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Abstract

In this paper, we give several refinements of Berezin norm and Berezin number inequal-
ities of bounded linear operators defined on a reproducing kernel Hilbert space. In
particular, we present some refinements of the triangle inequality for the Berezin
norm of operators. In addition, we derive new upper bounds for the sum and poduct
of Berezin number for two bounded operators. Moreover, we prove some new upper
bounds for the Davis—Wielandt—Berezin radius of operators. Some applications of the
newly obtained inequalities are also provided.

Keywords Berezin number - Berezin norm - Reproducing kernel Hilbert space -
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1 Introduction and preliminaries

Throughout this paper, B({) denotes the C*- algebra of all bounded linear operators
acting on a non trivial complex Hilbert space H with inner product (., .) and associated
norm ||.||. Recall that an operator A € B(H) is said to be positive if (Ax, x) > O for all

x € 'H. The real and imaginary parts of A have been defined as follows R (A) = A+TA*

and J (A) = AEIA* where A* denotes the adjoint of A.

Let © be a nonempty set. A functional Hilbert space H (£2) is a Hilbert space of
complex valued functions, which has the property that point evaluations are continuous
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i.e.,foreach A € Qthemap f —— f (1) isacontinuous linear functional on /. The
Riesz representation theorem ensues that for each A € 2 there exists a unique element
k) € H such that f (M) = (f,k;) forall f € H. The set {k; : A € @} is called the
reproducing kernel of the space H. If {e, },,>( is an orthonormal basis for a functional

+00
Hilbert space H, then the reproducing kernel of H is givenby k), (z) = Y_ e, (\)ey (2)
n=0

(see [15] ). For A € @, let IQ;L = ﬁ be the normalized reproducing kernel of H. Let
A a bounded linear operator on #, the Berezin symbol of A, which firstly have been
introduced by Berezin [3, 4] is the function A on €2 defined by

AQ) = <AI€A, 1€A>.
The Berezin set and the Berezin number of the operator A are defined respectively
by:
Ber (A) .= [(AIQA, /2k> NS Q} s
and

ber (A) := sup{KAlzk, l€x>‘ A€ Q} .

It is clear that the Berezin symbol A is the bounded function on £ whose value lies
in the numerical range of the operator A and hence for any A € B(H (2)),

Ber (A) C W (A) and ber (A) < w (A),
where
W (A) = {{Ax,x) :x e H, |Ix]| = 1},
is the numerical range of the operator A and
w (A) = sup {[{Ax, x)| : x € H, [lx]| =1},

is the numerical radius of A. For some results about the numerical radius inequalities
and their applications, we refer to see [6, 9, 19, 20, 29].
Moreover, the Berezin number of an operator A satisfies the following properties:

(i) ber (A) = ber (A™).
(ii) ber (A) < [|A[l.
(iii) ber (¢ A) = |a|ber (A) forall « € C.
(iv) ber (A + B) < ber (A) + ber (B) forall A, B € B(H (R2)).

Notice that, in general, the Berezin number does not define a norm. However, if H
is a reproducing kernel Hilbert space of analytic functions, (for instance on the unit
disc D = {z € C : |z < 1]} ), then ber (.) defines a norm on B(H (D)) (see [16, 17]).
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The Berezin symbol has been studied in detail for Toeplitz and Hankel operators on
Hardy and Bergman spaces. A nice property of the Berezin symbol is mentioned next.
If A(L) = B () forall A € ©, then A = B. Therefore, the Berezin symbol uniquely
determines the operator. The Berezin symbol and Berezin number have been studied
by many mathematicians over the years, a few of them are [1, 5, 12, 14, 26, 30-32].

Now, for any operator A € B(H (£2)), the Berezin norm of A denoted as || A||p,, is
defined by

|Aler = sup { (ks )| : 2,1 € @]

where k;, IGM are normalized reproducing kernels for A, u, respectively.
For A, B € B(H (2)) it is clear from the definition of the Berezin norm that the
following properties hold:

1) ”)‘A”ber = |A| ”A”ber forall A € C,
(11) ”A + B”ber = ”A”ber + ”B”ber’
i) [[Allper = IA™ per-

Also, it is clear that for A € B(H (R2)),
ber (A) < [|Allper (1.1)

For futher results about the Berezin norm inequalities and their applications, we

refer to see [2, 5, 7] and references therein.

In this paper, several refinements of Berezin norms and Berezin number inequal-
ities of bounded linear operators defined on a reproducing kernel Hilbert space are
established. This work is organized as follows: In Sect.2, we collect a few lemmas
that are required to state and prove the results in the subsequent sections. In Sect. 3, we
establish some refinements of the triangle inequality for the Berezin norm of opera-
tors. In addition, we derive some new upper bounds for the sum and poduct of Berezin
number for two bounded operators. In Sect.4, by applying the continous functional
calculus we give a new Berezin number inequality. In Sect.5, we prove some new
upper bounds for the Davis—Wielandt—Berezin radius of resproducing kernel Hibert
space operators.

2 Prerequisites

In this section, we present the following lemmas that will be used to develop new
results in this paper.

Lemma 2.1 [2] Let A € B (H (2)). Then

ber (4) = sup ber (Re <ef9 A)) .
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Lemma 2.2 [7] Let A € B (H (R2)) be positive operator. Then
|Allper = ber (A).

Lemma 2.3 [8] Let x, y,z € H with ||z|| = 1. Then

1
[(x, 2) (2, ¥)| < 3 (x Iy I+ 1, y)D -

Lemma 2.4 [25] Let A € B (H) be a positive operator and let x € 'H with || x| = 1.
Then

(1) (Ax,x)"
@i) (A"x, x)

(A"x,x) forr > 1.

<
< (Ax,x) forr <1.

Lemma 2.5 [19] Let A € B (H) and let f and g be non-negative continuous functions
on [0, 400) such that f (t) g (t) =t forallt € [0, +00). Then

A, 1 < (2 aaDx.x) (g (|4%]) v 3),

forall x, y € H.
In particular, if f (t) = g (t) = /1, then we have

[(Ax, )I* < (|A]x, x) (|A*] y, y).

Lemma 2.6 [23]If f is a convex function on a real interval J containing the spectrum
of the self-adjoint operator A, then for any unit vector x € 'H,

f({Ax,x)) = (f (A)x, x).

Lemma 2.7 [19] Let A, B € B (H) such that |A| B = B* |A|. and g be non-negative
continuous functions on [0, +00) such that f (t) g (t) =t forallt € [0, +00), then

(ABx,y)l <r (B)If (AD x|l |g (|]A*]) ¥].

Lemma 2.8 [21] Let f be a twice differentiable convex function such that o < f//
and a € R, then

a(a—b)2.

f(a+b) _f@tfe) 1
2 2 8

Lemma29 [24]Ifa,b>0,0 <a <landr > 0, then
a2r(xb2r(1—01) + 7 (ar _ br)2 < otazr + (1 _ O{) b2r’
where rg = min {«, 1 — «}.
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3 Inequalities involving Berezin norm and Berezin number

First, we start with the following theorem which is a refinement of the triangle inequal-
ity for the Berezin norm of operators.

Theorem 3.1 Let A, B € B (H (2)). Then
1
1A + Bl < 2/ 1A+ (L= 1) Bllpor dt < |Alper + [Bllpor. (1)
0

Proof Weput f : R — R, f(¢) := [[tA + (1 — 1) Bl fort € R.Itis not diffuclt to
verify that the function f is convex. Using Hermite-Hadamard inequality (see, e.g.,
[22, p. 137]), we can see that

1
f<0+1> S/f(t)dtf f(O)—i—f(l).
2 2
0

Therefore, we infer that

”A”ber + ”B”ber

1AnLlB
2

2 2

ber

1
< / 1A+ (1= 1) Bllyer di <
0

Thus,

1
A+ Bllper = 2/ £A + (1 = 1) Bllpe, dt < | Allpey + 1 Bllper »
0

as required. O

In the following theorem, we give an improvement of the inequality in (1.1).

Theorem 3.2 Let A € B (H (R2)). Then

dt = ||A||ber .
ber

1
ber (A) < sup/ HteigA + (1 -1 A*
HEIRO

Proof Let 6 € R. Replacing A by 17 A and B by Le™#% A* in (3.1), we obtain that

dt

ber

I ;e 1 .o
—e'7A L —e 2 AT
”26‘ —|—2e

1
1 i 1 —i% i
<2 —te'2A+-(1—1)e '2A
ber 0 2 2
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1 ;e
—e2A
2

+ “le_igA*

ber ber

Since || X ||per = let| | X |per forall X € B (H (2)) and @ € C, it can observe that

.0 .0 . .0
reifa+a—neiiar] = e asa-nac,, [eiia] = 1Al

= [|A*lper = Il Allper- Therefore, we get

]
and He”iA*
ber

1
S /
ber
0

Since ber (X) < || X ||, for all X € B (H (2)), then

Hze’gA+§e_’gA* 16 A + (1 — 1) A*

dt = ”A“ber'
ber

1
: 1. 1 .
ber (m (e'%A)) — ber <§e’%A+§e*'%A*> < / HZe’gA—i-(l 1) A
0

dt < ”AHber .
ber

Taking the supremum over 6 € R in the above inequality, we obtain

1

sup ber (2)% (ei%A>> < sup/ HtemA +(1—1)A*
feR 0eR 5

dt =< ”A“her'
ber

Now, by using Lemma 2.1, we deduce the desired result. O

Next, we present the following theorem.

Theorem3.3 Let A € B(H () and let f be a twice differentiable nonnegative
non-decreasing convex function on [0, 00) such that o < f and a € R. Then

1 i A
f (er (A) = 2 [ £ (1AD + £ (|4*])],, — inf o (k).

where § (lgx) = %a <(|A| — |A*)) ks, ng)z.

Proof Let kj, be the normalized reproducing kernel of H. Then, we have

/(o 5)
< f ((|A|1€A, AN(ENEY za)i)

<|A| k., ]€A> + <|A*| ks, ]€A>

<f 3

(by the arithmetic - geometric mean inequality)

@ Springer



ANNALI DELL'UNIVERSITA’ DI FERRARA (2024) 70:381-403 387

(kb))

= 2
—la(<|A|kk,k,\> <|A*|I€A,I€,\>)2
(by Lemma 2.8)
< S ((r0an + 7 (A% )) B ) - ger {041 - |4%)) o o)
(by Lemma 2.6)

Thus

7 ({4, &))< %(UW‘D + £ () o ) - —a<(|A| |A*|)/€x,lgx>2

Taking supremum over A € 2 in the above inequality, we get
1 X . A
f (ber (A)) = Sber (£ (14D + f (|4*])) = inf 5 ().

N a2

where 8 (kk> = §a<(|A| —_ |A*|)kk,k,\> .
Since f (|A]) + f (|A*|) is positive operator, then by using Lemma 2.2, we get the
desired inequality. O

For f(t) = 2 in Theorem 3.3, we get « < 2 and we have the following remark
which is a refinement of [26, Corollary 3.5 (i)].

Remark 3.4 Let A € B(H (2)). Then

1
ber? (4) < 3 | 1412 + |a"[?

—inf s (lq) ,
ber reQ

where 8 (lq) = §<(|A| - |A*|)l€x,l€)\>.
We now obtain another refinement of the triangle inequality for the Berezin norm.

Theorem 3.5 Let A, B € B(H (2)) be two positive operators. Then

A+ Bllper = \/ber2 (A+iB) + 2 Allper I Bllper = Il Allper + 1 Bllper -
Proof Let k; be the normalized reproducing kernel of H. Then, we have
A A2 . a A A N2
o w6 = ) o £)
B R N N
= (A + By )| +2|(ak. )| £)].
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Now, by taking supremum over A € Q2 in the above inequality, we get

ber? (A+B) < ber? (A +iB) + 2ber (A) ber (B)
< ber® (A +iB) + 2| Allper | Bllper -
(since ber (X) < || X||p., forall X € B(H (2)))

On the other hand, it can be checked that if A and B are positive operators. Then,
A + B is positive operator. So, by Lemma 2.1 we have

ber (A + B) = ||A + Bllper -
Consequently, we get
IA + Bll7,, <ber?(A+iB)+2lAlper IBlpe -

Therefore, we get the first inequality of the theorem.
Now, we prove the second inequality. We have

‘<(A + iB)l@A,IEAHZ - MA/%AJGA) +i (BIQA,IQAW
= [{ao o)+ (8. )
< ber? (A) + ber? (B)

< A2, + IBI,, -
(since ber (X) < || X ||, forall X € B(H (£2)))

Thus,

(a+iByb &) <1413, + 1813,
By taking supremum over A € €2 in the above inequality, we obtain
ber® (A +iB) < |Ali3,, + I Bllj,, -
This implies that

ber? (A +iB) + 2 | Allper I Bllper < 1Al + I1BllZer + 2 1 Allper 1| Bllper
= (1A lper + I1Bllper)? -

Therefore, we infer that

1A+ Bllper < y/ber? (A +iB)+2 | Allsy [ Bllyer < [Allper + 1 Bllper -

Thus, we obtain the second inequality and this completes the proof. O
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In the following theorem we obtain an upper bound for the Berezin number for sum
of two operators.

Theorem 3.6 Let A, B € B (H (R2)). Then

1
ber” (A + B) < ber? (A) + 1 H|B|2 + |B*|2Hb
er

1
+ber (4) | 181+ |B*||,,, + sber (82).
Proof Let kj, be the normalized reproducing kernel of H. Then, we have

‘<(A + B) ]2)” ]€A>‘2 = A/g)\, ]€A> + <Bl€)” lgk)‘z

Ak, ;zx)f v 2|k )| (B ) + |(BE. ;zk)f

(

< ([ (a2 (o2 )]
(
(

A )[4 2|k, ) (1818, ) (1841 )

1 27 T 27 T 7 *7
+5 (Jl1BrR k&) {1871 b ko) + | (Bl B
(by Lemma 2.3 and Lemma 2.5)
~ A \|2 ~ A~ ~A A ~ A
< (ks )|+ {4k &)] (1816 ) + (|87 s )
L) one o a2 2\ L (far
5 (18P k) + (1B . i) + 5 (B2 o)

(by the arithmetic - geometric mean inequality)

Thus,

K(A + Bk, 1€k>‘2 < )(A/Ek, IQAW + ‘<AI€,\, 1q>( <<(|B| +[B*|) ks, kk>>

#y (2 15F) k) + 5 (5% )

Taking supremum over A € 2 in the above inequality, we get
ber? (A + B) < ber? (A) + ber (A) ber (|B| + | B*|)
1 1
+—ber (|B|2 + |B*|2) + =ber (32) .
4 2
Now, by using Lemma 2.2, we get the desired inequality. O

As an immediate consequence of Theorem 3.6, we have the following result.
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Corollary 3.7 Let A, B € B(H (R2)). Then
max {ber2 (A + B),ber? (A — B)}
1
< ber? (4) + ber (4) ber (|B| + |B*|) + ;ber (1B +|5"[’)
1 2
+§ber (B )
Proof In view of Theorem 3.6, we have
ber? (A + B) < ber? (A) + ber (A) ber (|B| + | B*|)
1 1
+—ber (lBI2 + |B*|2> + —ber (Bz) .
4 2
Replacing B by — B in above inequality, we get
ber? (A — B) < ber? (A) + ber (A) ber (|B| + | B*|)
1 1
+—ber (|B|2 + |B*|2> + —ber (Bz) .
4 2
Therefore, we infer that the desired inequality. O

If A = 0 in Theorem 3.6, then we get the following corollary.
Corollary 3.8 Let B € B(H (2)). Then
|2

1 1
2 2 * 2
ber- (B) < 1 ”|B| + |B bor + —2ber (B )

Remark 3.9 Sincet — t",r > 1is a convex increasing function on [0, +00) and by
using Corollary 3.8, it is not difficult to see that

1 2 1
b 2r B) < = H B 2r B* _ber” (BZ) ,
er” (B) = 4 IBIT + i | ber + 2 er

this inequality proved recently in [5, Corollary 2.11].
If A = B in Theorem 3.6, then we get the following corollary.

Corollary 3.10 Let A € B(H (2)). Then
ber” (4) < = 147 + |4+ Tver (4 [141+ [4*]],,, + cber (42)
12 ber 3 ber 6 ’

Remark 3.11 Using the fact ber (X) < || X|,., < [|X]|| for every X € B (H (L)), it
follows that

I I
ber? (4) = 7= [IAP + 4"+ 3ber (4) 141+ [4°[],,, + cber (42)

3|
12 6
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55 Jar+ 14 + 5 l+g )4
= H|A| + 4P| + 3 nan 14l + 47| + ¢ |4

< = (20417) + 3 141 @1AI + - 1AJ?
— 12 3 6

= ||A|%.

Hence,

1 ) ) 1 1 5
— 19 ber Y ber “ — ’
ber (4) = \/ 15 NAPR + 1A% + 3ber (A) l1A] + 1471 +6ber(A ) < IA]l

this is a non-trivial improvement of inequality ber (A) < ||A||.
In the next theorem, we give a new upper bound for the Berezin number of product
of operators.

Theorem 3.12 Let A, B € B (H (R2)). Then
1 1 1 1
ber (%) = 5= %4+ 585, (A%l + 5511, ).

Proof Let k; be the normalized reproducing kernel of H. Then, we have

<B*AI€,\,IQA>’
o)

= |4k |4

= \/(Ai%,\, Ak, Bk, BE)

_ \/<A*AI€A, (BB )

1

<<A*A/€)\, 15)(3*315, /q)) :

i
=

b)
_ <A*AIQA,IQA>% ((Ak. ) (5 5. )

<B*Bl€x, 121>

._.&

<
- ! <A*Al€)\,/€x>i (<A*A]2A7]€A><B*B]2)ﬂ IG)L))Z
1
2

T A (FO WA WA

(by the arithmetic-geometric mean inequality)
1 L\ L2
= (4 ks k) (5 (4 a+ B*B)kx,kx»

+<B*Bl€h I€A>% ( ((A*A + B*B) k., IQA))%}

- % [(; ((4*a+ BB ks, 12,\))7 <<A*A1€A,12A>% + (BBl 12-A>2)]

| =
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Thus,

=

P 1 NN AR P
‘<B*AkA,kA>A‘ <57 [<<(A*A + B*B) kA,kA>)2 ((A*A/q,m2 + <B*Bkk,k,x>

)

Taking the supermum in over A € 2, we get
ber (B*A) < 21% |A*A + B*B ||bi, (ber% (A*A) + ber? (B*B)) .
Using Lemma 2.2, we get
1 1 1 1
ber (8°4) = = 44+ 853, (14"l + |85, ).

as required. O

We next prove the following theorem.

Theorem 3.13 Let A, B € B (H () such that |A| B = B*|A|. If f and g are
nonnegative continuous functions on [0, +00) satisfying f (t) g (t) =t (t > 0), then
forall s > 1, we have

) ) 1 ) 1 ) )
ber® (AB) < r* (B) (; [ aan +* (a4 Dy, + 5 I (47]) £ <|A\>H,,e,)-

Proof Let k; be the normalized reproducing kernel of H. Then, we have

~ |28
) K

(4B &)™ < @) | raank | e (1a*
(by Lemma 2.7)
= B (£ 1Ak £ AN (g (14" ks g (A7) K]
=2 B (12 (A k. b (g (4*
= 2B (12 (Ao ) (¢ (|4%]) o )
(by Lemma 2.4)
=2 B (1> (ADF ko (f (A7) &)

< 27 ® (|72 an k| & (A b + {2 aap kg (47 1)

(by Lemma 2.3)
~ 112 ~ |12
Lo (1 aank ]+ e aan |
= Er " (B )

1 o
437 B (A7) 7> 14Dk k)

(by the arithmetic - geometric mean inequality)
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1, S of S (|A*]) by, &
= 2 @B (£ Ao o) + (¢ (47)) . o))
1 o
37 B[ (4]) 72 1A )
1 5 s S * ky, k
= @ (((r aap + g (4 b )
. .
37 B (¢ (A7) 720 1A Ko ).
Taking the supermum in over A € €2, we get

1 1
ber” (AB) < r* (B) (Zber (¥ (A +g* (|a*))) + Sber (g (|47]) £ (|A|))> .

Now, by using Lemma 2.2, we get the desired inequality. O

Corollary 3.14 Let A, B € B (H (2)) such that |A|B = B*|Al and let0 < p < 1,
then for all s > 1, we have
ber) '

Proof The result follows immediately from Theorem 3.1 for f (1) = ¢t? and g (t) =
PO <p<l. o

1 -
ber® (AB) < r* (B) (4_1 H|A|4ps + |A*|4(1 p)s

l 2ps x|2(1=p)s
+3 ”lAl ||

ber

For B = I in Theorem 3.1 we get the following result.

Corollary3.15 Let A € B (H (2)) and let f and g as in Theorem 3.1. Then

1
ber® (A) = 5 Hf‘” (1AD +g* (|A%))

1 2s * 2s H
+5 |&¥ () s> aan], .

ber

forallr > 1.

Remark 3.16 1f we take f (1) = t” and g (t) = t'~P (0 < p < 1) in Corollary 3.15,
then

1 _
ber2S (A) < Z H|A|4ps + |A*|4(1 p)s

_I_l H|A|2pS |A*|2(l_p)5
ber 2

ber

forall r > 1.
(2) Taking f (t) = g (t) = t% (t € [0, +00)) and r = 1in Corollary 3.15, we get

. 1 ) .
ber® (4) < 7 141 +[4**

1 ) y
+ E |||A|b |A*|b ”ber ’

ber

which proved in [5, Theorem 2.15].
Next, we conclude this section with the following theorem.
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Theorem 3.17 Let A, B € B (H (2)) such that |A| B = B* |A| and let p, g > 1 with
Lyl If f and g are nonnegative continuous functions on [0, 400) satisfying
f@)g@) =t (t>0),thenforall s> 1, we have

1 1
ber™ (AB) < r* (B) H ;f”” (I1AD + ggz‘” (|47))

_ 2s : 7
o ® jaf (k).

ber

where 5(/&) - (<f2f’(|A|)kA,kx>§ —< 2 (|A*|)kk,kk>3>2 and ry = max

2
P aql
Proof Let /21 be the normalized reproducing kernel of H. Then, in view nn we have

(a8t &) < @] £ aank|” s () a]

(by Lemma 2.7)
= B (f (A K, £ (ADE) (g (|4*]) b g (4D &)

=2 B) (2 1AD o) (8 (14%)) o )

=2 B (17 AANk B (85 (A7) ks )
™ (B) ((fz”(lAl)/gx,kx>;< 7 (4% o k) )
(by Lemma 2.4)

1 Aoa S
™ (B) (— (£ qap b ko) +
p

e (A o)

(by Lemma 2.9)
> (B) (1 (72 QA o)+ = (£29° (|A%]) o &)
p q
2

s

—ror® (B) ((f” (Ao = (g2 (|4%)) o )
(by Lemma 2.4)

o (B) ((le’ (AD & ) — {5 (1A% o ’?x)é)z

Taking the supermum in over A € 2, we get
1 1 A
ber™ (AB) < r (B) ber <_f2’” (4] + =g (IA*|)> —ror® (8) jnf 8 (k).
p q €

where § (IG;L) = <<f2p (1A ks, ngf _< 24 (|A*) k., I€A>§>2.

Now, by using Lemma 2.2, we get the desired inequality. O
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Letting s = 1 and p = g = 2 in Theorem 3.17, we have the following corollary.

Corollary3.18 Let A, B € B (H (RQ)) such that |A| B = B*|A|. If f and g are
nonnegative continuous functions on [0, +00) satisfying f (t) g (t) =t (t > 0), then

1 1 A
2 12 4 4 (| g% ) .
ber? (AB) = 512 (B) | £ (14D +g* (|47])[ = 3r2(B) inf 5 (k).
- PRt Y
where 8 (k) = (<f4<|A|)kA,kx> —(g* 4A*D k. o ) .
Considering B = I and f (t) = g (t) = +/t and 2s = r in Corollay, we get the
following inequality.

Corollary 3.19 If A € B (H (R2)), then

r 1 r *|r 1. 7
ber” (A) = 3 141"+ |4*['], — 5 inf 8 ().

1 1\ 2
where & (k) = <<|A|2 b k) = (1472 s, kx>2> .
Remark 3.20 We note that the inequality in above corollary refines the inequality

ber” (A) < %ber (A" + |A*|") forr > 1,

obtained in [26].

4 Functional calculus and a Berezin number inequality

One of the applicable inequalities in analysis and differential equations is the classical
Hardy inequality with says that if p > 1 and {a,},2 , are positive real numbers such

o0
that 0 < ) a} < oo, then
n=1

i(%iak)ps (%)piaé’. 4.1

n=1

p
The inequality (4.1) is sharp, i,e., the constant (%) is the smallet number such
that the inequality holds. A developed inequality, the so-called Hardy-Hilbert inequaity
o

reads as follows: if p > 1, % + % =1,an,by, > Osuchthat 0 < ) af,’ < o0 and
n=1

o0
0 < Y bf < oo, then

n=1
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ii anbpy, - v (ia[’>ll7 (ibQ); 4.2)
n+m Sin<ﬂ> n=1 ! n=1 !

n=1m=1 7

The are many refinements and reformulations of the above inequality. In particular,
Yang [33] proved the following generalization of (4.2):

o0 0 b 00 % [os] %
>N (na:—:z) <L (Zml_saﬁ) (an‘st) , 4.3)
m=1

n=1

in which 2 — min {p, ¢} < < 2and L; i= B (E2=2, 45=2) where B () is
B-function.

In this section, by applying the continous functional calculus we give some inequal-
ities analogue to (4.3) for operators in the real space B () of all self-adjoint operators
on H. Application obtained inequalities give a new Berezin number inequality. For
the related results, see instance, [13, 18, 27, 28, 34].

Now, we state the following theorem.

Theorem 4.1 Let f, g be continous functions defined on an interval J C [0, +00)
and f,g = 0.1f p > 1, 5 + 5 =1, then

1 - 1 /—— ——
5 @@+ 5 (5B W F (A)6)
1 f—— — 1 -
+5 (FB W@ W)+ 55 (F B8 B W
= [(f A7 +217 1 (B)7) (g (47 +27g (B)‘f)"}(x),

for all operators A, B € B (H); with spectra contained in J and all A, u € Q.

Proof Letay, ay, b, by be positive numbers. Let A be a self-adjoint linear operator on
a complex Hilbert space (H; (-, -)). The Gelfand map establishes a *—isometrically
isomorphism @ between the set C (Sp (A)) of all continous functions defined on the
spectrum of A, denoted Sp (A), and the C* -algebra C* (A) generated by A and the
identity operator I on ‘H as follows (see for instance [11, p. 3]):

Forany f, g € C (Sp (A)) and any «, 8 € C, we have

() ®(af +Bg) =a®(f)+BP(g);
(2) @(fg) =P ()P (g)and @ (f) = D (f)*;
G IO =Ifl:= sup |f©®I;

1eSp(A)
4) ®(fo)=1and ® (fl)pz A, where fo (t) = land f; (t) =¢, fort € Sp (A).

With this notation, we define
f(A) =0 (f) forall f € C(Sp(A)),
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and we call it the continous functional calculus for a self-adjoint operator A.

If A is a self-adjoint operator and f is a real valued continous function on Sp (A),
then f (¢) > O for any r € Sp (A) implies that f (A) > 0, i,e., f (A) is a positive
operator on H. Moreover, if both f and g are real valued functions on Sp (A), then
the following important property holds: f () > g (¢) for any ¢t € Sp (A) implies that
f (A) = g (A) in the operator order of B (H).

Now, by using (4.3) we have

a1 by a by axbq arbs
> T Ty s

1 1
< Ly (af +2'7af)7 (b +2'700)" . (44)

Let x, y € J. Considering that f (x) > 0 and g (x) > O for all x € J and putting
ar = f(x),a2 = f(y),b1 =g (x)and by = g (y) in (4.4), we have

f@egx) [f®eg®»  [fMex  fMeg®
2S + 3S + 3S + 4S

<L (F@r 2 o) (gt 12 ) L @)

for all x, y € J. By applying the functional calculus for A to inequality (4.5), we
get

f(A;;g (4) n f(A3);g' &2 + f(y);’ (4) " f(y‘)lsg )

1

L 1
= Li(F@r+27r 7)) (s +2' g 197)7,
from which

LT s0)

S s Wb k) + a0 kL b)+ 5 0 sk k) + L

<L <(f (A + 2175 £ (1)) (g (A +2'5g ()7 ks 1€A>,

forall A € Q and y € J. Applying the functional calculus once more to the
self-adjoint operator B, we obtain

Sk b+ e ) (7 kb

J (B)g(B)
45

%(f (A) g (A) ks, ]€A> + %g (B) (f (A) k. l€x>

1 A A
+5F B (g () ko) +

1 1
<L <(f A +27 1 B)7) (34 +2 g B))" k. kx>~ (46)
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If 1 € Q, then it follows from inequality (4.6) that

1

S r s @k b)Y+ 5 (s ® ke k) (r kb

1 PN A 1 A oA
55 (F B k) (s W o) + 5 (£ B) g (BY i)
<L <(f (A +2175 £ (87 (5 Ay + 275 (B) b 1€A>.
Hence,

1 ~ 1 /—— ——
5 W@+ 5 (s B W F (A)6)
1 (o  —— 1 ~
+5 (FB W@ M)+ 5 (F B g B W
1 1
= [(f A7 +217 1 (B)) (g (47 +2 g (B)‘f)ﬂ’“(x),

as desired. O

Replacing B by A and u by A in Theorem 4.1 and using that % + [17 =1, we have
the following corollary.

Corollary 4.2 If f, g are continous functions defined on an interval J and f, g > 0,
then

—~— 3 LN 241
f(A)(A)g(A)(A)s;[Ll(Hz )- =% }fg(A)(k),

for any self-adjoint operator A and any point A € Q.
Replacing g by f in Corollary 4.2, we get the following.

Corollary 4.3 If f is a continous function defined on an interval J and f > 0, then

-2 3 ' K 1—s 1—s 1
7 (A) (Ms(Z) [2 L (2 +1)—(z +5>]f2(A)(k), @.7)

for any self-adjoint operator A on H (£2) and any point A € Q.
An immediate corollary of inequality (4.7) is the following reverse inequality for
the Berezin number of operator A.

Corollary 4.4 If f is a continous function defined on an interval J and f > 0, then

ber” (f (A)) < (Z)S [zSLl (21*-‘ + 1) - (2” + %)] ber (f2 (A)),

in which, as before, 2 —min{p,q} <s <2and L := B (%5_2, q+q;—2), where

B is B-function.
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5 Upper bounds for the Davis-Wielandt-Berezin radius

In [27], the authors introduced the Davis—Wielandt—Berezin radius of operators as
follows.

Definition 5.1 For any A € B (H (2)), we define its Davis—Wielandt-Berezin radius
by the formula

n (A) := sup \/|;4V()\)|2 + ”AI%;L”AL.
reQ

For A, B € B (H (£2)) one has:
(1) n(A) =0and n (A) =0if and only if A = 0;
> laln (A) if |a| > 1
2) Ifx € C, then n (@A) = { = |a|n(A) if |a| =1
< laln(A) if |a] < 1;
(3) n(A+ B) < \/2 (n(A)+n(B)+4 (1 (A) +n(B)?):

and therefore 7 (-) can not be a norm on B (H (£2)).
The following property of  (-) isimmediate if we denote by || A|| z,,- another Berezin

norm of operator A which is defined by ||A|| g, := sup H Ak, H and it is different from

the Berezin norm || A||,, Which we defined in Sect. 2 Clearly, IAllper < IlAll ger and

max {ber (4)., 1413, | <1 (4) < /ber® (4) + Al

The goal of this section is to establish some new upper bounds for the Davis—
Wielandt—Berezin radius of resproducing kernel Hibert space operators.
The following result provides a new bound for n (A).

Theorem 5.2 Let A € B (H (R2)). Then
7 (A) < % (ber (|A|4 n |A|2) + ber (|A|4 - |A|2)) + /2ber (|A|2 A) .

Proof Let) € Qbe anarbitray point. Let H be acomplex Hilbert space anda, b, c € H
Dragomir proved in [10] the following extension of Cauchy-Schwarz inequality:

@, b)P + (@, ) < llal® (max |12, Iel?}) + v21b. 0. 5.)

Let IQ;\ be thg normalized reproducing kernel of H. Chosingin(5.1)a = IQ;\ ,b= Algk
and ¢ = |A|2 k., we get

N N 2 ~ 14
KAIQ, lq)‘ + HAkA
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= [t AR+ [ ap i)

AR+ va|(ak 142 )

= 5 (a6 + Jrar ]+ ot - fiaeas ) + va|f1ar a. i)
LR 1) )]+ {141 - 142) o o)) + VE (14 s |
< 5 (ver (1A +14P) + ber (1A1* — 14P)) + vaber (1P 4)

~ 12
< max{HAkk ,

Thus
~ A \|2 ~ 14 1
(ak. &) + | ak| = 5 (ber (JAT* +14%) +ber (|AI* = |A)) +v/2ber (A1 4).
Now taking the speremum over A € Q2 in the latter inequality we deduce the required
inequality. O
In the sequel, we need the following lemma due to Dragomir [10, p. 132].
Lemma 5.3 Foranya, b, c € H, we have:
%
@, B) + (@, ) < llall (max {I{a, b, (@, D (1612 + llel +2¢b, 1)
Our next result gives another upper bound for the Davis—Wielandt—Berezin radius
of operators in B (H (£2)).
Theorem 5.4 Let A € B (H (R2)). Then
1

7? (A) < max {ber (A), ber (|A|2>} (ber <|A|4 + |A|2> + 2ber (|A|2 A))7

Proof Let A € 2 be an arbitray and let kk be the normalized reproducing kernel of .
Choosing in Lemma 5.3, a = k,\, b= Ak,\ and ¢ = |A|2 k;, we obtain

N N 2 ~ 14
’(Akk, kk>‘ + HAIQ

~ |{&. AI€A>‘2 + (&, |A|2;zk)f
<[] s s A8 s ) (b e
1

)i

< max {ber (A) , ber <|A|2)} <<<|A|4 + |A|2) i 1€A> ) ‘<|A|2 Ak, 1€A>

42 KAIQ,\, |A|212,\)

1

)E
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2

< max {ber (A) . ber (|A|2)} (ber (|A|4 + |A|2) + 2ber (|A|2 A))
Thus, we have that

(k.. 12A>‘2 + | Ak H4 < max {ber (4, ber (1412) ] (ver (14* + 4P2)
2ber <|A|2A))% .

Now, the result follows by taking the supremum over all points A € . O

Finally, we derive the folloing result from Lemma 5.3.
Theorem 5.5 Let A € B (H (R2)). Then

2 (A) < | All o max {ber (A), ber (|A|2)} (1 +IAI3,, + 2ber (A))% .

Proof Let A € €2 be an arbitray point and let IQAAbe the normalized reproducing kernel
of H. Choosing in Lemma 5.3, a = Ak;, b = k; and ¢ = Ak, we get

A A 2 ~ 14
’(Ak)” k)\>‘ + ”Akx ”

N A V]2 ~ 20 \|2
=[{f Ak )"+ (. 1P &

1

N A A N N ~ 112 N N 2
< oo s s 1) (4 2o )
1
A A A 28 ~ 112 N N 2
= [t (max {|{ats. &) {142 e B }) (1 + ke 2 [ )] )
1
< || All g, max {ber (A), ber <|A|2)} (1 +IAI3,, + 2ber (A))2 ,
which obviously implies the desired inequality. O
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