in (18) vanishes and this establishes (17) in the case
of the corotational derivative.

Numerical results for the linear instability problem (15) are given in Straughan
[37] where the equivalent problem with λ = 0 is analysed. The fact that exchange of
stabilities holds and the linear instability threshold is the same as the global nonlinear
stability one is due to the fact that the linear operator is symmetric and the nonlin-
ear terms satisfy (U , N (U )) = 0 where U = (u, v, w, θ), the inner product is in
(L2(V ))4, and N represents all the nonlinear terms in (9), (11) or (12), and thus the
conditions of the theorem of Galdi and Straughan [54] are satisfied.

For the thermal convection problem (Bénard problem) with a (generalized) Navier–
Stokes–Voigt fluid the equivalence of the linear and nonlinear stability boundaries is
special, and will not hold in general for other problems with this class of fluid. We
now examine another convection problem for Navier–Stokes–Voigt theory where this
is not true, even though the nonlinear terms satisfy (U , N (U )) = 0.

4 Thermosolutal convection

We now examine the problem of thermal convection with a generalized Navier–
Stokes–Voigt fluid but when there is a salt field present. We could work with the
analogue of any of the systems (9), (11) or (12), the results for linear instability and
nonlinear energy stability turn out to be the same for each model. Hence, we restrict
attention to the Fried–Gurtin model.

The fluid is assumed to be contained in the horizontal layer z ∈ (0, d) with the
boundary conditions

vi = 0, T = TL , C = CL , z = 0;
vi = 0, T = TU , C = CU , z = d,

where C(x, t) is the concentration of solute, TL , TU ,CL ,CU are constants with
CL > CU and TL > TU . Hence, the layer is heated below and simultaneously salted
below. This problem without the bi-Laplacian term and for Navier–Stokes–Voigt the-
ory is handled in Straughan [31]. For the Fried–Gurtin theory the non-dimensional
perturbation equations which arise become, cf. (9),

ui,t + u jui, j − λ(�ui,t + u j,kui, jk + u j�ui, j )

= −π,i + Rθki − Cφki + �ui − ξ�2ui ,

ui,i = 0,

Pr(θ,t + uiθ,i ) = Rw + �θ,

Ps(φ,t + uiφ,i ) = Cw + �φ,

(19)
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where φ(x, t) is the perturbation to C and Ps is the salt Prandtl number. The boundary
conditions are

ui = 0, θ = 0, φ = 0, z = 0, 1,

together with ui , θ, φ, π being periodic in x, y.
Exchange of stabilities does not hold for a solution to this problem. The linear

instability equations are

σui − σλ�ui = −π,i + Rθki − Cφki + �ui − ξ�2ui ,

ui,i = 0,

Prσθ = Rw + �θ,

Psσφ = Cw + �φ.

(20)

To solve this system of equations one removes π and finds that w satisfies the equation

− σ�w + λσ�2w = −R�∗θ + C�∗φ − �2w + ξ�3w. (21)

To solve the linear instability problem one now needs to find a numerical solution
to (21) and (20)3,4 with the boundary conditions

w = w′ = w′′ = 0, θ = 0, φ = 0, z = 0, 1.

To obtain a nonlinear energy stability threshold one multiplies (19)1 by ui , (19)3
by θ and (19)4 by φ and one integrates each over V . Upon addition of the resulting
equations one may obtain

d

dt

(1

2
‖u‖2 + λ

2
‖∇u‖2 + Pr

2
‖θ‖2 + Ps

2
‖φ‖2

)

= 2R(w, θ) − ‖∇u‖2 − ξ‖�u‖2 − ‖∇θ‖2 − ‖∇φ‖2.

One may develop a global nonlinear energy stability analysis as seen in Sect. 4 and
one then finds the same stability threshold as in that section. This is due to the fact
that the production term 2R(θ, w) does not contain φ.

We do not present numerical results for the linear instability problem here but
we observe that they will feature stationary convection and oscillatory convection
thresholds, the latter depending on the Kelvin–Voigt parameter λ.

In this section we encountered an example where the linear instability threshold is
not the same as the nonlinear energy stability one. However, the basic state still has
v̄i ≡ 0 and so there is no contribution from the nonlinear terms to the linear instability
theory. We now briefly examine parallel shear flow in a generalized Navier–Stokes–
Voigt theory where the nonlinear terms do introduce a contribution into the linear
instability problem, and this will in turn, generally, change the instability thresholds.
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5 Parallel shear flow

In this section we consider parallel shear flow in an isothermal situation. Thermal
effects may be incorporated as is done for Navier-Stokes theory by Gage and Reid
[55], but we presently omit these to concentrate on the novelties already present in the
isothermal case.

We here consider the Fried–Gurtin model, but we stress that now each different
model for a generalized Navier–Stokes–Voigt fluid will potentially lead to a different
Orr–Sommerfeld equation for the linear instability thresholds and hence it is vital
to recognize this. Since we are interested in Navier–Stokes–Voigt theory we do not
consider the bi-Laplacian term in the momentum equation. In this case the equations
for the Fried–Gurtin model may be written

vi,t + v jvi, j − λ(�vi,t + v j,kvi, jk + v j�vi, j ) = −p,i + 1

R
�vi ,

vi,i = 0,

(22)

where we have non-dimensionalized and R is the Reynolds number.
The Navier–Stokes equations are derived from (22) by taking λ = 0, while the

usual Navier–Stokes–Voigt equations follow from (22) by omitting the v j,kvi, jk and
v j�vi, j terms.

We consider the fluid in the horizontal layer {z ∈ (0, 1)} and restrict attention to
two-dimensional flow, a scenario which usually involves Squire’s theorem. Then, the
basic flow consists of v = (U (y), 0). For example, with a constant pressure gradient
px one has Poiseuille flow whereU = 1− y2. A perturbation solution is sought where
u = (u(x, y, t), v(x, y, t)). One derives the linearized perturbation equations from
(22) yielding partial differential equations for u and v. A stream function ψ(x, y, t)
is introduced with u = ψy, v = −ψx , and the solution is then written as

ψ = φ(y)eia(x−ct), p = p(y)eia(x−ct).

The pressure is eliminated and one derives the Orr–Sommerfeld equation governing
the Reynolds number threshold. This threshold depends on U (y). For Navier–Stokes
theory the Orr–Sommerfeld equation is

(U − c)(D2 − a2)φ −U ′′φ = 1

iaR
(D2 − a2)2φ,

where D = d/dy, see e.g. Dongarra et al. [56]. For Navier–Stokes–Voigt theory the
Orr–Sommerfeld equation is

(U − c)(D2 − a2)φ −U ′′φ =
( 1

iaR
+ cλ

)
(D2 − a2)2φ,
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see Shankar and Shivakumara [57]. For the Fried–Gurtin model (22) I calculate the
Orr–Sommerfeld equation to be

(U − c)(D2 − a2)φ −U ′′φ
+ λ

[
2U ′D(D2 − a2)φ +U (D2 − a2)φ − 2U ′′′Dφ − 2U IVφ

]

=
( 1

iaR
+ cλ

)
(D2 − a2)2φ.

(23)

Equation (23) shows how a different model of Navier–Stokes–Voigt theory will have
a very different spectrum of eigenvalues of linear instability theory. It is important to
realize that (23) is only for the Fried–Gurtin model. In general, one expects a differ-
ent Orr–Sommerfeld equation for a dipolar fluid, or when an appropriate objective
derivative is employed.

Nonlinear energy stability analyses of Poiseuille and Couette flows for the classical
Navier–Stokes–Voigt fluid may be found in Mulone [58].

6 Magnetohydrodynamics

The Navier–Stokes–Voigt equations coupled with magnetohydrodynamics are anal-
ysed by Kuberry et al. [59] and by Sukacheva [30] who also refers to several other
papers on the subject. These works do not specifically cover the stability problem.

We here briefly consider the thermal convection problem with a magnetic field in
the Fried–Gurtin model introduced in Sect. 4. The classical problem with Navier–
Stokes theory is covered in depth by Chandrasekhar [60, Chapter 3], who shows
how the relevant equations may be derived from appropriate forms of Ampère’s law,
Faraday’s law and Ohm’s law. This approach may be employed with a Fried–Gurtin
model, a dipolar fluid, employing the Kelvin–Voigt term as a regularizing agent or by
introducing a generalized Navier–Stokes–Voigt theory with an objective derivative.
With a vertical magnetic field the basic equations may be derived as in Chandrasekhar
[60] with the same steady state as given there. For the Fried–Gurtin model the nonlinear
perturbation equations may be shown to be

ui,t + u jui, j − λ(�ui,t + u j,kui, jk + u j�ui, j ) − Pmh jhi, j

= −π,i + Rθki + �ui + Qhi,z − ξ�2ui ,

ui,i = 0,

Pm(hi,t + u j hi, j − h jui, j ) = Qui,z + �hi ,

Pr(θ,t + uiθ,i ) = Rw + �θ,

(24)

holding in R
2 × {z ∈ (0, 1)} for t > 0. In these equations hi is the perturbation

magnetic field, Pm is the magnetic Prandtl number, and Q = Q2 is the Chandrasekhar
number measuring the size of the magnetic field. The boundary conditions are as
given in Chandrasekhar [60] except when the bi-Laplacian is present we also require
∂ui/∂n = 0 on z = 0, 1.
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Employing a time dependence like eσ t , the linearized system of equations is

σui − λσ�ui = −π,i + Rθki + �ui + Qhi,z − ξ�2ui ,

ui,i = 0,

Pmσhi = Qui,z + �hi ,

Prσθ = Rw + �θ,

(25)

and the pressure is removed to arrive at the following system of equations in w, h3
and θ ,

− σ�w + λσ�2w = −R�∗θ − �2w + ξ�3w − Q�h3,z,

Pmσh3 = Qw,z + �h3,

Prσθ = Rw + �θ.

(26)

This system of equations should be solved numerically to find the stationary convection
boundary and also the oscillatory convection thresholds.

When ξ = 0, the stationary convection threshold is the same as that in Chan-
drasekhar [60, pp. 165–172]. However, when ξ = 0 the oscillatory convection
boundary will only coincide with that of Chandrasekhar [60] when λ = 0, otherwise
it is different.

7 Rotation

The problem of thermal convection in a horizontal layer of fluid which is rotating
with a constant angular velocity about a vertical axis, known as the rotating Bénard
problem, is one with many real life applications in industry, in geophysics and in other
areas.

We wish to consider the analogous problem but now for a Navier–Stokes–Voigt
fluid. Chandrasekhar [60, pp. 80–83] shows how to modify the Navier–Stokes equa-
tions to account for the layer rotating with constant angular velocity. He lets a point
(ξ, η, ζ ) in a fixed inertial frame be transformed to a point (x, y, z) in a frame rotating
with the fluid via the rotation matrix

Q =
⎛

⎝
cos �t sin �t 0

−sin �t cos �t 0
0 0 1

⎞

⎠

where � is the constant angular velocity. He differentiates x and y with respect to
t and obtains expressions for the velocity and acceleration in the rotating frame. If
superscript (0) denotes the quantity in the inertial frame then Chandrasekhar [60]
shows that

u = u(0) − � × r (27)

and (du(0)

dt

)(0) = du
dt

+ 2� × u − 1

2
grad

(|� × r|2
)
. (28)
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For the Navier–Stokes equations he shows that (28) leads to the momentum equation
referred to an observer in the rotating frame of form

ui,t + u jui, j = αgθki − π,i + ν�ui + 2(u × �)i , (29)

where the grad term in (28) is absorbed into the pressure π . Thus, (29) together with
the temperature equation corresponds to equations (3) for the rotating layer.

What should the generalization of the Navier–Stokes–Voigt equations (4) be to
incorporate a rotating layer? One could simply add −λ̂�∂ui/∂t to the momentum
equation (29) and be honest that one is adding this term purely for regularity reasons.
Using the chain rule the Laplacian is invariant in the (ξ, η, ζ ) frame or the (x, y, z)
frame. However, �∂ui/∂t is the Laplacian of a local acceleration and one may argue
that this must be accounted for in order to derive the correct analogue for Navier–
Stokes–Voigt theory. Given the remarks of Damázio et al. [15] one could replace
−λ̂�∂ui/∂t by an objective derivative in the expression for the extra stress, i.e. if

σi j = −pδi j + Si j ,

then instead of writing
Si j = 2μdi j + 2ρλ̂di j,t ,

one writes
Si j = 2μdi j + 2ρλ̂d O

i j ,

where d O
i j is an objective derivative. For example, with a corotational derivative one

would have

Si j = 2μdi j + 2ρλ̂(ḋi j − ωikdk j − dikω jk)

= 2μdi j + ρλ̂�ui,t + 2ρλ̂(ukdi j,k − ωikdk j − dikω jk).

Given the work of Chandrasekhar [60] leading to (29) this would lead to non-
dimensional perturbation equations for rotating convection in a Navier–Stokes–Voigt
fluid of form

ui,t + u jui, j − λ�ui,t = Rθki − π,i + �ui
+ T (u × k)i + λ(ukdi j,k − ωikdk j − dikω jk),

ui,i = 0,

Pr(θ,t + uiθ,i ) = Rw + �θ,

(30)

where T is the Taylor number which is a measure of the angular rotation speed.
If one were to develop a linear instability analysis from (30) then because the basic

state is zero velocity (apart from a rigid rotation) the nonlinear terms are not present
and (30) are formally equivalent to what one would obtain with an ad hoc procedure of
adding −λ�ui,t at the outset. Nevertheless, it is very important to realize that things
are different for any nonlinear analysis, whether it be by weakly nonlinear theory,
energy stability theory, or otherwise. In that case the nonlinear contributions from

123



ANNALI DELL’UNIVERSITA’ DI FERRARA

u jui, j , uiθ,i must be taken into account but so too must the nonlinear terms from the
objective derivative, in this case the terms ukdi j,k − ωikdk j − dikω jk .

We only deal with the basic rotating Bénard problem. But, if one includes more
complicated effects which involve a basic state where the velocity is non zero then
this would need to be accounted for even in the linear instability theory.

8 Oskolkovmodels

In this section we investigate two models proposed by Oskolkov [3, 4] which are
very much inspired by Navier–Stokes–Voigt theory. Oskolkov mainly works with
isothermal theory but he does in both papers also work with the analogous models
involving a temperature field. We focus on these.

Oskolkov [4] begins with a highly nonlinear system of equations and works pri-
marily with what he calls the “essential linearized invariant". For a system involving
temperature and employing a Boussinesq approximation the system of Oskolkov [4]
may be written

vi,t + v jvi, j − ν�vi − λ̂
∂

∂t
�vi − λ̂

[
vk(vi, j + v j,i ),k

]
, j = − 1

ρ
p,i + αgT ki ,

vi,i = 0,

T,t + vi T,i = κ�T .

(31)
If one studies thermal convection (Bénard problem) with (31) then it is straight-

forward to show exchange of stabilities holds for the linearized problem and also to
show that the linear instability threshold is the same as the global nonlinear energy
stability one. However, our interest here is in a variant model Oskolkov [4] proposes
in Section 4 of his paper, see also Eqs. (3.47)–(3.49). This variant model changes the
vk in the last term on the left of (31) and replaces vk by a function Vk which is known.
The function Vk is divergence free and its second spatial derivatives are bounded by a
constant, i.e.

Vm,m = 0, max |Vk, jm | ≤ K < ∞,

for some constant K . This leads to the system of equations

vi,t + v jvi, j − ν�vi − λ̂
∂

∂t
�vi − λ̂[vkvi, jk], j − λ̂[Vkv j,ik], j = − 1

ρ
p,i + αgT ki ,

vi,i = 0,

T,t + vi T,i = κ�T .

(32)
We also analyse a second variant model proposed by Oskolkov [3] where vk in both

terms 5 and 6 on the right of (31) is replaced with a known field V. Thus, the second
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system of Oskolkov we consider is

vi,t + v jvi, j − ν�vi − λ̂
∂

∂t
�vi − λ̂

[
Vk(vi, j + v j,i ),k

]
, j = − 1

ρ
p,i + αgT ki ,

vi,i = 0,

T,t + vi T,i = κ�T .

(33)
We assume V satisfies the same conditions as before.

For both systems (32) and (33) one may study thermal convection in a horizontal
layer as is done in section 4. The non-dimensional equations which arise in each case
are

ui,t + u jui, j − λ�ui,t = π,i + Rθki + �ui + λ(ukui, jk), j + λ(Vku j,ik), j ,

ui,i = 0,

Pr(θ,t + uiθ,i ) = Rw + �θ,

(34)

arising from (32) and

ui,t + u jui, j − λ�ui,t = π,i + Rθki + �ui + λ
[
Vk(ui, j + u j,i ),k

]
, j ,

ui,i = 0,

Pr(θ,t + uiθ,i ) = Rw + �θ,

(35)

which follows from (33). We suppose the solution is periodic in x, y and satisfies the
boundary conditions

ui = 0, θ = 0, on z = 0, 1.

To analyse energy stability of a solution to (34) we suppose V is also zero on
z = 0, 1 and then we multiply (34)1 by ui , (34)3 by θ , we integrate each resulting
equation over V and add the results to find

d

dt

(1

2
‖u‖2 + λ

2
‖∇u‖2 + Pr

2
‖θ‖2

)
= 2R(θ, w) − ‖∇u‖2 − ‖∇θ‖2. (36)

The nonlinear terms on the right of (34) disappear because

λ
(
ui , (ukui, jk), j

) = − λ(uk, ui, j ui, jk)

= − λ

2

(
uk, (ui, j ui, j ),k

)

=0.

Also

λ
(
ui , (Vku j,ik), j

) = − λ(Vkui, j , u j,ik)

=λ(Vkui, jk, u j,i )

=λ(Vku j,ik, ui, j )
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=0.

A similar calculation establishes the same outcome from (35). Thus, one obtains from
(36), the global nonlinear energy stability threshold is the same as the one for thermal
convection with Navier–Stokes theory. Details are similar to Straughan [61]. However,
the linear instability problem for either (34) or (35) will be different and will, in general,
not lead to coincidence of linear instability and nonlinear stability. Indeed, depending
on the choice of Vi the linear instability equations will not simply reduce to a simple
system in w and θ . In some ways Vi may be thought of as a control variable which
could lead to interesting behaviour.

The two models of Oskolkov just discussed are interesting from a mathematical
viewpoint. It remains to be seen whether they are useful in physical problems.

9 Conclusions

This article examines various variants of what might be called Navier–Stokes–Voigt
equations. One approach is to add a Kelvin–Voigt term as a regularization function.
One may also attempt to set the Navier–Stokes–Voigt equations on a firmer physical
basis by incorporating other terms such as objective derivatives. Given the interest in
Navier–Stokes–Voigt theories we believe such a discussion is appropriate.
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