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Abstract
An essential type of Bayesian recursive filters known as the sequential Monte Carlo
(alias, the particle filter) is used to estimate hidden Markov target states from noisy
sensor data. Utilising sensor data and a collection of weighted particles, the filter
makes an approximation of the posterior probability density of the target state. These
particles are made to recursively propagate in time and are then updated using the
incoming sensor information. The auxiliary particle filter improves over the tradi-
tional particle filter by guiding particles into regions of importance of the probability
density using a lookahead scheme. This facilitates in the use of fewer particles and
improved accuracy. However, when the sensor observations are extremely informative
and the state transition noise is strong, the filter suffers badly. This is because the high
state transition noise causes the particles that are determined to be important by the
lookahead step could guide themselves to unimportant regions of the posterior in the
final sampling process. Recent improvements of the auxiliary particle filter explored
better weighting strategies but the said problem has not been explored closely. This
paper seeks to solve the problem by adopting an auxiliary lookahead technique with
two predictive support points to estimate the particles that will be located in regions
of high importance after final sampling. The proposed method is successfully tested
using a nonlinear model using simulations.

Keywords Particle filter · Auxiliary particle filter · Lookahead · Resampling ·
Root mean square error · Computational time

1 Introduction

Bayesian state estimation provides a recursive state space modelling framework to
estimate the hidden Markov state of target(s) xt using all available noisy sensor obser-
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vations y1:t where y1:t = {y1, y2, . . . , yt } and t is the time index [1]. The state space
model comprises of a state transition model that describes the evolution of the target
state over time and a sensor observation model that describes the observation. Both
models include random measures (noise) that account for the uncertainty in state evo-
lution and observation processes. With all available sensor data at each time instant,
the Bayesian state estimation framework computes the posterior probability density
function (PDF) of the target state p(xt |y1:t ) at every time step [2]. Prediction and
updating are the two phases involved in this. The state transition model is used in
the prediction step to construct a prediction density p(xt |y1:t−1) that creates a target
hypothetical prediction. The posterior PDF can then be updated using the prediction
density and the observation density (computed from the sensor model) using Bayes’
rule. Bayesian estimation is useful for several applications including target tracking
[3], econometric modelling [4], biomedical engineering [5], robotics [6] and more [7].

The Kalman filter is known to be the optimal Bayesian state estimator as it provides
an exact solution for computing the posterior PDF [8]. It accomplishes this by com-
puting the first two moments of the PDF analytically. However the filter is limited to
linear systems with Gaussian noise. The sequential Monte Carlo (henceforth termed
the particle filter (PF)) [9], on the other hand, can be applied to the more general class
of nonlinear and non-Gaussian state space models. A group of weighted particles used
in the PF serve to represent the posterior PDF of the target state [10]. The PF’s particles
can be thought of as weighted point explorers that cluster around regions that are prob-
abilistically highly significant, or regions that contribute to the posterior. Following
the Bayesian state estimation framework, the PF also comprises two steps, prediction
and update, which together can be termed sequential importance sampling (SIS). The
prediction step propagates the particles to the next time step using the state transition
model and the update step weights the particle of its importance (or contribution) to
the posterior PDF. Degeneracy, which occurs when all but one particle have minimal
weight after a few iterations and is a direct result of not sampling from high importance
regions, is a problem that SIS by itself experiences. This is overcome by resampling
the particles based on their weights [11, 12].

Another strategy to overcome degeneracy is to sample particles from the regions
of importance, that is, to guide them into locations in the state space that contribute
to the posterior PDF. This can be achieved by leveraging the incoming observation in
the sampling process, that is, by sampling from p(xt |xt−1, yt ) instead of p(xt |xt−1).
Several methods have been proposed to leverage the incoming observation in SIS. The
most popular in this class is the auxiliary particle filter (APF) [13]. The filter samples
a lookahead set of particles and computes their weights, then resamples the resultant
and uses those resampling indices to propagate the old particles to the next time
step using p(xt |xt−1). This lookahead sampling scheme impersonates sampling from
p(xt |xt−1, yt ) as sampling directly by incorporating the incoming observation is not
straightforward. The APF improves over the standard PF and requires fewer particles.
Improvedweighting strategies for theAPFhavebeenproposed in [14, 15]. The recently
proposed improved APF (IAPF) [16, 17] has demonstrated enhanced accuracy over
the APF, particularly in circumstances where the variance of the noise is small.1 It

1 This paper assumes additive noise model.
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built a general framework to compute the weights from the lookahead particles. Other
look ahead strategies include adapted placement and others [18–20, 23]. The key idea
in all these methods is the same: look ahead in time and determine the set of particles
which when propagated using SIS will lie in regions of importance, retract, and then
propagate those particles. These methods achieve high tracking accuracy by virtue of
sampling from high importance regions.

The problemThe lookahead strategy of theAPFmethods determine those particles that
will probably be important if sampled from p(xt |xt−1). However a large state transition
noise and and a low observation noise can lead to perturbing the particles with large
target heading disturbance and weighting them using a narrow observation density.
This leads to many particles having low probability mass which consequently leads to
degeneracy. This also results in over-estimating the mass in the density function tails
and inaccurately representing the posterior PDF.

Contribution of this paper In this paper, we propose an improvement of the APF
method to overcome the aforementioned problem. The key idea here is to take support
from two predictive locations for each particle that lie at the tails of the prediction
density. This paper assumes a univariate state space model, hence the density has two
support points, one on the left and the other on the right of the mean value, whereas
for multivariate models there will be multiple support points. These support points
indicate the importance a particle will hold if it is propagated to the next time step.
A realisation of the particle prediction to the next time step will almost certainly lie
within the posterior density if both support points lie within the bounds of the posterior
density. Therefore leveraging the two support points within the sampling process will
aid in improved selection of those particles that will contribute to the posterior. This
paper presents a scheme to achieve this. The efficacy of the proposal is tested using
simulations.

The remainder of this article is organised as follows: Sect. 2 describes the PF and
the APFmethods. The proposedmethod in described in Sect. 3 followed by simulation
results in Sect. 4. We finally conclude in Sect. 5.

2 Bayesian state estimation

In this sectionwedescribeBayesian state estimation and thePFmethodology.Consider
the state space model

xt = f (xt−1, at ) (1)

yt = h(xt , et ) (2)

where from (1), the target state xt ∈ R
dx at time instant t ∈ N is a hidden random

variable evolves over time for time steps t = 1, ..., T following an initial distribution
p(x0) and the Markov state transition density p(xt |xt−1) and dx denotes the state
dimensionality. From (2), the observation density p(yt |xt ) is followed by the noisy
sensor observation yt ∈ R

dy and dy stands for the observation dimensionality. State
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transition and sensor observation (non)linear functions are f (.) and h(.) respectively,
while state transition and observation noise are at and et respectively.

Using all of the available observations, Bayesian state estimation seeks to iteratively
estimate the PDF of the concealed target state. If the posterior PDF p(xt−1|y1:t−1) at
time t − 1 is available, then the filter constructs the posterior PDF at time t according
to

p(xt |y1:t ) ∝
∫

p(yt |xt )p(xt |xt−1)p(xt−1|y1:t−1) dxt−1 (3)

∝ p(yt |xt )p(xt |y1:t−1) (4)

where p(xt |y1:t−1) is the prediction density and p(yt |xt ) is the observation density.
Once the posterior PDF is available, the hidden target state can be estimated using the
expected a posteriori (EAP) [2] as

x̂EAPt = E(p(xt |y1:t )) =
∫

xt p(xt |y1:t )dxt (5)

2.1 The standard PF

The PF uses a set of N particles and their associated weights in accordance with
p(xt−1|y1:t−1) ≈ {xit−1, w

i
t−1}Ni=1 where i is the particle index, to approximate the

posterior density at time t − 1. To move to time t , the PF follows the principle of
importance sampling: aims to sample from the target (unknown) density p(xt |y1:t )
and since it is unknown we sample from a proposal density q(xt |y1:t ) which has the
same support as the target. If the proposal can be factorised as

q(xt |y1:T ) = q(xt |xt−1, yt )q(xt−1|y1:t−1) (6)

then the particles may be accepted with probability

wt = p(xt |y1:t )
q(xt |y1:t ) (7)

= p(yt |xt )p(xt |xt−1)

q(xt |xt−1, yt )

p(xt−1|y1:t−1)

q(xt−1|y1:t−1)
(8)

= p(yt |xt )p(xt |xt−1)

q(xt |xt−1, yt )
wt−1 (9)

Sampling from the proposal q(xt−1|y1:t−1) is nontrivial especially for nonlinear tran-
sition models. Therefore it is often the practice to chose the state transition density as
the proposal density

q(xt−1|y1:t−1) = p(xt |xt−1) (10)

Then the PF may be outlined as follows.
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Step 1 Sample particles x̄ it ∼ p(xt |xit−1), i = 1, . . . , N .
Step 2 Compute the weights as

w̄i
t = wi

t−1 p(yt |xit ), i = 1, . . . , N (11)

were the weights are derived by substituting the state transition density in (9). The
weights are then normalised so they sum to one. The posterior at time t then is approx-
imated as p(xt |y1:t ) ≈ {x̄ it , w̄i

t }Ni=1
Step 3 After a few iterations, the weight mismatch grows and degeneracy becomes
more evident. To avoid this, the particles are resampled to form a new set p(xt |y1:t ) ≈
{xit , wi

t }Ni=1 by sampling an index

j i : P( j i = m) = w̄m
t ,m = 1, . . . , N (12)

set xit = x̄ j i
t andwt = 1/N . Particles with tinyweights are removed in this resampling

process and replaced with replicas of particles with larger weights [11, 12, 21, 22]. It
can be observed that this filter assumes the transition prior as the Markov transition
density as shown in (10). As this does not leverage the incoming information yt ,
there is not guarantee that the particles generated thereof will lie in regions of the
state space contributed by yt . That is, particles might not be generated from regions
contribute to the posterior p(xt |y1:t ). The only solution to overcome this problem is
to use more particles to ensure there are enough particles to span the regions of high
posterior probability density. Consequentially, a lot of computational effort will have
to be spent in the sequential resampling process of (12). The entire PF process can be
outlined as shown in Algorithm 1.

Algorithm 1 The PF
INPUT: {xit−1, w

i
t−1}Ni=1

for i = 1, . . . , N do
Sample particles x̄ it ∼ p(xt |xit−1)

Compute weights w̄i
t = wi

t−1 p(yt |xit )
end for
for i = 1, . . . , N do

Normalise weights w̄i
t = w̄i

t /
∑N

j=1 w̄
j
t

end for
for i = 1, . . . , N do

Resampling index j i : P( j i = m) = w̄m
t ,m = 1, . . . , N

xit ←− x̄ j i
t

Set wi
t = 1/N

end for
OUTPUT: {xit , wi

t }Ni=1
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2.2 The APF

The key solution to overcoming the said problem is to sample particles from regions
that contribute to the posterior. This can be achieved by foreseeing which particles
will gain probability mass if propagated forward, and then propagating only those
to the next time step. This idea, traditionally called the “lookahead strategy,” can be
understood from [19]. The APF is the well known method to accomplish the looka-
head strategy. The APF, unlike the PF, looks ahead in time to leverage the incoming
observation yt in its sampling process.

The APF aims to impersonate sampling from a proposal that includes the incoming
observation. To accomplish this, the filter first determines a set of indices j i , i =
1, . . . , N such that the particles at time t − 1 corresponding to these indices will lie in
regions that contribute to the posterior pdf. Let the proposal density be factorised as

q(xt |y1:t ) = q(xt | j i )︸ ︷︷ ︸
Sampling

q( j i |xt−1, yt )q(xt−1|y1:t−1)︸ ︷︷ ︸
Lookahead

(13)

where we express

q( j i |xt−1, yt ) ∝ q(yt | j i )q( j i |xt−1) (14)

Sampling the indices j i from q( j i |xt−1, yt ) is equivalent to drawing from theweighted
particle approximation

j i ∼ w̄i
t δ(xt − x̄ it ), i = 1, . . . , N (15)

where δ(.) denotes the Dirac-delta function and where

x̄ it = E(p(xt |xit−1)) (16)

w̄i
t = wt−1 p(yt |x̄ it ) (17)

and j i is a sample index such that P( j i = i) = w̄i
t . Note that the weights should

be normalised so they sum to one. New particles are then sampled according to xit ∼
p(xt |x ji

t−1). Theweights corresponding to these particles are their observation densities
weighed down by the density of the lookahead sample, and given by

wi
t = p(yt |xit )

p(yt |x̄ j i
t )

(18)

The weights again are normalised. The new weighted sample set is then propagated
to the next time step. The APF is outlined in Algorithm 2. The key advantage of the
APF is that we now need fewer particles since the particles are assuredly drawn from
regions that contribute to the posterior probability.
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Algorithm 2 The APF
INPUT: {xit−1, w

i
t−1}Ni=1

for i = 1, . . . , N do
Compute particle means x̄ it = E(p(xt |xit−1))

Compute weights w̄i
t = wt−1 p(yt |x̄ it )

end for
for i = 1, . . . , N do

Normalise weights w̄i
t = w̄i

t /
∑N

j=1 w̄
j
t

end for
for i = 1, . . . , N do

Resampling index j i : P( j i = m) = w̄m
t ,m = 1, . . . , N

end for
for i = 1, . . . , N do

Sample particles xit ∼ p(xt |x ji

t−1)

Compute weights wi
t = p(yt |xit )

p(yt |x̄ j i
t )

end for
for i = 1, . . . , N do

Normalise weights wi
t = wi

t /
∑N

j=1 w
j
t

end for
OUTPUT: {xit , wi

t }Ni=1

2.3 Improved versions of the APF

Charalampidis and Papavassilopoulos [14] proposed the IAPF.Here aweighting factor

s j
i

t was derived to weigh the final weights of the particles in (18) as

wi
t = s j

i

t
p(yt |xit )
p(yt |x̄ j i

t )
(19)

This weighting ensures that the weights are set in proportion to the number of their
replicates from the resampling step and hence stabilises the weight function. This
consequently reduces the Monte Carlo error associated with the final estimate. The
recently proposed IAPF [16, 17] developed a general framework for the APF formal-
ism. The first stage weights are computed, instead of (17), as

w̄i
t = p(yt |x̄ it )

∑N
j=1 w

j
t−1 p(x̄

i
t |x j

t−1)∑N
j=1 w

j
t−1 p(x̄

i
t |x j

t−1)
(20)

and the second stage weights are computed, instead of (18), as

wi
t = p(yt |xit )

∑N
j=1 w

j
t−1 p(x

i
t |x j

t−1)∑N
j=1 w̄

j
t p(x

i
t |x j

t−1)
(21)
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The weights must be normalised in both cases. Since the full multiple importance
sampling formalism is implemented herein, the weights are more stable and hence the
Monte Carlo error associated with the final estimate will also be small. Branchini and
Elvira, in [23], improvised the APFmechanism including generic multiple importance
sampling proposals and optimising the weights using the least squares method. This
work, despite being novel, does not fall under the problem being discussed in this
paper, and hence not included in the experiments.

The APF and the IAPFs suffer when the observations are highly informative, or
when the variance of the error is small. This problem is explained and a method to
overcome the same is proposed in the subsequent section.

3 Proposedmethod

In this section we discuss the problem of the APFs in sampling incorrectly for highly
informative observations and propose a method to overcome it. Consider when the
observation nose is very small the observation density p(yt |xt ) stays highly peaked
and high state transition noise will cause the predictions to stray away from regions
that contribute to the posterior. Hence any leveraging of the incoming observation in
the sampling process will be lost.

3.1 Example 1

To understand this further, as an example, consider a univariate state space model
governed by a random walk state transition model xt = xt−1 + at where the additive
zero mean white noise variable is defined as at ∼ N (0, τ 2 = 1). Also consider the
observationmodel to be additiveGaussian as yt = xt+et where the additive zeromean
white noise variable is defined as et ∼ N (0, σ 2). Also suppose that the observation is
at the origin y = 0. Assume there are N = 8 particles. Table 1 illustrates the problem
of the APF/IAPFs for the above model.
Case 1 The first set of rows from xt−1 −→ wt correspond to the case when the
observation error variance is σ 2 = 0.5 and is comparable to the state transition noise
variance τ 2. Here, the 1st row corresponds to the means of the particles obtained
from the transition kernel p(xt |xt−1) and since we use the random walk model, the
propagated means x̄ it , i = 1, . . . , N are equal to the particles at time t − 1. These
means are the lookahead samples. The normalised weights w̄i

t , i = 1, . . . , N then
computed and the sampling indices j i , i = 1 · · · , N are obtained as shown in rows
2, 3 & 4. We then retract to time t − 1 and select those particles corresponding to the

output of the resampler, i.e., x ji

t−1, i = 1, . . . , N as shown in row 5. These particles are
then propagated forward to time t using the Markov transition prior and their weights
are recomputed in rows 6 & 7. It is expected that the variance of the weights at the 7th
stage will be low, i.e., the propagated particles are more representative of the posterior
PDF.
Case 2 The second set of rows, again from xt−1 −→ wt , correspond to the case
when the observation error variance is σ 2 = 0.05 and is very small compared to the
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state transition noise variance τ 2. It can be observed here although the best particles,
the 3rd and the 4th, i.e., x (3,4)

t−1 = {0.130022, 0.038661} are propagated forward as
shown in row 5, the large difference in the Markov transitional noise variance τ 2 and
the observation noise variance σ 2 cause the subsequent weights (shown in row 6)
are small and require another step of resampling to avoid the effect of degeneracy.
Therefore any leverage of the incoming observation induced by the process of looking
ahead using the means of the transition kernel is nullified.

3.2 Example 2

Figure 1 illustrates the same problem for the same model conditions using more
particles N = 100. The yellow circles correspond to the particles at time t − 1. The
blue stems correspond to the weighted particle approximation for σ 2 = 0.5 and the
red to σ 2 = 0.05. It can be seen that when σ 2 ≪ τ 2, the variance between the weights
is large and this requires another resampling step.

A general opinion of the said problem can be seen in Fig. 2. The figure shows the
percentage probability of the number of particles obtaining weights less than 1/N ,
i.e.,

L = |i : wi
t < 1/N | (22)

for varying observation noise variances keeping τ 2 = 1. It can be seen that the average
number of low weight particles increases for reducing error variance, thus leading to
degeneracy and the need for resampling. In other word, the effect of leveraging the
incoming information within the particles by way of looking ahead is annulled in this
low error variance conditions.

3.3 Our proposal

Here we propose a method to overcome the said problem. The problem in the
APF/IAPFs can be seen in the following perspective: If a realisation of the state
transition density xit /∈ (yt − 3σ, yt + 3σ) then its corresponding weight will be very
small wi

t ≪ since σ 2 ≪. And if the state transition noise is high τ 2 ≫ then it is
almost certain that the probability of prediction will not lie in the 99.95% region of
the observation density, i.e.,

P(xit ∼ p(xt |x̄ it−1) /∈ (yt − 3σ, yt + 3σ)) �= 0 (23)

This causes the weights to be extremely small thus causing
∑N

i=1 wi
t = 0 and division

by zero errors. This situation may happen at the lookahead or the sampling stages.
Here, we propose a improvement to the APF to handle low observation noise sce-

narios effectively. For the state space model given in Sect. 1, assume the noise in
the state transition model in (1) and the observation density in (2) are Gaussian as
at ∼ N (0, τ 2) and et ∼ N (0, σ 2). Also assume τ 2 ≫meaning there is a large diffu-
sion over the state heading and σ 2 ≪meaning the observations are highly informative
which in turn cause the observation density to be very peaked.
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Fig. 1 Illustration of the
problem in APF/IAPFs

Fig. 2 Percentage of the number
of particles with weights less
than 1/N versus the observation
noise variance. The result is
averaged over 1000 Monte Carlo
runs

The traditional APF looks ahead in time using either the mean or the mode or one
realisation of the state transition density p(xt |xt−1). Since the observation density is
peaked, we need to have enough particles in the regions of importance of the posterior
density, else we suffer from degeneracy. Determining the importance of a lookahead
particle based on on realisation of its prediction, in all probability, will be a weak
determination for the said scenario. Therefore, we propose to include two support
predictive points. Chose two support points as

x̄ i,lt = E(p(xt |xit−1)) − γ τ (24)

x̄ i,rt = E(p(xt |xit−1)) + γ τ (25)

where we set γ = 1 empirically. The l and r in the superscript notate the support
values corresponding to the left and right of the mean value respectively. Both the
support points ensure that x̄ i,.t : p(xt |xit−1) ≤ γ . Determination that the i th sample
will be important is made based on a single realisation of the sample. If the sample is
determined to be important based on one realisation is a weak determination. That is
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to say, instead of considering one lookahead particle, we span the transition density of
each particle limited by γ . This will aid in an accurate determination of the importance
of the lookahead value.

Sampling the indices j i from q( j i |xt−1, yt ) is now equivalent to drawing from the
weighted particle approximation

j i ∼ w̄i
t (δ(xt − x̄ i,lt ) + δ(xt − x̄ i,rt )) (26)

for i = 1, . . . , N where

w̄i
t = wt−1

p(yt |x̄ i,lt ) + p(yt |x̄ i,rt )

2
(27)

As can be seen, we reduce the lookahead sample weights by a factor equal to the
average weight of samples that are γ standard deviations from the mean value. This
prevents particles thatmight not contribute to the posterior frombeing deemed relevant
and used in the final sampling procedure.

Once the lookahead particles and their weights are obtained, the index j i is a
sample index such that P( j i = i) = w̄i

t . The particles are then sampled according to

xit ∼ p(xt |x ji

t−1) and weighted as (18).
The proposed method can be outlined as follows.

Step 1 Lookahead in time using the support points {x̄ i,lt , x̄ i,rt } for i = 1, . . . , N .
Step 2 Compute the normalised lookahead weights {w̄i

t }Ni=1 according to (27).

Step 3Sample j i ∼ ∑N
i=1 w̄i

t (δ(xt−x̄ i,lt )+δ(xt−x̄ i,rt ))which relates to the resampling
step. In this paper we use the well-known systematic resampling.

Step 4Retract and sample new particles from the resampled indices as xit ∼ p(xt |x ji

t−1)

and compute the normalised weights according to (18).
The key benefit of this proposal is that taking the support of two predictions instead

of one that are γ standard deviations from the expected value helps in disallowing
particles to be treated as important when only the expectation is considered.

4 Simulation

Here, we demonstrate the effectiveness of the suggested system. We evaluate our
system in comparison with the APF [13], the improved APF by Charalampidis and
Papavassilopoulos [14] (we name as IAPF-2013) and the improved IAPF by Victor
Elvira et al. [17] (we name as IAPF-2019). All the tests are averaged over 1000Monte
Carlo iterations. For the proposed method, we set γ = 1.

4.1 Linear example

We first use a univariate state space model defined by the following state transition
and observation densities as
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Fig. 3 From left to right correspond to time steps t = 25, 50, 75, 100. The first row corresponds to
N = 100, σ 2 = 0.01, the second to N = 10000, σ 2 = 0.01, the third to N = 100, σ 2 = 1 and the fourth
to N = 10,000, σ 2 = 1. The the black represents the Kalman filter, the blue represents the standard PF,
the cyan represents the APF, and the red represents the proposed filter

p(xt |xt−1) = N (xt−1, τ
2) (28)

p(yt |xt ) = N (xt , σ
2) (29)

for t = 1, . . . , T = 100. The state transition noise variance is configured to be τ 2 =
10. The initial target state is xt=0 = 0. The filters are initiatlised with xit=0 ∼ N (0, 1)
for i = 1, . . . , N . Employing a linear Gaussian model allows to compare against the
optimal Kalman filter. Figure3 shows the filter estimated posterior densities against
the optimal Kalman filter density at time steps t = 25, 50, 75, 100 for low and high
values of noise variance σ 2 and for low and high values of the number of particles N . It
can be observed that, when the σ 2 = 0.01, the APF and the proposed APF suffer from
not having sufficient particles to explore the peaked region of importance as can be
seen from their very flat densities in the top two rows. On the other hand, the methods
compare well with the Kalman filter and the standard PF at moderately higher values
of σ 2. This demonstrates that the proposed approach is nearly equivalent to the APF
with regard to approximating the posterior accurately.

Table 2 shows the root mean square error (RMSE) for low and high values of
observation noise σ 2 and numbers of particles N . It can be observed that the proposed
method shows nearly 8.5% improvement (i.e., reduction in RMSE) over the APF at
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Table 2 The table shows the RMSE values of the Kalman filter (KF), the standard PF (SPF), the APF and
the proposed method for low and high values of σ 2 and N for the linear Gaussian example

N = 100 N = 10000 N = 100 N = 10000
Filter σ 2 = 0.01 σ 2 = 0.01 σ 2 = 1 σ 2 = 1

KF 0.0964 0.0964 0.7569 0.7569

SPF 0.1065 0.0964 0.7664 0.7570

APF 0.1294 0.1136 0.7646 0.7571

Proposed 0.1102 0.1056 0.7521 0.7470

σ 2 = 0.01. This is by virtue of leveraging the lookahead process on two prediction
support values instead of the mean value as does the APF that improves the quality of
particles propagated to the next time step. It has been proposed in the APF by Pitt and
Shepherd [13] to resample the particles a second time for improved representation of
the posterior. However most literature does not employ a second resampling stage as
resampling is computationally expensive. In this paper, we do not employ a second
resampling to any of the APF methods.

4.2 Nonlinear example

We now use the nonlinear growth model used extensively in the PF literature, given
by

p(xt |xt−1) = N
(
xt−1

2
+ 25xt−1

1 + x2t−1

+ 8cos(1.2t), τ 2
)

(30)

p(yt |xt ) = N
(
x2t
20

, σ 2
)

(31)

for t = 1, . . . , T = 100.We set the state transition noise variance τ 2 = 10. The initial
target is xt=0 = 0. The filters are initialised with xit=0 ∼ N (0, 1), i = 1, . . . , N .
Firstly, in Fig. 4, we show the estimated effective sample size

N̂eff = 1

N
∑N

i=1 wi
i
2 (32)

for the filters for varying numbers of particles at a low noise variance of σ 2 = 0.1.
The N̂eff is a measure of the degeneracy of the filters and a value of zero indicates
complete degeneracy and a value of one indicates no degeneracy. We compute this
estimate after the final sampling stage for the APFs and proposed method. Since the
observation error is small, the observation density is highly peaked, and this causes
high degeneracy within the APFs. It can be observed in the figure that all the filters
suffer from degeneracy in that they could not achieve more than N̂eff = 0.5 even at
N = 1000. However, it is clear that the suggested method achieves a higher effective
sample size value by using two support points to assess a particle’s significance for
propagation to the following time step.
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Fig. 4 The estimated effective
sample size versus the number
of particles N at low noise
variance of σ 2 = 0.1

Fig. 5 The filter failure
probability. The first stem
corresponds to the APF, the
second to the IAPF-2013, the
third to the IAPF-2019 and the
fourth to the proposed filter at
N = 100 and σ 2 = 0.1

Secondly, as mentioned in Sect. 3, the APFs fail completely due division by zero
errors caused by particles not being sampled close to the importance regions of the
highly peaked observation density. Figure5 shows the failure probability of the filters
calculated empirically at low noise condition, and it can be observed that the proposed
filter gains tremendously in terms of avoiding division by zero errors. It has been found
to fail only 0.5% of the time while the APF is found to fail 5% of the time and the
others fail more than 10% of the time. The filters do not fail as σ 2 increases because
the increase causes the observation density to flatten.

We have until now shown that the two support points influence the avoidance of
degeneracy and division by zero errors. This should straightforwardly correlate to the
tracking accuracy. Therefore, we show the RMSE of the filters for varying observation
error variances at N = 100 and N = 1000. This is shows in Fig. 6. It can be observed
that the RMSE of the proposedmethod is magnitude times lower than the conventional
APF methods. It can be observed that the reduction in RMSE in the proposed method
is consistent across all values of observation error with 26.4%, 29.4% and 12.3%
reduction over the APF, the IAPF-2013 and the IAPF-2019 methods respectively. The
reason for this is that the particles used for final propagation are a rich collection of
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Fig. 6 The RMSE versus the
noise variance σ 2. The top panel
corresponds to N = 100 and the
bottom to N = 1000. The
legend of the top panel applies to
the bottom also

those that would contribute to the posterior pdf. This collection is realised by virtue
of the proposed support point based lookahead sampling.

Finally, we show the computational time (in seconds) of the various filters for the
nonlinear model. This is shown in Fig. 7. The standard PF exhibits the lowest computa-
tional requirement. This is followed by the APF as it involves an additional look ahead
sampling stage. The third is the proposed method. Fourthly, the computationally most
expensive are the IAPF variants as they involve more computations in determining
the weights. The IAPF-2019 is far more expensive at it involves computing over the
generalised form of weights of the multiple importance sampling functions. Summar-
ily, it can be observed that the proposed filter, apart from being stable in low noise
conditions than the APF and the IAPFs, is also computationally more efficient than
the IAPFs.

5 Conclusion

In the PF, a proposal density that draws particles leveraging on the previous particles
and the incoming observation is known to guide particles into regions of importance
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Fig. 7 The computational time
versus the number of particles

of the posterior pdf and thus avoid degeneracy and the need to use many particles.
However leveraging the incoming observation in the proposal is not straightforward.
The APF and its variants mimic this leveraging process cleverly by first looking ahead
in time and determining those particles that would have importance when propagated
forward. However when the state transition noise is high and the observation noise is
very low, the lookahead strategy of these filters fail due to degeneracy or low weights.
This paper proposed to use two support predictive points instead of one, that are
located one standard deviation symmetrically from the mean, and use the density in
between the two support points to determine the importance of lookahead particles.
This will improve the determination process and guides particles that will have higher
importance to the next time step. The efficacy of the proposed method is shown using
simulations. In the future, the proposed approach will be extended to multivariate state
space models.
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