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Abstract
In this paper,wegive several refinements ofBerezin normandBerezin number inequal-
ities of bounded linear operators defined on a reproducing kernel Hilbert space. In
particular, we present some refinements of the triangle inequality for the Berezin
norm of operators. In addition, we derive new upper bounds for the sum and poduct
of Berezin number for two bounded operators. Moreover, we prove some new upper
bounds for the Davis–Wielandt–Berezin radius of operators. Some applications of the
newly obtained inequalities are also provided.

Keywords Berezin number · Berezin norm · Reproducing kernel Hilbert space ·
Davis–Wielandt–Berezin radius · Inequality

1 Introduction and preliminaries

Throughout this paper, B(H) denotes the C∗- algebra of all bounded linear operators
acting on a non trivial complex Hilbert spaceHwith inner product 〈., .〉 and associated
norm ‖.‖. Recall that an operator A ∈ B(H) is said to be positive if 〈Ax, x〉 ≥ 0 for all
x ∈ H. The real and imaginary parts of A have been defined as follows� (A) = A+A∗

2
and 	 (A) = A−A∗

2i where A∗ denotes the adjoint of A.
Let � be a nonempty set. A functional Hilbert space H (�) is a Hilbert space of

complex valued functions, which has the property that point evaluations are continuous
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i.e., for eachλ ∈ � themap f 
−→ f (λ) is a continuous linear functional onH. The
Riesz representation theorem ensues that for each λ ∈ � there exists a unique element
kλ ∈ H such that f (λ) = 〈 f , kλ〉 for all f ∈ H. The set {kλ : λ ∈ �} is called the
reproducing kernel of the spaceH. If {en}n≥0 is an orthonormal basis for a functional

Hilbert spaceH, then the reproducing kernel ofH is given by kλ (z) =
+∞∑
n=0

en (λ)en (z)

(see [15] ). For λ ∈ �, let k̂λ = kλ‖kλ‖ be the normalized reproducing kernel of H. Let
A a bounded linear operator on H, the Berezin symbol of A, which firstly have been
introduced by Berezin [3, 4] is the function Ã on � defined by

Ã (λ) :=
〈
Ak̂λ, k̂λ

〉
.

The Berezin set and the Berezin number of the operator A are defined respectively
by:

Ber (A) :=
{〈
Ak̂λ, k̂λ

〉
: λ ∈ �

}
,

and

ber (A) := sup
{∣
∣
∣
〈
Ak̂λ, k̂λ

〉∣
∣
∣ : λ ∈ �

}
.

It is clear that the Berezin symbol Ã is the bounded function on � whose value lies
in the numerical range of the operator A and hence for any A ∈ B(H (�)),

Ber (A) ⊂ W (A) and ber (A) ≤ ω (A) ,

where

W (A) = {〈Ax, x〉 : x ∈ H, ‖x‖ = 1} ,

is the numerical range of the operator A and

ω (A) = sup {|〈Ax, x〉| : x ∈ H, ‖x‖ = 1} ,

is the numerical radius of A. For some results about the numerical radius inequalities
and their applications, we refer to see [6, 9, 19, 20, 29].

Moreover, the Berezin number of an operator A satisfies the following properties:

(i) ber (A) = ber (A∗).
(ii) ber (A) ≤ ‖A‖.
(iii) ber (αA) = |α| ber (A) for all α ∈ C.
(iv) ber (A + B) ≤ ber (A) + ber (B) for all A, B ∈ B(H (�)).

Notice that, in general, the Berezin number does not define a norm. However, ifH
is a reproducing kernel Hilbert space of analytic functions, (for instance on the unit
disc D = {z ∈ C : |z < 1|} ), then ber (.) defines a norm on B(H (D)) (see [16, 17]).
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The Berezin symbol has been studied in detail for Toeplitz and Hankel operators on
Hardy and Bergman spaces. A nice property of the Berezin symbol is mentioned next.
If Ã (λ) = B̃ (λ) for all λ ∈ �, then A = B. Therefore, the Berezin symbol uniquely
determines the operator. The Berezin symbol and Berezin number have been studied
by many mathematicians over the years, a few of them are [1, 5, 12, 14, 26, 30–32].

Now, for any operator A ∈ B(H (�)), the Berezin norm of A denoted as ‖A‖ber is
defined by

‖A‖ber := sup
{∣
∣
∣
〈
Ak̂λ, k̂μ

〉∣
∣
∣ : λ,μ ∈ �

}
,

where k̂λ, k̂μ are normalized reproducing kernels for λ,μ, respectively.
For A, B ∈ B(H (�)) it is clear from the definition of the Berezin norm that the

following properties hold:

(i) ‖λA‖ber = |λ| ‖A‖ber for all λ ∈ C,
(ii) ‖A + B‖ber ≤ ‖A‖ber + ‖B‖ber ,
(iii) ‖A‖ber = ‖A∗‖ber .
Also, it is clear that for A ∈ B(H (�)),

ber (A) ≤ ‖A‖ber (1.1)

For futher results about the Berezin norm inequalities and their applications, we
refer to see [2, 5, 7] and references therein.
In this paper, several refinements of Berezin norms and Berezin number inequal-

ities of bounded linear operators defined on a reproducing kernel Hilbert space are
established. This work is organized as follows: In Sect. 2, we collect a few lemmas
that are required to state and prove the results in the subsequent sections. In Sect. 3, we
establish some refinements of the triangle inequality for the Berezin norm of opera-
tors. In addition, we derive some new upper bounds for the sum and poduct of Berezin
number for two bounded operators. In Sect. 4, by applying the continous functional
calculus we give a new Berezin number inequality. In Sect. 5, we prove some new
upper bounds for the Davis–Wielandt–Berezin radius of resproducing kernel Hibert
space operators.

2 Prerequisites

In this section, we present the following lemmas that will be used to develop new
results in this paper.

Lemma 2.1 [2] Let A ∈ B (H (�)). Then

ber (A) = sup
θ∈R

ber
(
Re
(
eiθ A

))
.
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Lemma 2.2 [7] Let A ∈ B (H (�)) be positive operator. Then

‖A‖ber = ber (A) .

Lemma 2.3 [8] Let x, y, z ∈ H with ‖z‖ = 1. Then

|〈x, z〉 〈z, y〉| ≤ 1

2
(‖x‖ ‖y‖ + |〈x, y〉|) .

Lemma 2.4 [25] Let A ∈ B (H) be a positive operator and let x ∈ H with ‖x‖ = 1.
Then

(i) 〈Ax, x〉r ≤ 〈Ar x, x〉 for r ≥ 1.
(ii) 〈Ar x, x〉 ≤ 〈Ax, x〉r for r ≤ 1.

Lemma 2.5 [19] Let A ∈ B (H) and let f and g be non-negative continuous functions
on [0,+∞) such that f (t) g (t) = t for all t ∈ [0,+∞). Then

|〈Ax, y〉|2 ≤
〈
f 2 (|A|) x, x

〉 〈
g2
(∣
∣A∗∣∣) y, y

〉
,

for all x, y ∈ H.
In particular, if f (t) = g (t) = √

t , then we have

|〈Ax, y〉|2 ≤ 〈|A| x, x〉 〈∣∣A∗∣∣ y, y
〉
.

Lemma 2.6 [23] If f is a convex function on a real interval J containing the spectrum
of the self-adjoint operator A, then for any unit vector x ∈ H,

f (〈Ax, x〉) ≤ 〈 f (A) x, x〉 .

Lemma 2.7 [19] Let A, B ∈ B (H) such that |A| B = B∗ |A|. and g be non-negative
continuous functions on [0,+∞) such that f (t) g (t) = t for all t ∈ [0,+∞), then

|〈ABx, y〉| ≤ r (B) ‖ f (|A|) x‖ ∥∥g (∣∣A∗∣∣) y
∥
∥ .

Lemma 2.8 [21] Let f be a twice differentiable convex function such that α ≤ f
′′

and α ∈ R, then

f

(
a + b

2

)

≤ f (a) + f (b)

2
− 1

8
α (a − b)2 .

Lemma 2.9 [24] If a, b ≥ 0, 0 ≤ α ≤ 1 and r > 0, then

a2rαb2r(1−α) + r0
(
ar − br

)2 ≤ αa2r + (1 − α) b2r ,

where r0 = min {α, 1 − α}.
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3 Inequalities involving Berezin norm and Berezin number

First, we start with the following theoremwhich is a refinement of the triangle inequal-
ity for the Berezin norm of operators.

Theorem 3.1 Let A, B ∈ B (H (�)). Then

‖A + B‖ber ≤ 2

1∫

0

‖t A + (1 − t) B‖ber dt ≤ ‖A‖ber + ‖B‖ber . (3.1)

Proof We put f : R → R, f (t) := ‖t A + (1 − t) B‖ber for t ∈ R. It is not diffuclt to
verify that the function f is convex. Using Hermite-Hadamard inequality (see, e.g.,
[22, p. 137]), we can see that

f

(
0 + 1

2

)

≤
1∫

0

f (t) dt ≤ f (0) + f (1)

2
.

Therefore, we infer that

∥
∥
∥
∥
1

2
A + 1

2
B

∥
∥
∥
∥
ber

≤
1∫

0

‖t A + (1 − t) B‖ber dt ≤ ‖A‖ber + ‖B‖ber
2

.

Thus,

‖A + B‖ber ≤ 2

1∫

0

‖t A + (1 − t) B‖ber dt ≤ ‖A‖ber + ‖B‖ber ,

as required. ��
In the following theorem, we give an improvement of the inequality in (1.1).

Theorem 3.2 Let A ∈ B (H (�)). Then

ber (A) ≤ sup
θ∈R

1∫

0

∥
∥
∥teiθ A + (1 − t) A∗

∥
∥
∥
ber

dt ≤ ‖A‖ber .

Proof Let θ ∈ R. Replacing A by 1
2e

i θ
2 A and B by 1

2e
−i θ

2 A∗ in (3.1), we obtain that

∥
∥
∥
∥
1

2
ei

θ
2 A + 1

2
e−i θ

2 A∗
∥
∥
∥
∥
ber

≤ 2

1∫

0

∥
∥
∥
∥
1

2
tei

θ
2 A + 1

2
(1 − t) e−i θ

2 A∗
∥
∥
∥
∥
ber

dt
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≤
∥
∥
∥
∥
1

2
ei

θ
2 A

∥
∥
∥
∥
ber

+
∥
∥
∥
∥
1

2
e−i θ

2 A∗
∥
∥
∥
∥
ber

.

Since ‖αX‖ber = |α| ‖X‖ber for all X ∈ B (H (�)) and α ∈ C, it can observe that∥
∥
∥tei

θ
2 A + (1 − t) e−i θ

2 A∗
∥
∥
∥
ber

= ∥
∥teiθ A + (1 − t) A∗∥∥

ber ,
∥
∥
∥e−i θ

2 A
∥
∥
∥
ber

= ‖A‖ber
and

∥
∥
∥e−i θ

2 A∗
∥
∥
∥
ber

= ‖A∗‖ber = ‖A‖ber . Therefore, we get

∥
∥
∥
∥
1

2
ei

θ
2 A + 1

2
e−i θ

2 A∗
∥
∥
∥
∥
ber

≤
1∫

0

∥
∥
∥teiθ A + (1 − t) A∗

∥
∥
∥
ber

dt ≤ ‖A‖ber .

Since ber (X) ≤ ‖X‖ber for all X ∈ B (H (�)), then

ber
(
�
(
ei

θ
2 A
))

= ber
(
1

2
ei

θ
2 A + 1

2
e−i θ

2 A∗
)

≤
1∫

0

∥
∥
∥teiθ A + (1 − t) A∗

∥
∥
∥
ber

dt ≤ ‖A‖ber .

Taking the supremum over θ ∈ R in the above inequality, we obtain

sup
θ∈R

ber
(
�
(
ei

θ
2 A
))

≤ sup
θ∈R

1∫

0

∥
∥
∥teiθ A + (1 − t) A∗

∥
∥
∥
ber

dt ≤ ‖A‖ber .

Now, by using Lemma 2.1, we deduce the desired result. ��
Next, we present the following theorem.

Theorem 3.3 Let A ∈ B (H (�)) and let f be a twice differentiable nonnegative
non-decreasing convex function on [0,∞) such that α ≤ f

′′
and α ∈ R. Then

f (ber (A)) ≤ 1

2

∥
∥ f (|A|) + f

(∣
∣A∗∣∣)∥∥

ber − inf
λ∈�

δ
(
k̂λ

)
,

where δ
(
k̂λ

)
= 1

8α
〈
(|A| − |A∗|) k̂λ, k̂λ

〉2
.

Proof Let k̂λ be the normalized reproducing kernel of H. Then, we have

f
(∣
∣
∣
〈
Ak̂λ, k̂λ

〉∣
∣
∣
)

≤ f

(〈
|A| k̂λ, k̂λ

〉 1
2
〈∣
∣A∗∣∣ k̂λ, k̂λ

〉 1
2
)

≤ f

⎛

⎝

〈
|A| k̂λ, k̂λ

〉
+
〈
|A∗| k̂λ, k̂λ

〉

2

⎞

⎠ .

(by the arithmetic - geometric mean inequality)
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≤
f
(〈

|A| k̂λ, k̂λ

〉)
+ f

(〈
|A∗| k̂λ, k̂λ

〉)

2

−1

8
α
(〈

|A| k̂λ, k̂λ

〉
−
〈∣
∣A∗∣∣ k̂λ, k̂λ

〉)2

(by Lemma 2.8)

≤ 1

2

〈(
f (|A|) + f

(∣
∣A∗∣∣)) k̂λ, k̂λ

〉
− 1

8
α
〈(|A| − ∣∣A∗∣∣) k̂λ, k̂λ

〉2

(by Lemma 2.6)

Thus

f
(∣
∣
∣
〈
Ak̂λ, k̂λ

〉∣
∣
∣
)

≤ 1

2

〈(
f (|A|) + f

(∣
∣A∗∣∣)) k̂λ, k̂λ

〉
− 1

8
α
〈(|A| − ∣∣A∗∣∣) k̂λ, k̂λ

〉2

Taking supremum over λ ∈ � in the above inequality, we get

f (ber (A)) ≤ 1

2
ber

(
f (|A|) + f

(∣
∣A∗∣∣))− inf

λ∈�
δ
(
k̂λ

)
,

where δ
(
k̂λ

)
= 1

8α
〈
(|A| − |A∗|) k̂λ, k̂λ

〉2
.

Since f (|A|) + f (|A∗|) is positive operator, then by using Lemma 2.2, we get the
desired inequality. ��

For f (t) = t2 in Theorem 3.3, we get α ≤ 2 and we have the following remark
which is a refinement of [26, Corollary 3.5 (i)].

Remark 3.4 Let A ∈ B (H (�)). Then

ber2 (A) ≤ 1

2

∥
∥
∥|A|2 + ∣∣A∗∣∣2

∥
∥
∥
ber

− inf
λ∈�

δ
(
k̂λ

)
,

where δ
(
k̂λ

)
= 1

4

〈
(|A| − |A∗|) k̂λ, k̂λ

〉
.

We now obtain another refinement of the triangle inequality for the Berezin norm.

Theorem 3.5 Let A, B ∈ B(H (�)) be two positive operators. Then

‖A + B‖ber ≤
√

ber2 (A + i B) + 2 ‖A‖ber ‖B‖ber ≤ ‖A‖ber + ‖B‖ber .

Proof Let k̂λ be the normalized reproducing kernel of H. Then, we have

∣
∣
∣
〈
(A + B) k̂λ, k̂λ

〉∣
∣
∣
2 ≤

(∣
∣
∣
〈
Ak̂λ, k̂λ

〉∣
∣
∣+
∣
∣
∣
〈
Bk̂λ, k̂λ

〉∣
∣
∣
)2

=
∣
∣
∣
〈
Ak̂λ, k̂λ

〉∣
∣
∣
2 +

∣
∣
∣
〈
Bk̂λ, k̂λ

〉∣
∣
∣
2 + 2

∣
∣
∣
〈
Ak̂λ, k̂λ

〉∣
∣
∣
∣
∣
∣
〈
Bk̂λ, k̂λ

〉∣
∣
∣

=
∣
∣
∣
〈
(A + i B) k̂λ, k̂λ

〉∣
∣
∣
2 + 2

∣
∣
∣
〈
Ak̂λ, k̂λ

〉∣
∣
∣
∣
∣
∣
〈
Bk̂λ, k̂λ

〉∣
∣
∣ .
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Now, by taking supremum over λ ∈ � in the above inequality, we get

ber2 (A + B) ≤ ber2 (A + i B) + 2ber (A)ber (B)

≤ ber2 (A + i B) + 2 ‖A‖ber ‖B‖ber .
(since ber (X) ≤ ‖X‖ber for all X ∈ B(H (�)))

On the other hand, it can be checked that if A and B are positive operators. Then,
A + B is positive operator. So, by Lemma 2.1 we have

ber (A + B) = ‖A + B‖ber .

Consequently, we get

‖A + B‖2ber ≤ ber2 (A + i B) + 2 ‖A‖ber ‖B‖ber .

Therefore, we get the first inequality of the theorem.
Now, we prove the second inequality. We have

∣
∣
∣
〈
(A + i B) k̂λ, k̂λ

〉∣
∣
∣
2 =

∣
∣
∣
〈
Ak̂λ, k̂λ

〉
+ i
〈
Bk̂λ, k̂λ

〉∣
∣
∣
2

=
∣
∣
∣
〈
Ak̂λ, k̂λ

〉∣
∣
∣
2 +

∣
∣
∣
〈
Bk̂λ, k̂λ

〉∣
∣
∣
2

≤ ber2 (A) + ber2 (B)

≤ ‖A‖2ber + ‖B‖2ber .
(since ber (X) ≤ ‖X‖ber for all X ∈ B(H (�)))

Thus,

∣
∣
∣
〈
(A + i B) k̂λ, k̂λ

〉∣
∣
∣
2 ≤ ‖A‖2ber + ‖B‖2ber .

By taking supremum over λ ∈ � in the above inequality, we obtain

ber2 (A + i B) ≤ ‖A‖2ber + ‖B‖2ber .

This implies that

ber2 (A + i B) + 2 ‖A‖ber ‖B‖ber ≤ ‖A‖2ber + ‖B‖2ber + 2 ‖A‖ber ‖B‖ber
= (‖A‖ber + ‖B‖ber )2 .

Therefore, we infer that

‖A + B‖ber ≤
√

ber2 (A + i B) + 2 ‖A‖ber ‖B‖ber ≤ ‖A‖ber + ‖B‖ber .

Thus, we obtain the second inequality and this completes the proof. ��
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In the following theoremwe obtain an upper bound for the Berezin number for sum
of two operators.

Theorem 3.6 Let A, B ∈ B (H (�)). Then

ber2 (A + B) ≤ ber2 (A) + 1

4

∥
∥
∥|B|2 + ∣∣B∗∣∣2

∥
∥
∥
ber

+ber (A)
∥
∥|B| + ∣∣B∗∣∣∥∥

ber + 1

2
ber

(
B2
)
.

Proof Let k̂λ be the normalized reproducing kernel of H. Then, we have

∣
∣
∣
〈
(A + B) k̂λ, k̂λ

〉∣
∣
∣
2 =

∣
∣
∣
〈
Ak̂λ, k̂λ

〉
+
〈
Bk̂λ, k̂λ

〉∣
∣
∣
2

≤
(∣
∣
∣
〈
Ak̂λ, k̂λ

〉∣
∣
∣+
∣
∣
∣
〈
Bk̂λ, k̂λ

〉∣
∣
∣
)2

=
∣
∣
∣
〈
Ak̂λ, k̂λ

〉∣
∣
∣
2 + 2

∣
∣
∣
〈
Ak̂λ, k̂λ

〉∣
∣
∣
∣
∣
∣
〈
Bk̂λ, k̂λ

〉∣
∣
∣+
∣
∣
∣
〈
Bk̂λ, k̂λ

〉∣
∣
∣
2

≤
∣
∣
∣
〈
Ak̂λ, k̂λ

〉∣
∣
∣
2 + 2

∣
∣
∣
〈
Ak̂λ, k̂λ

〉∣
∣
∣

√〈
|B| k̂λ, k̂λ

〉 〈
|B∗| k̂λ, k̂λ

〉

+1

2

(√〈
|B|2 k̂λ, k̂λ

〉 〈
|B∗|2 k̂λ, k̂λ

〉
+
∣
∣
∣
〈
Bk̂λ, B

∗k̂λ

〉∣
∣
∣

)

(by Lemma 2.3 and Lemma 2.5)

≤
∣
∣
∣
〈
Ak̂λ, k̂λ

〉∣
∣
∣
2 +

∣
∣
∣
〈
Ak̂λ, k̂λ

〉∣
∣
∣
(〈

|B| k̂λ, k̂λ

〉
+
〈∣
∣B∗∣∣ k̂λ, k̂λ

〉)

+1

4

(〈
|B|2 k̂λ, k̂λ

〉
+
〈∣
∣B∗∣∣2 k̂λ, k̂λ

〉)
+ 1

2

∣
∣
∣
〈
B2k̂λ, k̂λ

〉∣
∣
∣

(by the arithmetic - geometric mean inequality)

Thus,

∣
∣
∣
〈
(A + B) k̂λ, k̂λ

〉∣
∣
∣
2 ≤

∣
∣
∣
〈
Ak̂λ, k̂λ

〉∣
∣
∣
2 +

∣
∣
∣
〈
Ak̂λ, k̂λ

〉∣
∣
∣
(〈(|B| + ∣∣B∗∣∣) k̂λ, k̂λ

〉)

+1

4

(〈(
|B|2 + ∣∣B∗∣∣2

)
k̂λ, k̂λ

〉)
+ 1

2

∣
∣
∣
〈
B2k̂λ, k̂λ

〉∣
∣
∣

Taking supremum over λ ∈ � in the above inequality, we get

ber2 (A + B) ≤ ber2 (A) + ber (A)ber
(|B| + ∣∣B∗∣∣)

+1

4
ber

(
|B|2 + ∣∣B∗∣∣2

)
+ 1

2
ber

(
B2
)
.

Now, by using Lemma 2.2, we get the desired inequality. ��
As an immediate consequence of Theorem 3.6, we have the following result.
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Corollary 3.7 Let A, B ∈ B(H (�)). Then

max
{
ber2 (A + B) ,ber2 (A − B)

}

≤ ber2 (A) + ber (A)ber
(|B| + ∣∣B∗∣∣)+ 1

4
ber

(
|B|2 + ∣∣B∗∣∣2

)

+1

2
ber

(
B2
)
.

Proof In view of Theorem 3.6, we have

ber2 (A + B) ≤ ber2 (A) + ber (A)ber
(|B| + ∣∣B∗∣∣)

+1

4
ber

(
|B|2 + ∣∣B∗∣∣2

)
+ 1

2
ber

(
B2
)
.

Replacing B by −B in above inequality, we get

ber2 (A − B) ≤ ber2 (A) + ber (A)ber
(|B| + ∣∣B∗∣∣)

+1

4
ber

(
|B|2 + ∣∣B∗∣∣2

)
+ 1

2
ber

(
B2
)
.

Therefore, we infer that the desired inequality. ��
If A = 0 in Theorem 3.6, then we get the following corollary.

Corollary 3.8 Let B ∈ B(H (�)). Then

ber2 (B) ≤ 1

4

∥
∥
∥|B|2 + ∣∣B∗∣∣2

∥
∥
∥
ber

+ 1

2
ber

(
B2
)
.

Remark 3.9 Since t 
−→ tr , r ≥ 1 is a convex increasing function on [0,+∞) and by
using Corollary 3.8, it is not difficult to see that

ber2r (B) ≤ 1

4

∥
∥
∥|B|2r + ∣∣B∗∣∣2r

∥
∥
∥
ber

+ 1

2
berr

(
B2
)
,

this inequality proved recently in [5, Corollary 2.11].
If A = B in Theorem 3.6, then we get the following corollary.

Corollary 3.10 Let A ∈ B(H (�)). Then

ber2 (A) ≤ 1

12

∥
∥
∥|A|2 + ∣∣A∗∣∣2

∥
∥
∥
ber

+ 1

3
ber (A)

∥
∥|A| + ∣∣A∗∣∣∥∥

ber + 1

6
ber

(
A2
)
.

Remark 3.11 Using the fact ber (X) ≤ ‖X‖ber ≤ ‖X‖ for every X ∈ B (H (�)), it
follows that

ber2 (A) ≤ 1

12

∥
∥
∥|A|2 + ∣∣A∗∣∣2

∥
∥
∥
ber

+ 1

3
ber (A)

∥
∥|A| + ∣∣A∗∣∣∥∥

ber + 1

6
ber

(
A2
)

123



ANNALI DELL’UNIVERSITA’ DI FERRARA (2024) 70:381–403 391

≤ 1

12

∥
∥
∥|A|2 + ∣∣A∗∣∣2

∥
∥
∥+ 1

3
‖A‖ ∥∥|A| + ∣∣A∗∣∣∥∥+ 1

6

∥
∥
∥A2

∥
∥
∥

≤ 1

12

(
2 ‖A‖2

)
+ 1

3
‖A‖ (2 ‖A‖) + 1

6
‖A‖2

= ‖A‖2 .

Hence,

ber (A) ≤
√

1

12

∥
∥|A|2 + |A∗|2∥∥ber + 1

3
ber (A) ‖|A| + |A∗|‖ber + 1

6
ber

(
A2
) ≤ ‖A‖ ,

this is a non-trivial improvement of inequality ber (A) ≤ ‖A‖.
In the next theorem, we give a new upper bound for the Berezin number of product

of operators.

Theorem 3.12 Let A, B ∈ B (H (�)). Then

ber
(
B∗A

) ≤ 1

2
√
2

∥
∥A∗A + B∗B

∥
∥

1
2
ber

(
∥
∥A∗A

∥
∥

1
2
ber + ∥∥B∗B

∥
∥

1
2
ber

)

.

Proof Let k̂λ be the normalized reproducing kernel of H. Then, we have

∣
∣
∣
〈
B∗Ak̂λ, k̂λ

〉∣
∣
∣

=
∣
∣
∣
〈
Ak̂λ, Bk̂λ

〉∣
∣
∣

≤
∥
∥
∥Ak̂λ

∥
∥
∥
∥
∥
∥Bk̂λ

∥
∥
∥

=
√〈

Ak̂λ, Ak̂λ

〉 〈
Bk̂λ, Bk̂λ

〉

=
√〈

A∗Ak̂λ, k̂λ

〉 〈
B∗Bk̂λ, k̂λ

〉

=
√
〈
A∗Ak̂λ, k̂λ

〉 1
2
(〈
A∗Ak̂λ, k̂λ

〉 〈
B∗Bk̂λ, k̂λ

〉) 1
4
〈
B∗Bk̂λ, k̂λ

〉 1
2
(〈
A∗Ak̂λ, k̂λ

〉 〈
B∗Bk̂λ, k̂λ

〉) 1
4

≤ 1

2

〈
A∗Ak̂λ, k̂λ

〉 1
2
(〈
A∗Ak̂λ, k̂λ

〉 〈
B∗Bk̂λ, k̂λ

〉) 1
4

+ 1

2

〈
B∗Bk̂λ, k̂λ

〉 1
2
(〈
A∗Ak̂λ, k̂λ

〉 〈
B∗Bk̂λ, k̂λ

〉) 1
4

(by the arithmetic-geometric mean inequality)

≤ 1

2

[
〈
A∗Ak̂λ, k̂λ

〉 1
2
(
1

2

〈(
A∗A + B∗B

)
k̂λ, k̂λ

〉) 1
2

+
〈
B∗Bk̂λ, k̂λ

〉 1
2
(
1

2

〈(
A∗A + B∗B

)
k̂λ, k̂λ

〉) 1
2
]

= 1

2

[(
1

2

〈(
A∗A + B∗B

)
k̂λ, k̂λ

〉) 1
2
(〈

A∗Ak̂λ, k̂λ

〉 1
2 +

〈
B∗Bk̂λ, k̂λ

〉 1
2
)]

.
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Thus,

∣
∣
∣
〈
B∗Ak̂λ, k̂λ

〉

A

∣
∣
∣ ≤ 1

2
√
2

[(〈(
A∗A + B∗B

)
k̂λ, k̂λ

〉) 1
2
(〈

A∗Ak̂λ, k̂λ

〉 1
2 +

〈
B∗Bk̂λ, k̂λ

〉 1
2
)]

.

Taking the supermum in over λ ∈ �, we get

ber
(
B∗A

) ≤ 1

2
√
2

∥
∥A∗A + B∗B

∥
∥

1
2
ber

(
ber

1
2
(
A∗A

)+ ber
1
2
(
B∗B

))
.

Using Lemma 2.2, we get

ber
(
B∗A

) ≤ 1

2
√
2

∥
∥A∗A + B∗B

∥
∥

1
2
ber

(
∥
∥A∗A

∥
∥

1
2
ber + ∥∥B∗B

∥
∥

1
2
ber

)

,

as required. ��
We next prove the following theorem.

Theorem 3.13 Let A, B ∈ B (H (�)) such that |A| B = B∗ |A|. If f and g are
nonnegative continuous functions on [0,+∞) satisfying f (t) g (t) = t (t ≥ 0), then
for all s ≥ 1, we have

ber2s (AB) ≤ r2s (B)

(
1

4

∥
∥ f 4s (|A|) + g4s

(∣
∣A∗∣∣)∥∥

ber + 1

2

∥
∥g2s

(∣
∣A∗∣∣) f 2s (|A|)∥∥ber

)

.

Proof Let k̂λ be the normalized reproducing kernel of H. Then, we have

∣
∣
∣
〈
ABk̂λ, k̂λ

〉∣
∣
∣
2s ≤ r2s (B)

∥
∥
∥ f (|A|) k̂λ

∥
∥
∥
2s ∥∥
∥g
(∣
∣A∗∣∣) k̂λ

∥
∥
∥
2s

(by Lemma 2.7)

= r2s (B)
〈
f (|A|) k̂λ, f (|A|) k̂λ

〉s 〈
g
(∣
∣A∗∣∣) k̂λ, g

(∣
∣A∗∣∣) k̂λ

〉s

= r2s (B)
〈
f 2 (|A|) k̂λ, k̂λ

〉s 〈
g2
(∣
∣A∗∣∣) k̂λ, k̂λ

〉s

≤ r2s (B)
〈
f 2s (|A|) k̂λ, k̂λ

〉 〈
g2s
(∣
∣A∗∣∣) k̂λ, k̂λ

〉

(by Lemma 2.4)

= r2s (B)
〈
f 2s (|A|) k̂λ, k̂λ

〉 〈
k̂λ, g

2s (∣∣A∗∣∣) k̂λ

〉

≤ 1

2
r2s (B)

(∥
∥
∥ f 2s (|A|) k̂λ

∥
∥
∥
∥
∥
∥g2s

(∣
∣A∗∣∣) k̂λ

∥
∥
∥+

〈
f 2s (|A|) k̂λ, g

2s (∣∣A∗∣∣) k̂λ

〉)

(by Lemma 2.3)

≤ 1

2
r2s (B)

⎛

⎜
⎝

∥
∥
∥ f 2s (|A|) k̂λ

∥
∥
∥
2 +

∥
∥
∥g2s (|A∗|) k̂λ

∥
∥
∥
2

2

⎞

⎟
⎠

+1

2
r2s (B)

〈
g2s
(∣
∣A∗∣∣) f 2s (|A|) k̂λ, k̂λ

〉

(by the arithmetic - geometric mean inequality)
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= 1

4
r2s (B)

(〈
f 4s (|A|) k̂λ, k̂λ

〉
+
〈
g4s
(∣
∣A∗∣∣) k̂λ, k̂λ

〉)

+1

2
r2s (B)

〈
g2s
(∣
∣A∗∣∣) f 2s (|A|) k̂λ, k̂λ

〉

= 1

4
r2s (B)

(〈(
f 4s (|A|) + g4s

(∣
∣A∗∣∣)) k̂λ, k̂λ

〉)

+1

2
r2s (B)

〈
g2s
(∣
∣A∗∣∣) f 2s (|A|) k̂λ, k̂λ

〉
.

Taking the supermum in over λ ∈ �, we get

ber2s (AB) ≤ r2s (B)

(
1

4
ber

(
f 4s (|A|) + g4s

(∣
∣A∗∣∣))+ 1

2
ber

(
g2s
(∣
∣A∗∣∣) f 2s (|A|))

)

.

Now, by using Lemma 2.2, we get the desired inequality. ��
Corollary 3.14 Let A, B ∈ B (H (�)) such that |A| B = B∗ |A| and let 0 ≤ p ≤ 1,
then for all s ≥ 1, we have

ber2s (AB) ≤ r2s (B)

(
1

4

∥
∥
∥|A|4ps + ∣∣A∗∣∣4(1−p)s

∥
∥
∥
ber

+ 1

2

∥
∥
∥|A|2ps ∣∣A∗∣∣2(1−p)s

∥
∥
∥
ber

)

.

Proof The result follows immediately from Theorem 3.1 for f (t) = t p and g (t) =
t1−p (0 ≤ p ≤ 1). ��

For B = I in Theorem 3.1 we get the following result.

Corollary 3.15 Let A ∈ B (H (�)) and let f and g as in Theorem 3.1. Then

ber2s (A) ≤ 1

4

∥
∥
∥ f 4s (|A|) + g4s

(∣
∣A∗∣∣)

∥
∥
∥
ber

+ 1

2

∥
∥
∥g2s

(∣
∣A∗∣∣) f 2s (|A|)

∥
∥
∥
ber

,

for all r ≥ 1.

Remark 3.16 If we take f (t) = t p and g (t) = t1−p (0 ≤ p ≤ 1) in Corollary 3.15,
then

ber2s (A) ≤ 1

4

∥
∥
∥|A|4ps + ∣∣A∗∣∣4(1−p)s

∥
∥
∥
ber

+ 1

2

∥
∥
∥|A|2ps ∣∣A∗∣∣2(1−p)s

∥
∥
∥
ber

.

for all r ≥ 1.

(2) Taking f (t) = g (t) = t
1
2 (t ∈ [0,+∞)) and r = 1in Corollary 3.15, we get

ber2s (A) ≤ 1

4

∥
∥
∥|A|2s + ∣∣A∗∣∣2s

∥
∥
∥
ber

+ 1

2

∥
∥|A|s ∣∣A∗∣∣s∥∥

ber ,

which proved in [5, Theorem 2.15].
Next, we conclude this section with the following theorem.
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Theorem 3.17 Let A, B ∈ B (H (�)) such that |A| B = B∗ |A| and let p, q > 1 with
1
p + 1

q = 1. If f and g are nonnegative continuous functions on [0,+∞) satisfying
f (t) g (t) = t (t ≥ 0), then for all s ≥ 1, we have

ber2s (AB) ≤ r2s (B)

∥
∥
∥
∥
1

p
f 2ps (|A|) + 1

q
g2qs

(∣
∣A∗∣∣)

∥
∥
∥
∥
ber

− r0r
2s (B) inf

λ∈�
δ
(
k̂λ

)
,

where δ
(
k̂λ

)
=
(〈

f 2p (|A|) k̂λ, k̂λ

〉 s
2 −

〈
g2q (|A∗|) k̂λ, k̂λ

〉 s
2
)2

and r0 = max
{
1
p , 1

q

}
.

Proof Let k̂λ be the normalized reproducing kernel of H. Then, in view nn we have

∣
∣
∣
〈
ABk̂λ, k̂λ

〉∣
∣
∣
2s ≤ r2s (B)

∥
∥
∥ f (|A|) k̂λ

∥
∥
∥
2s ∥∥
∥g
(∣
∣A∗∣∣) k̂λ

∥
∥
∥
2s

(by Lemma 2.7)

= r2s (B)
〈
f (|A|) k̂λ, f (|A|) k̂λ

〉s 〈
g
(∣
∣A∗∣∣) k̂λ, g (|A|) k̂λ

〉s

= r2s (B)
〈
f 2 (|A|) k̂λ, k̂λ

〉s 〈
g2
(∣
∣A∗∣∣) k̂λ, k̂λ

〉s

= r2s (B)
〈
f p

2
p (|A|) k̂λ, k̂λ

〉s 〈
gq

2
q
(∣
∣A∗∣∣) k̂λ, k̂λ

〉s

≤ r2s (B)

(〈
f 2p (|A|) k̂λ, k̂λ

〉 1
p
〈
g2q
(∣
∣A∗∣∣) k̂λ, k̂λ

〉 1
q
)s

(by Lemma 2.4)

≤ r2s (B)

(
1

p

〈
f 2p (|A|) k̂λ, k̂λ

〉s + 1

q

〈
g2q
(∣
∣A∗∣∣) k̂λ, k̂λ

〉s
)

−r0r
2s (B)

(〈
f 2p (|A|) k̂λ, k̂λ

〉 s
2 −

〈
g2q
(∣
∣A∗∣∣) k̂λ, k̂λ

〉 s
2
)2

(by Lemma 2.9)

≤ r2s (B)

(
1

p

〈
f 2ps (|A|) k̂λ, k̂λ

〉
+ 1

q

〈
g2qs

(∣
∣A∗∣∣) k̂λ, k̂λ

〉)

−r0r
2s (B)

(〈
f 2p (|A|) k̂λ, k̂λ

〉 s
2 −

〈
g2q
(∣
∣A∗∣∣) k̂λ, k̂λ

〉 s
2
)2

(by Lemma 2.4)

Taking the supermum in over λ ∈ �, we get

ber2s (AB) ≤ r2s (B) ber
(
1

p
f 2ps (|A|) + 1

q
g2qs

(∣
∣A∗∣∣)

)

− r0r
2s (B) inf

λ∈�
δ
(
k̂λ

)
,

where δ
(
k̂λ

)
=
(〈

f 2p (|A|) k̂λ, k̂λ

〉 s
2 −

〈
g2q (|A∗|) k̂λ, k̂λ

〉 s
2
)2

.

Now, by using Lemma 2.2, we get the desired inequality. ��
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Letting s = 1 and p = q = 2 in Theorem 3.17, we have the following corollary.

Corollary 3.18 Let A, B ∈ B (H (�)) such that |A| B = B∗ |A|. If f and g are
nonnegative continuous functions on [0,+∞) satisfying f (t) g (t) = t (t ≥ 0), then

ber2 (AB) ≤ 1

2
r2 (B)

∥
∥
∥ f 4 (|A|) + g4

(∣
∣A∗∣∣)

∥
∥
∥
ber

− 1

2
r2 (B) inf

λ∈�
δ
(
k̂λ

)
,

where δ
(
k̂λ

)
=
(〈

f 4 (|A|) k̂λ, k̂λ

〉 1
2 −

〈
g4 (|A∗|) k̂λ, k̂λ

〉 1
2
)2

.

Considering B = I and f (t) = g (t) = √
t and 2 s = r in Corollay, we get the

following inequality.

Corollary 3.19 If A ∈ B (H (�)), then

berr (A) ≤ 1

2

∥
∥|A|r + ∣∣A∗∣∣r∥∥

ber − 1

2
inf
λ∈�

δ
(
k̂λ

)
,

where δ
(
k̂λ

)
=
(〈

|A|2 k̂λ, k̂λ

〉 1
2 −

〈
|A∗|2 k̂λ, k̂λ

〉 1
2
)2

.

Remark 3.20 We note that the inequality in above corollary refines the inequality

berr (A) ≤ 1

2
ber

(|A|r + ∣∣A∗∣∣r ) for r ≥ 1,

obtained in [26].

4 Functional calculus and a Berezin number inequality

One of the applicable inequalities in analysis and differential equations is the classical
Hardy inequality with says that if p > 1 and {an}∞n=1 are positive real numbers such

that 0 <
∞∑
n=1

a p
n < ∞, then

∞∑

n=1

(
1

n

n∑

k=1

ak

)p

≤
(

p

p − 1

)p ∞∑

n=1

a p
n . (4.1)

The inequality (4.1) is sharp, i,e., the constant
(

p
p−1

)p
is the smallet number such

that the inequality holds.Adeveloped inequality, the so-calledHardy-Hilbert inequaity

reads as follows: if p > 1, 1
p + 1

q = 1, an, bn ≥ 0 such that 0 <
∞∑
n=1

a p
n < ∞ and

0 <
∞∑
n=1

bp
n < ∞, then
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∞∑

n=1

∞∑

m=1

anbm
n + m

<
π

sin
(

π
p

)

( ∞∑

n=1

a p
n

) 1
p
( ∞∑

n=1

bqn

) 1
q

. (4.2)

The are many refinements and reformulations of the above inequality. In particular,
Yang [33] proved the following generalization of (4.2):

∞∑

n=1

∞∑

m=1

anbm
(n + m)s

< L1

( ∞∑

m=1

m1−sa p
m

) 1
p
( ∞∑

n=1

n1−sbqn

) 1
p

, (4.3)

in which 2 − min {p, q} < s ≤ 2 and L1 := B
(
p+s−2

p ,
q+s−2

q

)
, where B (·, ·) is

β-function.
In this section, by applying the continous functional calculus we give some inequal-

ities analogue to (4.3) for operators in the real space B (H) of all self-adjoint operators
on H. Application obtained inequalities give a new Berezin number inequality. For
the related results, see instance, [13, 18, 27, 28, 34].

Now, we state the following theorem.

Theorem 4.1 Let f , g be continous functions defined on an interval J ⊂ [0,+∞)

and f , g ≥ 0. If p > 1, 1
p + 1

q = 1, then

1

2s
( f (A) g (A))̃ (λ) + 1

3s

(
g̃ (B) (μ) f̃ (A) (λ)

)

+ 1

3s

(
f̃ (B) (μ) g̃ (A) (λ)

)
+ 1

4s
( f (B) g (B))̃ (μ)

≤ L1

[(
f (A)p + 21−s f (B)p

) 1
p
(
g (A)q + 21−sg (B)q

) 1
q
]

(̃λ) ,

for all operators A, B ∈ B (H)h with spectra contained in J and all λ,μ ∈ �.

Proof Let a1, a2, b1, b2 be positive numbers. Let A be a self-adjoint linear operator on
a complex Hilbert space (H; 〈·, ·〉). The Gelfand map establishes a ∗−isometrically
isomorphism 
 between the set C (Sp (A)) of all continous functions defined on the
spectrum of A, denoted Sp (A), and the C∗ -algebra C∗ (A) generated by A and the
identity operator I onH as follows (see for instance [11, p. 3]):

For any f , g ∈ C (Sp (A)) and any α, β ∈ C, we have

(1) 
(α f + βg) = α
 ( f ) + β
 (g) ;
(2) 
( f g) = 
( f ) 
 (g) and 


(
f
) = 
( f )∗ ;

(3) ‖
( f )‖ = ‖ f ‖ := sup
t∈Sp(A)

| f (t)| ;
(4) 
( f0) = I and 
( f1) = A, where f0 (t) = 1 and f1 (t) = t , for t ∈ Sp (A).

With this notation, we define

f (A) := 
( f ) for all f ∈ C (Sp (A)) ,

123



ANNALI DELL’UNIVERSITA’ DI FERRARA (2024) 70:381–403 397

and we call it the continous functional calculus for a self-adjoint operator A.
If A is a self-adjoint operator and f is a real valued continous function on Sp (A),

then f (t) ≥ 0 for any t ∈ Sp (A) implies that f (A) ≥ 0, i,e., f (A) is a positive
operator on H. Moreover, if both f and g are real valued functions on Sp (A), then
the following important property holds: f (t) ≥ g (t) for any t ∈ Sp (A) implies that
f (A) ≥ g (A) in the operator order of B (H).
Now, by using (4.3) we have

a1b1
2s

+ a1b2
3s

+ a2b1
3s

+ a2b2
4s

≤ L1

(
a p
1 + 21−sa p

2

) 1
p
(
bq1 + 21−sbq2

) 1
q
. (4.4)

Let x, y ∈ J . Considering that f (x) ≥ 0 and g (x) ≥ 0 for all x ∈ J and putting
a1 = f (x) , a2 = f (y) , b1 = g (x) and b2 = g (y) in (4.4), we have

f (x) g (x)

2s
+ f (x) g (y)

3s
+ f (y) g (x)

3s
+ f (y) g (y)

4s

≤ L1

(
f (x)p + 21−s f (y)p

) 1
p
(
g (x)q + 21−sg (y)q

) 1
q
, (4.5)

for all x, y ∈ J . By applying the functional calculus for A to inequality (4.5), we
get

f (A) g (A)

2s
+ f (A) g (y)

3s
+ f (y) g (A)

3s
+ f (y) g (y)

4s

≤ L1

(
f (A)p + 21−s f (y)p

) 1
p
(
g (A)q + 21−sg (y)q

) 1
q
,

from which

1

2s

〈
f (A) g (A) k̂λ, k̂λ

〉
+ 1

3s
g (y)

〈
f (A) k̂λ, k̂λ

〉
+ 1

3s
f (y)

〈
g (A) k̂λ, k̂λ

〉
+ f (y) g (y)

4s

≤ L1

〈
(
f (A)p + 21−s f (y)p

) 1
p
(
g (A)q + 21−s g (y)q

) 1
q k̂λ, k̂λ

〉

,

for all λ ∈ � and y ∈ J . Applying the functional calculus once more to the
self-adjoint operator B, we obtain

1

2s

〈
f (A) g (A) k̂λ, k̂λ

〉
+ 1

3s
g (B)

〈
f (A) k̂λ, k̂λ

〉

+ 1

3s
f (B)

〈
g (A) k̂λ, k̂λ

〉
+ f (B) g (B)

4s
1

2s

〈
f (A) g (A) k̂λ, k̂λ

〉
+ 1

3s
g (B)

〈
f (A) k̂λ, k̂λ

〉

≤ L1

〈(
f (A)p + 21−s f (B)p

) 1
p
(
g (A)q + 21−sg (B)q

) 1
q
k̂λ, k̂λ

〉

. (4.6)
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If μ ∈ �, then it follows from inequality (4.6) that

1

2s

〈
f (A) g (A) k̂λ, k̂λ

〉
+ 1

3s

〈
g (B) k̂μ, k̂μ

〉 〈
f (A) k̂λ, k̂λ

〉

+ 1

3s

〈
f (B) k̂μ, k̂μ

〉 〈
g (A) k̂λ, k̂λ

〉
+ 1

4s

〈
f (B) g (B) k̂μ, k̂μ

〉

≤ L1

〈(
f (A)p + 21−s f (B)p

) 1
p
(
g (A)q + 21−sg (B)q

) 1
q
k̂λ, k̂λ

〉

.

Hence,

1

2s
( f (A) g (A))̃ (λ) + 1

3s

(
g̃ (B) (μ) f̃ (A) (λ)

)

+ 1

3s

(
f̃ (B) (μ) g̃ (A) (λ)

)
+ 1

4s
( f (B) g (B))̃ (μ)

≤ L1

[(
f (A)p + 21−s f (B)p

) 1
p
(
g (A)q + 21−sg (B)q

) 1
q
]

(̃λ) ,

as desired. ��
Replacing B by A and μ by λ in Theorem 4.1 and using that 1

p + 1
q = 1, we have

the following corollary.

Corollary 4.2 If f , g are continous functions defined on an interval J and f , g ≥ 0,
then

f̃ (A) (λ) g̃ (A) (λ) ≤ 3s

2

[

L1

(
1 + 21−s

)
− 2s + 1

4s

]

f̃ g (A) (λ) ,

for any self-adjoint operator A and any point λ ∈ �.
Replacing g by f in Corollary 4.2, we get the following.

Corollary 4.3 If f is a continous function defined on an interval J and f ≥ 0, then

f̃ (A)
2
(λ) ≤

(
3

4

)s [

2s L1

(
21−s + 1

)
−
(

21−s + 1

2

)]

f̃ 2 (A) (λ) , (4.7)

for any self-adjoint operator A on H (�) and any point λ ∈ �.
An immediate corollary of inequality (4.7) is the following reverse inequality for

the Berezin number of operator A.

Corollary 4.4 If f is a continous function defined on an interval J and f ≥ 0, then

ber2 ( f (A)) ≤
(
3

4

)s [

2s L1

(
21−s + 1

)
−
(

21−s + 1

2

)]

ber
(
f 2 (A)

)
,

in which, as before, 2−min {p, q} < s ≤ 2 and L1 := B
(
p+s−2

p ,
q+s−2

q

)
, where

B is β-function.
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5 Upper bounds for the Davis–Wielandt–Berezin radius

In [27], the authors introduced the Davis–Wielandt–Berezin radius of operators as
follows.

Definition 5.1 For any A ∈ B (H (�)), we define its Davis–Wielandt–Berezin radius
by the formula

η (A) := sup
λ∈�

√
∣
∣ Ã (λ)

∣
∣2 +

∥
∥
∥Ak̂λ

∥
∥
∥
4
.

For A, B ∈ B (H (�)) one has:

(1) η (A) ≥ 0 and η (A) = 0 if and only if A = 0;

(2) If α ∈ C, then η (αA) =
⎧
⎨

⎩

≥ |α| η (A) if |α| > 1
= |α| η (A) if |α| = 1
≤ |α| η (A) if |α| < 1;

(3) η (A + B) ≤
√
2
(
η (A) + η (B) + 4 (η (A) + η (B))2

)
;

and therefore η (·) can not be a norm on B (H (�)).
The followingproperty ofη (·) is immediate ifwedenote by‖A‖Ber anotherBerezin

norm of operator A which is defined by ‖A‖Ber := sup
λ∈�

∥
∥
∥Ak̂λ

∥
∥
∥ and it is different from

the Berezin norm ‖A‖ber which we defined in Sect. 2. Clearly, ‖A‖ber ≤ ‖A‖Ber and

max
{
ber (A) , ‖A‖2Ber

}
≤ η (A) ≤

√
ber2 (A) + ‖A‖4Ber .

The goal of this section is to establish some new upper bounds for the Davis–
Wielandt–Berezin radius of resproducing kernel Hibert space operators.

The following result provides a new bound for η (A).

Theorem 5.2 Let A ∈ B (H (�)). Then

η2 (A) ≤ 1

2

(
ber

(
|A|4 + |A|2

)
+ ber

(
|A|4 − |A|2

))
+ √

2ber
(
|A|2 A

)
.

Proof Letλ ∈ �be an arbitray point. LetH be a complexHilbert space anda, b, c ∈ H
Dragomir proved in [10] the following extension of Cauchy-Schwarz inequality:

|〈a, b〉|2 + |〈a, c〉|2 ≤ ‖a‖2
(
max

{
‖b‖2 , ‖c‖2

})
+ √

2 |〈b, c〉| . (5.1)

Let k̂λ be thenormalized reproducingkernel ofH. Chosing in (5.1)a = k̂λ, b = Ak̂λ

and c = |A|2 k̂λ, we get

∣
∣
∣
〈
Ak̂λ, k̂λ

〉∣
∣
∣
2 +

∥
∥
∥Ak̂λ

∥
∥
∥
4
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=
∣
∣
∣
〈
k̂λ, Ak̂λ

〉∣
∣
∣
2 +

∣
∣
∣
〈
k̂λ, |A|2 k̂λ

〉∣
∣
∣
2

≤ max

{∥
∥
∥Ak̂λ

∥
∥
∥
2
,

∥
∥
∥|A|2 k̂λ

∥
∥
∥
2
}

+ √
2
∣
∣
∣
〈
Ak̂λ, |A|2 k̂λ

〉∣
∣
∣

= 1

2

(∥
∥
∥Ak̂λ

∥
∥
∥
2 +

∥
∥
∥|A|2 k̂λ

∥
∥
∥
2 +

∣
∣
∣
∣

∥
∥
∥Ak̂λ

∥
∥
∥
2 −

∥
∥
∥|A|2 k̂λ

∥
∥
∥
2
∣
∣
∣
∣

)

+ √
2
∣
∣
∣
〈
|A|2 Ak̂λ, k̂λ

〉∣
∣
∣

= 1

2

(∣
∣
∣
〈(

|A|4 + |A|2
)
k̂λ, k̂λ

〉∣
∣
∣+
∣
∣
∣
〈(

|A|4 − |A|2
)
k̂λ, k̂λ

〉∣
∣
∣
)

+ √
2
∣
∣
∣
〈
|A|2 Ak̂λ, k̂λ

〉∣
∣
∣

≤ 1

2

(
ber

(
|A|4 + |A|2

)
+ ber

(
|A|4 − |A|2

))
+ √

2ber
(
|A|2 A

)
.

Thus

∣
∣
∣
〈
Ak̂λ, k̂λ

〉∣
∣
∣
2 +

∥
∥
∥Ak̂λ

∥
∥
∥
4 ≤ 1

2

(
ber

(|A|4 + |A|2)+ ber
(|A|4 − |A|2))+ √

2ber
(|A|2 A) .

Now taking the speremumoverλ ∈ � in the latter inequalitywe deduce the required
inequality. ��

In the sequel, we need the following lemma due to Dragomir [10, p. 132].

Lemma 5.3 For any a, b, c ∈ H, we have:

|〈a, b〉|2 + |〈a, c〉|2 ≤ ‖a‖ (max {|〈a, b〉| , |〈a, c〉|})
(
‖b‖2 + ‖c‖2 + 2 |〈b, c〉|

) 1
2
.

Our next result gives another upper bound for the Davis–Wielandt–Berezin radius
of operators in B (H (�)).

Theorem 5.4 Let A ∈ B (H (�)). Then

η2 (A) ≤ max
{
ber (A) ,ber

(
|A|2

)} (
ber

(
|A|4 + |A|2

)
+ 2ber

(
|A|2 A

)) 1
2
.

Proof Let λ ∈ � be an arbitray and let k̂λ be the normalized reproducing kernel ofH.
Choosing in Lemma 5.3, a = k̂λ, b = Ak̂λ and c = |A|2 k̂λ, we obtain

∣
∣
∣
〈
Ak̂λ, k̂λ

〉∣
∣
∣
2 +

∥
∥
∥Ak̂λ

∥
∥
∥
4

=
∣
∣
∣
〈
k̂λ, Ak̂λ

〉∣
∣
∣
2 +

∣
∣
∣
〈
k̂λ, |A|2 k̂λ

〉∣
∣
∣
2

≤
∥
∥
∥k̂λ

∥
∥
∥
(
max

{∣
∣
∣
〈
k̂λ, Ak̂λ

〉∣
∣
∣ ,
∣
∣
∣
〈
k̂λ, |A|2 k̂λ

〉∣
∣
∣
})(∥

∥
∥Ak̂λ

∥
∥
∥
2 +

∥
∥
∥|A|2 k̂λ

∥
∥
∥
2

+2
∣
∣
∣
〈
Ak̂λ, |A|2 k̂λ

〉∣
∣
∣
) 1

2

≤ max
{
ber (A) ,ber

(
|A|2

)} (〈(
|A|4 + |A|2

)
k̂λ, k̂λ

〉
+ 2

∣
∣
∣
〈
|A|2 Ak̂λ, k̂λ

〉∣
∣
∣
) 1

2
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≤ max
{
ber (A) ,ber

(
|A|2

)} (
ber

(
|A|4 + |A|2

)
+ 2ber

(
|A|2 A

)) 1
2
.

Thus, we have that

∣
∣
∣
〈
Ak̂λ, k̂λ

〉∣
∣
∣
2 +

∥
∥
∥Ak̂λ

∥
∥
∥
4 ≤ max

{
ber (A) ,ber

(
|A|2

)} (
ber

(
|A|4 + |A|2

)

+2ber
(
|A|2 A

)) 1
2
.

Now, the result follows by taking the supremum over all points λ ∈ �. ��
Finally, we derive the folloing result from Lemma 5.3.

Theorem 5.5 Let A ∈ B (H (�)). Then

η2 (A) ≤ ‖A‖Ber max
{
ber (A) ,ber

(
|A|2

)} (
1 + ‖A‖2Ber + 2ber (A)

) 1
2
.

Proof Let λ ∈ � be an arbitray point and let k̂λ be the normalized reproducing kernel
of H. Choosing in Lemma 5.3, a = Ak̂λ, b = k̂λ and c = Ak̂λ, we get

∣
∣
∣
〈
Ak̂λ, k̂λ

〉∣
∣
∣
2 +

∥
∥
∥Ak̂λ

∥
∥
∥
4

=
∣
∣
∣
〈
k̂λ, Ak̂λ

〉∣
∣
∣
2 +

∣
∣
∣
〈
k̂λ, |A|2 k̂λ

〉∣
∣
∣
2

≤
∥
∥
∥Ak̂λ

∥
∥
∥
(
max

{∣
∣
∣
〈
Ak̂λ, k̂λ

〉∣
∣
∣ ,
∣
∣
∣
〈
Ak̂λ, Ak̂λ

〉∣
∣
∣
})(

1 +
∥
∥
∥Ak̂λ

∥
∥
∥
2 + 2

∣
∣
∣
〈
k̂λ, Ak̂λ

〉∣
∣
∣

) 1
2

=
∥
∥
∥Ak̂λ

∥
∥
∥
(
max

{∣
∣
∣
〈
Ak̂λ, k̂λ

〉∣
∣
∣ ,
∣
∣
∣
〈
|A|2 k̂λ, k̂λ

〉∣
∣
∣
})(

1 +
∥
∥
∥Ak̂λ

∥
∥
∥
2 + 2

∣
∣
∣
〈
k̂λ, Ak̂λ

〉∣
∣
∣

) 1
2

≤ ‖A‖Ber max
{
ber (A) ,ber

(
|A|2

)} (
1 + ‖A‖2Ber + 2ber (A)

) 1
2
,

which obviously implies the desired inequality. ��
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