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Abstract
We describe the automorphism groups of smooth Fano threefolds of rank 2 and degree
28 in the cases where they are finite.

Keywords Fano varieties · Automorphism groups · Birational geometry

1 Introduction

A smooth Fano threefold of Picard rank 2 and degree 28 is the blow-up of a smooth
quadric threefold Q ⊂ P

4 in a smooth rational quartic curve C4 ⊂ Q. Isomorphism
classes of such threefolds form an irreducible two-dimensional family, which accord-
ing to the Mori-Mukai classification corresponds to family 2.21. Let π : X → Q be
such a threefold. Then the action of Aut(Q,C4) on Q lifts to an action on X , so that
we may identify it with a subgroup of Aut(X).

By a result of Cheltsov-Przyjalkowski-Shramov ([3, Lemma 9.2]), we have that
either Aut(X) is finite, or Aut(X) ∼= Aut(Q,C4) × Z2, where upto isomorphism
Aut(Q,C4) is described as follows:

(1) There is a unique smooth threefold in family 2.21, unique upto isomorphism, such
that Aut(Q,C4) ∼= PGL2(C),

(2) There is a one-dimensional family of non-isomorphic smooth threefolds in family
2.21 such that Aut(Q,C4) ∼= Gm � Z2,

(3) There is a unique smooth threefold in family 2.21 such thatAut(Q,C4) ∼= Ga�Z2.

The goal of this paper is to describe Aut(X) when it is finite, where X is a smooth
threefold in family 2.21. Our main result is the following:

Theorem 1.1 Let X be a smooth Fano threefold of rank 2 and degree 28. Then
Aut(X) ∼= Aut(Q,C4)×Z2. Furthermore, ifAut(Q,C4) is finite then it is isomorphic
to Z2 × Z2, Z2 or 0.

We prove this theorem in two parts: Theorem 2.1 and Theorem 3.1.
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Remark 1.2 The factor ofZ2 appearing in the factorisationAut(X) ∼= Aut(Q,C4)×Z2
is generated by an involution g, which may be described as follows:

Let d denote the restriction to Q of the linear system of quadric hypersurfaces in
P
4 which contain C4, and let φ : Q ��� P

4 be the corresponding rational map. The
image of φ is a smooth quadric threefold, and φ contracts the intersection of the secant
variety ofC4 with Q, V , onto a smooth rational curveC ′

4 ⊂ Q′. The base locus of φ is
equal to C4, and there is a birational morphism π ′ : X → Q′, where X is the blow-up
of Q along C4. This morphism contracts the strict transform, E ′, of V onto the curve
C ′
4. Thus, there is a commutative diagram

X

Q Q′.

π π ′

φ

In [3], it is shown that in cases (1) and (2) of the above classification, there exists a
basis of d such that Q′ = Q and C ′

4 = C4, so that φ lifts to an involution g ∈ Aut(X).
We will show in Theorem 3.1 that this is always the case.

We can explicitly describe the threefolds appearing in [3, Lemma 9.2]. Let us fix
some notation. Observe that after a projective transformation C4 is the image of the
Veronese embedding of P

1 in P
4:

P
1 → P

4

[u : v] �→ [u4 : u3v : u2v2 : uv3 : v4].

The space of global sections of IC4(2) is generated by the following quadratic forms:

f0 = x23 − x2x4,

f1 = x2x3 − x1x4,

f2 = x22 − x0x4,

f3 = x1x2 − x0x3,

f4 = x21 − x0x2,

f5 = 3x22 − 4x1x3 + x0x4,

where IC4 is the ideal sheaf of C4 in P
4, and x0, x1, x2, x3, x4 are homogeneous

coordinates on P
4. Observe that the standard PGL2(C)-action on C4 lifts to an action

on P
4 such that C4 is invariant. We fix the following subgroups of PGL2(C):

123



ANNALI DELL’UNIVERSITA’ DI FERRARA (2024) 70:1083–1092 1085

Z2, generated by

(
0 1
1 0

)
,

Gm, consisting of matrices

(
1 0
0 t

)
for every t ∈ Gm,

Ga, consisting of matrices

(
1 t
0 1

)
for every t ∈ Ga .

Now we can describe Aut(X) for the threefolds listed before:

Example 1.3 ([1, Section 5.9]). Let Q be the quadric given by the equation

(1 − 4s2) f2 + f5 = 0,

for some s ∈ C\ {−1, 0, 1}. Then Q is Gm-invariant and Z2-invariant, and conversely
any smooth quadric admitting a faithful Gm-action is isomorphic, via an element of
PGL2(C), to a quadric given by an equation of this form. Moreover, we have the
following:

Aut(Q,C4) ∼=
{

Gm � Z2, s �= ± 1
2 ,

PGL2(C), s = ± 1
2 .

The involution g described before is given by:

τ : [x0 : x1 : x2 : x3 : x4] �→ [ f4 : s f3 : s2 f2 : s f1 : f0].

See [1, Remark 5.52] for an explanation of why τ ◦ τ : Q ��� Q is the identity map
on Q \ C4.

Example 1.4 Suppose that the quadric Q is given by the equation

f0 + f5 = 0.

Then Q isGa-invariant andZ2-invariant, andAut(Q,C4) ∼= Ga�Z2.Wewill prove in
case (2) of Theorem 3.1 that the blow-up of Q in C4 admits an action of the involution
g.

Remark 1.5 Recall that for a finite subgroupG ⊂ Aut(Y ), a variety Y is calledG-Fano
if it has terminal singularities, −KY is ample and Cl(Y )G is rank 1. It is proven in [4]
that the Hilbert scheme of conics on a smooth threefold X from the family No2.21 is
isomorphic to P

1 × P
1, with the degenerate conics being parameterised by a smooth

curve C ⊂ P
1 × P

1 of bidegree (2, 2). If X is G-Fano for the group G = 〈g〉 ∼= Z2,
then this curve must be invariant upon swapping the two factors of P

1.
An informal conjecture of Y. Prokhorov is that the invariance of this curve is a

sufficient condition for X to be G-Fano. It is proven in [2] that every smooth curve
in P

1 × P
1 of bidegree (2, 2) is invariant. As a corollary to Theorem 1.1, we have

that every smooth threefold X in the family No2.21 is G-Fano, so that Prokhorov’s
informal conjecture is true. For a detailed discussion of G-Fano threefolds, see [6].
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Remark 1.6 Smooth threefolds in the family No2.21 are parametrised byP
5\�, where

� ⊂ P
5 is the discriminant locus of singular quadrics. The group PGL2(C) acts on

this space, and it follows from Theorem 1.1 that any two threefolds in family 2.21 are
isomorphic if and only if their corresponding points in the parameter space P

5 \ �

lie in the same PGL2(C)-orbit. Moreover, the moduli space of smooth GIT-polystable
threefolds in family 2.21 is given by the GIT quotient

(P5 \ �)//PGL2(C).

2 Computation of Aut(Q,C4)

The first half of proving Theorem 1.1 is the computation of Aut(Q,C4), which we
will do in this section. The result we will prove is:

Theorem 2.1 Let Q be a smooth quadric threefold containing the quartic curve C4.
If Aut(Q,C4) is finite, then it is isomorphic to either Z2 × Z2, Z2 or 0.

The following lemma will be useful:

Lemma 2.2 Let Q ⊂ P
4 be any quadric hypersurface containing the curve C4. Sup-

pose that Aut(Q,C4) is finite, and contains an element of finite order n > 2. Then Q
is singular.

Proof Since Aut(Q,C4) ⊆ Aut(P4,C4) ∼= PGL2(C), we may identify Aut(Q,C4)

with a subgroup of PGL2(C). Moreover, by considering the action of PGL2(C) on
the parameter space P

5, we identify Aut(Q,C4) with the stabiliser of the point of P
5

corresponding to Q. Fix a finite cyclic subgroup G ⊂ PGL2(C) of order n, and let
g1 ∈ G be a generator. Then g1 fixes precisely two distinct points of P

1, which upto
projective transformation are [0 : 1] and [1 : 0]. Thus

g1 =
(
1 0
0 ζ

)
,

for some primitive nth root of unity ζ . Then g1 acts on P
5 by:

[a0 : a1 : a2 : a3 : a4 : a5] �→ [ζ 6a0 : ζ 5a1 : ζ 4a2 : ζ 3a3 : ζ 2a4 : ζ 4a5],

and we can read off the points of P
5 whose stabiliser contains G:

• n = 2: (P5)G = {[a0 : 0 : a2 : 0 : a4 : a5], [0 : a1 : 0 : a3 : 0 : 0]},
• n = 3: (P5)G = {[a0 : 0 : 0 : a3 : 0 : 0], [0 : a1 : 0 : 0 : a4 : 0]},
• n = 4: (P5)G = {[a0 : 0 : 0 : 0 : a4 : 0]},
• n > 4: (P5)G = ∅,

where the numbersa0, a1, a2, a3, a4, a5 are all arbitrary complex numbers.One checks
that for n > 2, the corresponding threefolds which have finite Aut(Q,C4) are all
singular.
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Now let us recall the following classification theorem for quadric threefolds which
contain the curve C4:

Theorem 2.3 ([5]) Let Q ⊂ P
4 be a smooth quadric containing C4. Then there exists

an automorphism φ ∈ PGL2(C) such that φ(Q) is given by one of the following
equations:

(1) μ( f0 + f4) + λ f2 + f5 = 0, for some λ ∈ C \ {1,−3} and μ ∈ C \ {2,−2} such
that μ2 �= −λ2 − 2λ + 3,

(2) f0 + λ f2 + f5 = 0, for some λ ∈ C \ {1,−3},
(3) f1 + f5 = 0.

Let us find Aut(Q,C4) in each of these cases.

Proof of Theorem 2.1. We may assume that μ �= 0 in case (1), and λ �= 0 in case (2),
as otherwise the threefolds are isomorphic to those which are described in Example
1.3 and Example 1.4. Then Aut(Q,C4) is finite, and since Aut(Q,C4) is isomorphic
to a subgroup of PGL2(C), it must be isomorphic to one of the following groups:

0, Zn, Z2 × Z2, D2n,A4,S4,A5,

where Sn (resp. An) is the symmetric (resp. alternating) group on n letters. Then by
Lemma 2.2 the only possibilities are that Aut(Q,C4) is isomorphic to Z2 × Z2, Z2 or
0.

Suppose Q is in case (1). Then Q admits an action of Z2 × Z2, generated by
g1, g2 ∈ PGL2(C), which are given by:

g1 =
(
1 0
0 −1

)
, g2 =

(
0 1
1 0

)
.

Hence, Aut(Q,C4) ∼= Z2 × Z2.
Suppose that Q is in case (2). Then Q admits an action of the group Z2, generated

by the element g1. Suppose that Aut(Q,C4) ∼= Z2 × Z2, and let g ∈ Aut(Q,C4) be
a non-trivial element distinct from g1. Considering the standard action of PGL2(C)

on P
1, observe that g1 fixes the points [0 : 1] and [1 : 0], and since gg1 = g1g, we

see that g must swap these points. Since g has order 2, it must be equal to either g2 or
g1g2. The threefold Q is not invariant under either of these.

Finally suppose that Q is in case (3), and suppose that Aut(Q,C4) is non-trivial.
Then it contains an element, g, of order 2. Since g fixes two distinct points of P

1, it
must be equal to g2, g1g2, or be given by a matrix of the form

(
1 a
b −1

)
, for some a, b ∈ C such that ab �= −1.

One checks that g2 nor g1g2 leave Q invariant, and if g is given by a matrix of the
above form then g(Q) is given by the equation:

4b f0 + 2(1 − 3bc) f1 − 3c(1 − bc) f2 + 2c2(3 − bc) f3 − 4c3 f4
+(bc2 − 2b2c2 − 4bc − c − 2) f5 = 0
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Clearly g(Q) �= Q, so that Aut(Q,C4) has to be trivial. 
�

3 Existence of the additional involution

The second half of proving Theorem 1.1 is the assertion that Aut(X) ∼= Aut(Q,C4)×
Z2, which we will do in this section. The result is:

Theorem 3.1 Let X be a smooth Fano threefold in family No2.21. Then there exists
an involution g ∈ Aut(X) such that Aut(X) ∼= Aut(Q,C4) × 〈g〉.

Proof We proceed case-by-case, according to the classification in Theorem 2.3.

Case (1):Q is given by�(f0 + f4)+ �f2 + f5 = 0

Observe that the linear system of quadrics which contain C4 is 5-dimensional, so it is
more natural to express members of family No2.21 in terms of fourfolds. Let us show
how to do this. Fix the Veronese surface S4 ⊂ P

5 given by the embedding:

υ : P
2 → P

5

[x : y : z] �→ [x2 : xy : y2 : yz : z2 : xz].

The space of global sections of IS4(2) is generated by the quadratic forms:

g0 = x23 − x2x4,

g1 = x3x5 − x1x4,

g2 = x25 − x0x4,

g3 = x1x5 − x0x3,

g4 = x21 − x0x2,

g5 = x1x3 − x2x5,

where x0, x1, x2, x3, x4, x5 are homogeneous coordinates on P
5.

Consider the following rational map:

φ : P
5 ��� P

5

[x0 : x1 : x2 : x3 : x4 : x5] �→ [g0 : g1 : g2 : g3 : g4 : g5].

I claim that φ is a birational involution. The following observation is due to I.
Dolgachev: we can identify P

5 with the space of symmetric 3 × 3 matrices, upto
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scaling. Then under this identification, the rational map above is:

φ : P
5 ��� P

5

⎛
⎝x0 x1 x5
x1 x2 x3
x5 x3 x4

⎞
⎠ �→

⎛
⎝ x23 − x2x4 x3x5 − x1x4 x1x3 − x2x5
x3x5 − x1x4 x25 − x0x4 x1x5 − x0x3
x1x3 − x2x5 x1x5 − x0x3 x21 − x0x2

⎞
⎠

But this is the same map as taking a matrix M to its adjoint adj(M). Thus it follows
from the relation adj(adj(A)) = det(A)n−2A for any n × n matrix A that φ is a
birational involution.

Let σ : P̃
5 → P

5 be the blow-up of P
5 in S4, and let E be the exceptional divisor.

Observe that for general divisors H̃ ∈ |σ ∗O
P5(1)| and Q̃ ∈ |σ ∗O

P5(2)− E |, we have
that H̃ ∩ Q̃ is a smooth element of family 2.21.

Since φ has base locus equal to S4, it lifts to a biregular involution g ∈ Aut(̃P5)

which swaps the linear systems |H̃ | and |Q̃|. Thus, the intersection H̃ ∩ g(H̃) is 〈g〉-
invariant, for any H̃ . We will now show that every smooth element X of family 2.21
which is in case (1) of Theorem 2.3 is isomorphic to a subvariety of P̃

5 of the form
H̃ ∩ g(H̃), for some hyperplane H ⊂ P

5, and therefore possesses an involution not
coming from Aut(Q,C4).

So fix such a threefold X . Then the quadric Q is given by the equation

μ( f0 + f4) + λ f2 + f5 = 0,

for some λ ∈ C \ {1,−3} and μ ∈ C \ {2,−2} such that μ2 �= −λ2 − 2λ + 3. Let us
choose roots a, b of the equations

(μ + 2)x4 + 2λ − 2 = 0,

(μ + 2)x4 + μ − 2 = 0,

respectively, so that the equation of Q becomes:

2 − 2b4

1 + b4
( f0 + f4) + 1 − 2a4 + b4

1 + b4
f2 + f5 = 0. (3.2)

Now consider the following hypersurfaces in P
5:

H = {x0 = a2x2 + b2x4},
Q2 = {g0 = a2g2 + b2g4}.

We have that the intersections H ∩ S4 and Q2 ∩ S4 are smooth, so that the intersection
of their strict transforms, H̃∩ Q̃2 ⊂ P̃

5, is a smoothmember of family 2.21.Moreover,
Q2 = φ(H), so that H̃ ∩ Q̃2 is 〈g〉-invariant. Consider the projective transformation
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ψ : P
5 → P

5 given by the matrix1

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 b2 −2b
0 −a 0 ab 0 0
0 0 a2 0 0 0
0 −a 0 −ab 0 0
1 0 0 0 b2 2b
1 0 0 0 −b2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Then the intersection of the fourfolds

ψ(H) = {x2 − x5 = 0}
ψ(Q2) = {(1 − b4)(g0 + g4) − a4g2 + 2(1 + b4)g5 = 0}

is given as a subvariety of P
4 by Eq.3.2, which defines X . Thus X ∼= H̃ ∩ Q̃2.

It remains to show that the birational involution g commutes with the action of
Aut(Q,C4).

Consider the subgroup G ⊂ PGL6(C) generated by the commuting involutions

α : [x0 : x1 : x2 : x3 : x4 : x5] �→ [x0 : x1 : x2 : −x3 : x4 : −x5]
β : [x0 : x1 : x2 : x3 : x4 : x5] �→ [x0 : −x1 : x2 : −x3 : x4 : x5].

Then α and β commute with the birational involution described previously:

φ : [x0 : x1 : x2 : x3 : x4 : x5] �→ [x23 − x2x4 : x3x5 − x1x4 : x25 − x0x4 :
: x1x5 − x0x3 : x21 − x0x2 : x1x3 − x2x5],

The hypersurfaces H and Q2 are G-invariant. Moreover S4 is G-invariant, so that
G is isomorphic to a subgroup of Aut(Q,C4). Thus since Aut(Q,C4) ∼= Z2 × Z2 by
Theorem 2.1, we have that Aut(Q,C4) ∼= G. So we see that Aut(Q,C4) commutes
with the involution g.

For the remaining cases, we will compute bases for the linear system d of quadrics
sections of Q ⊂ P

4 containing the curve C4 such that the corresponding rational map
is an involution, and commutes with the action of Aut(Q,C4).

1 The matrix defining ψ comes from the embedding PGL3(C) ↪→ PGL6(C), which is given by the
projectivisation of the symmetric square,P(Sym2(C3)) ∼= P

5, of the standardGL3(C) action. TheVeronese
surface S4 is invariant under this action, so that ψ(Q2) contains S4.
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Case (2):Q is given by f0 + �f2 + f5 = 0

Let us make the substitution λ = 1 − 4s2, for some s ∈ C \ {−1, 0, 1}. Consider the
rational map:

ι : Q ��� P
4

[x0 : x1 : x2 : x3 : x4] �→
[
f4 + s2

2
f2 − 1

16
f0 : s

4
f1 + s f3 : s2 f2 : s f1 : f0

]
.

Observe that it has base locus equal to C4, so indeed corresponds to the linear system
d. To see that the map ι is a birational involution, consider the following rational
parametrisation of Q,

p : P
3 ��� Q

[x0 : x2 : x3 : x4] �→
[
x0x3 : s2x0x4 − s2x22 + x22 − 1

4
x2x4 + 1

4
x23 : x2x3 : x23 : x3x4

]
.

This is a rational inverse to the projection Q ��� P
3 from the point [0 : 1 : 0 : 0 : 0].

Moreover, it is an isomorphism between the open subsets P
3 \ � and Q \ V , where

� ⊂ P
3 is the plane given by x3 = 0, and V ⊂ Q is the singular quadric surface given

by the intersection of Q with the plane x3 = 0, this latter variety being the closure of
the union of lines through [0 : 1 : 0 : 0 : 0]. Let Z be the curve p−1(C4), which is a
quartic rational curve in P

3.
Then ι(p(P3 \ (� ∪ Z)) lies in Q, and since p(P3 \ (� ∪ Z)) = Q \ (V ∪ C4)

is dense in Q \ C4, it follows that ι is a rational self-map of Q. To see that ι is an
involution on Q \ C4, observe that ι ◦ ι ◦ p is equal to the map

P
3 ��� Q

[x0 : x1 : x2 : x3] �→
[
x0 : (−4s2 + 4)x22 − x2x4 + 4s2x0x4 + x23

4x3
: x2 : x3 : x4

]
,

which is equal to the identity morphism on P
3 \ �. Thus ι ◦ ι is equal to the identity

morphism on Q \ (V ∪ C4), so that it is equal to the identity morphism on Q \ C4.

Let us prove that ι commutes with the action of Aut(Q,C4). If s �= ± 1
2 then by

Theorem 2.1, Aut(Q,C4) = 〈g1〉, where g1 is the linear transformation

[x0 : x1 : x2 : x3 : x4] �→ [x0 : −x1 : x2 : −x3 : x4].

Then it is plain that ι commutes with g1. If s = ± 1
2 , then Q is the quadric described

in Example 1.4, and Aut(Q,C4) contains subgroup isomorphic to Ga consisting of
automorphisms of the form

[x0 : x1 : x2 : x3 : x4] �→ [x0 + 4t x1 + 6t2x2 + 4t3x3 + t4x4 : x1 + 3t x2 + 3t2x3 + x4 :
: x2 + 2t x3 + t2x4 : x3 + t x4 : x4],
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for every t ∈ C. One can easily see that ι commutes with each of these automorphisms.

Case (3):Q is given by f1 + f5 = 0

Let σ be the rational map

σ : Q ��� P
4

[x0 : x1 : x2 : x3 : x4] �→
[
1

64
f0 − 1

4
f1 + 3

2
f2 + 16 f3 + 64 f4 :

: −1

8
f0 + 3

2
f1 + 2 f2 + 32 f3 : f0 − 8 f1 + 16 f2 : −8 f0 + 32 f1 : 64 f0

]
.

By replacing the map ι with σ , the map p by the rational parametrisation

P
3 ��� Q

[x1 : x2 : x3 : x4] �→
[
4x1x3 + x1x4 − 3x22 − x2x3

x4
: x1 : x2 : x3 : x4

]
,

and the varieties � and V with {x4 = 0}, it follows verbatim from the proof of case
(2) that σ is a birational involution of Q with base locus equal to C4. By Theorem 2.1,
Aut(Q,C4) is trivial in this case, so there is nothing left to prove. 
�
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