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Abstract
We establish a set of conditions for the uniform-ultimate boundedness of solutions
to a certain system of second order differential equations with variable delay using
Lypunov–Krasovskii functional as a basic tool. This result is an addition to the body
of literature in many ways. In addition, we provide an example to demonstrate the
correctness of our result.
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1 Introduction

A second order differential equation is generally referred to as a Lienard equa-
tion(named after the French physicist Alfred-Marie Lienard) in dynamical system
and differential equation(see, [13, 14, 18, 20]). Analysis of qualitative properties of
solutions of ordinary and delay differential equations has received considerable atten-
tion of many notable researchers and experts in the last few decades of research (see,
[1–34]). In analyzing the qualitative properties, the direct method of Lyapunov or
Lypunov–Krasovskii method has been found to be very useful. The method requires
construction of a suitable scalar function known as Lyapunov or Lypunov–Krasovskii
functional which together with its time derivative satisfies certain conditions. How-
ever, to construct such functional is tedious especially when it comes to non-linear
differential equations.
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In 2013, Tunc [21] employed the Lypunov–Krasovskii method to establish some
necessary conditions for a stable trivial solution (when P(t) ≡ 0) and boundedness
of solutions (when P(t) �= 0) of the equation:

X ′′(t) + F(X(t), X ′(t))X ′(t) + H(X(t − τ)) = P(t),

where τ > 0 is a delay constant. Later, Omeike et al. [16], studied the asymptotic
stability and uniform ultimate boundedness of solutions of the differential equation:

X ′′ + AX ′ + H(X(t − r(t))) = P(t, X , X ′),

where A is a real n × n constant, symmetric, positive definite matrix.
In a recent paper, Tunc and Tunc [22] both established some interesting results on

the stability, boundedness and square integrability of solutions to the equation:

X ′′ + F(X , X ′)X ′ + H(X(t − r(t))) = P(t, X , X ′), (1.1)

where X ,Y : R
+ → R

n ,R = (−∞,∞), R
+ = [0,∞); H : R

n → R
n is a

continuously differentiable function, H(0) = 0; P : R
+ × R

n × R
n → R

n is a
continuous function; F is an n × n continuous symmetric, positive definite matrix
function dependent on the arguments displayed explicitly, and the prime(′) indicate
differentiation with respect to variable t . For any two vectors X , Y in Rn , the symbol
〈X ,Y 〉 is used to denote the usual scalar product in R

n , i.e. 〈X ,Y 〉 = ∑n
i=1 xi yi ,

where x1, x2, ..., xn and y1, y2, ..., yn are the components of the vectors X and Y
respectively; therefore, ‖ X ‖2= 〈X , X〉.

In view of the works of Tunc [21], Tunc and Tunc [22], Omeike et al. [16] and
some other works in the references, we are motivated to examine certain conditions
that guarantee the uniform-ultimate boundedness of solutions to the Eq.(1.1). Based
on our understanding of literature, the uniform-ultimate boundedness of solutions of
the Eq. (1.1) has not been discussed by any author.

Let X ′ = Y , then Eq. (1.1) can be written as a system of first order differential
equations given below:

X ′ = Y ,

Y ′ = − F(X ,Y )Y − H(X) +
∫ t

t−r(t)
JH (X(s))Y (s)ds + P(t, X ,Y ),

(1.2)

where the Jh(X) in the system (1.2) stands for the Jacobian matrix of vector H(X)

and is defined by

JH (X) =
(

∂hi
∂x j

)

, (i, j = 1, 2, 3, ...n),

where (x1, x2, ..., xn) and (h1, h2, h3, ..., hn) are respectively the components of the
vectors X and H .
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2 Preliminary results

The following algebraic results and definitions are necessary to prove our main result.
The proofs of the results are found in the following papers ([7, 8, 11, 12, 16, 22]).

Lemma 2.1 [7, 8, 16, 22] Let A be any real symmetric positive definite n × n matrix,
then for any X in R

n, we have

δa ‖ X ‖2≤ 〈AX , X〉 ≤ �a ‖ X ‖2,

where δa and �a are respectively the least and greatest eigenvalues of A.

Lemma 2.2 [7, 8, 16, 22]Let H(X)be a continuous vector function and that H(0) = 0,
then

d

dt

∫ 1

0
〈H(σ X),Y 〉dσ = 〈H(X),Y 〉.

Lemma 2.3 [7, 8, 16, 22]Let H(X)be a continuous vector function and that H(0) = 0,
then

δh ‖ X ‖2≤ 2
∫ 1

0
〈H(σ X), X〉dσ ≤ �h ‖ X ‖2,

where δh and �h are respectively the least and greatest eigenvalues of Jh(σ X).

Consider the following non-autonomous delay differential equation

x ′ = F(t, xt ), xt = x(t + θ), − r ≤ θ ≤ 0, (2.1)

where F : R×C → R
n is a continuous mapping, F(t, 0) = 0, and given that F takes

closed bounded sets into bounded sets of Rn , and C = C([−r , 0], R
n) and φ ∈ C .

We assume that a0 ≥ 0, t ≥ t0 ≥ 0 and x ∈ C([t0 − γ, t0 + a0], R
n). Suppose that

xt = x(t + θ) for −r ≤ θ ≤ 0 and x(t) = φ(t), t ∈ [−γ, 0
]
, γ > 0.

Definition 2.1 [16] The matrix A is said to be positive definite when 〈AX , X〉 > 0 for
all non-zero X in Rn .

Definition 2.2 [9, 22] A continuous functionW : Rn → R
+ withW (0) = 0,W (s) >

0, and W strictly increasing is a wedge. (It is denoted by W or Wj , where j is an
integer.)

Definition 2.3 [9, 21] Let D be an open set in R
n with 0 ∈ D. A function V :

[0,∞)× D → [0,∞) is called positive definite if V (t, 0) = 0 and if there is a wedge
W1 with V (t, x) ≥ W1(|x |), and is called a decrescent function if there is a wedge
W2 with V (t, x) ≤ W2(|x |).
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Definition 2.4 [28] The solutions of equation (2.1) are uniformly ultimately bounded
for bound M, if there exists an M > 0 and if for any α > 0 and t0 ∈ I there exists a
T (α) > 0 such that X0 ∈ Sα, where Sα = {x ∈ R

n :‖ x ‖< α}, implies that

‖X(t; t0, X0)‖ < M

for all t ≥ t0 + T (α).

Lemma 2.4 [9, 16, 21, 26] Let V (t, φ) : R × C → R be continuous and locally
Lipschitz in φ. We assume that the following conditions hold: (i) W (|x(t)|) ≤
V (t, xt ) ≤ W1(|x(t)|) + W2

( ∫ t
t−r(t) W3(|x(s)|)ds

)
and (i i)V̇(2.1) ≤ −W3(|x(s)|) +

M, f or some M > 0, where Wi (i = 1, 2, 3) are wedges and V̇(2.1) represents the
derivative of the functional V (t, φ) with respect to the independent variable t along
the solution path of (2.1). Then the solutions of (2.1) are uniformly bounded and
uniformly ultimately bounded for bound B.

Remark 2.1 The qualitative properties of the solutions of (2.1) can be studied bymeans
of a scalar functional V (t, φ) called Lypunov–Krasovskii functional as contained in
Lemma 2.5.

3 Main result

Theorem 3.1 Further to the basic assumptions placed on functions F and G that
appear in Eq. (1.1) or system (1.2), we assume there exist some positive constants
D0, D1, δ f , δh,� f ,�h, ε, α and ξ such that the following conditions hold:

(i) H(0) = 0, H(X) �= 0, (X �= 0), thematrix JH (X) exists, symmetric andpositive
definite such that for all X ∈ R

n, δh ≤ λi (JH (X)) ≤ �h; λi (JH (X)) being the
eigenvalues of JH (X).

(ii) The eigenvalues λi (JF (X ,Y )) of F(X ,Y ) satisfies δ f = α − ε ≤ λi (JF (X ,Y ))

≤ α.

(iii) 0 ≤ r(t) ≤ γ , γ is a positive constant, r ′(t) ≤ ξ, 0 < ξ < 1.
(iv) ‖ P(t, X ,Y ) ‖≤ D0 + D1{‖ X ‖ + ‖ Y ‖}. Then, the solutions of system (1.2)

are uniformly ultimately bounded whenever

0 < γ < min
(2δh − ε

�h
,
(1 − ξ)(2α − ε(α + 4))

�h
(
2(2 − ξ) + α

)
)
.

Proof Let a continuously differentiable Lypunov–Krasovskii functional V (t) =
V (X(t),Y (t)) be defined by

2V (t) =‖ αX + Y ‖2 +4
∫ 1

0
〈H(σ1X), X〉dσ1+ ‖ Y ‖2

+2λ
∫ 0

−r(t)

∫ t

t+s
〈Y (θ), Y (θ)〉dθds, (3.1)
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where λ > 0 and its value is given later.
Our first concern is to establish that the functional V (t) defined by (3.1) is nonneg-

ative. Obviously, V (0, 0) = 0. By Lemma 2.3 and assumption (i) of the theorem, we
have

2δh ‖ X ‖2≤ 4
∫ 1

0
〈H(σ1X), X〉dσ1 ≤ 2�h ‖ X ‖2 . (3.2)

Also, by using the inequality 2|〈X ,Y 〉| ≤‖ X ‖2 + ‖ Y ‖2, we have

0 ≤‖ αX + Y ‖2≤ 2{α2 ‖ X ‖2 + ‖ Y ‖2}. (3.3)

Lastly,

0 < λ

∫ 0

−r(t)

∫ t

t+s
〈Y (θ), Y (θ)〉dθds (3.4)

Thus, using the estimates (3.2)–(3.4) in (3.1) we have

2V (t) ≥ 2δh ‖ X ‖2 + ‖ Y ‖2
= D2{‖ X ‖2 + ‖ Y ‖2},

where D2 = min{2δh, 1}.
Similarly, by the same reasoning as above, we have

2V (t) ≤ 2
(
�h + α2) ‖ X ‖2 +3 ‖ Y ‖2 +2λ

∫ 0

−r(t)

∫ t

t+s
〈Y (θ),Y (θ)〉dθds

≤ D3{‖ X ‖2 + ‖ Y ‖2} + 2λr(t)
∫ t

t−r(t)
〈Y (θ),Y (θ)〉dθ,

where D3 = max{2(�h +α2), 3}. Hence, we can get a continuous function, say v(s),
such that

v(‖ ψ(0) ‖) ≤ V (ψ), v(‖ ψ(0) ‖) ≥ 0.

Next, we obtain the derivative V̇ (t) of V (t) with respect to the independent variable
t along the system (1.2) as follows:

d

dt
V (t) = V̇ (t) = 〈αX + Y , αY − F(X ,Y )Y − H(X)

+
∫ t

t−r(t)
JH (X(s))Y (s)ds + P(t, X ,Y )〉

+2
d

dt

∫ 1

0
〈H(σ1X), X〉dσ1 + 〈Y ,−F(X ,Y )Y − H(X)
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+
∫ t

t−r(t)
JH (X(s))Y (s)ds

+P(t, X ,Y )〉 + λ
d

dt

∫ 0

−r(t)

∫ t

t+s
〈Y (θ),Y (θ)〉dθds.

By Lemma 2.2, we have

d

dt

∫ 1

0
〈H(σ1X), X〉dσ1 = 〈H(X),Y 〉.

Also,

λ
d

dt

∫ 0

−r(t)

∫ t

t+s
〈Y (θ), Y (θ)〉dθds

= λr(t) ‖ Y (t) ‖2 −λ(1 − r ′(t))
∫ t

t−r(t)
‖ Y (θ) ‖2 dθ

≤ λγ ‖ Y (t) ‖2 −λ(1 − ξ)

∫ t

t−r(t)
‖ Y (θ) ‖2 dθ,

after we have applied assumption (iii) of our theorem.
Therefore, after simplification and arranging terms, we obtain

V̇ (t) = − α〈X , H(X)〉 − 2〈Y , F(X , Y )Y 〉 + α〈Y , Y 〉 + α〈X ,
(
α I − F(X , Y )

)
Y 〉

+ α

∫ t

t−r(t)
〈X , JH (X(s))Y (s)〉ds + 2

∫ t

t−r(t)
〈Y , JH (X(s))Y (s)〉ds

+ λr(t) ‖ Y (t) ‖2 −λ(1 − r ′(t))
∫ t

t−r(t)
‖ Y (θ) ‖2 dθ + 〈αX + 2Y , P(t, X , Y )〉

≤ − α〈X , H(X)〉 − 2〈Y , F(X , Y )Y 〉 + α〈Y , Y 〉 + α〈X ,
(
α I − F(X , Y )

)
Y 〉

+ α

∫ t

t−r(t)
〈X , JH (X(s))Y (s)〉ds + 2

∫ t

t−r(t)
〈Y , JH (X(s))Y (s)〉ds

+ λγ ‖ Y (t) ‖2 −λ(1 − ξ)

∫ t

t−r(t)
‖ Y (θ) ‖2 dθ + 〈αX + 2Y , P(t, X , Y )〉,

where I is an n × n identity matrix.
If we apply Lemma 2.1, assumptions (i), (ii) of the theorem and the fact that 2 ‖

X ‖‖ Y ‖≤‖ X ‖2 + ‖ Y ‖2 in the above, we obtain

V̇ (t) ≤ − α

2

(
2δh − ε − �hγ

) ‖ X(t) ‖2

− 1

2

(
2α − ε(α + 4) − 2γ (�h + λ)

) ‖ Y (t) ‖2

+ 1

2

(
(2 + α)�h − 2λ(1 − ξ)

)
∫ t

t−r(t)
‖ Y (θ) ‖2 dθ

+ ‖ P(t, X ,Y ) ‖ (
α ‖ X ‖ +2 ‖ Y ‖ )

.

(3.5)
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On setting λ = �h(α+2)
2(1−ξ)

, γ < min
(
2δh−ε

�h
,

(1−ξ)(2α−ε(α+4))

�h

(
2(2−ξ)+α

)
)
and using assumption

(iv) of the theorem in (3.5), we obtain the following inequality for some positive
constant K1,

V̇ (t) ≤ −K1{‖ X ‖2 + ‖ Y ‖2} + (
D0 + D1(‖ X ‖ + ‖ Y ‖))(α ‖ X ‖ +2 ‖ Y ‖ )

≤ −K1{‖ X ‖2 + ‖ Y ‖2} + D0
(
α ‖ X ‖ +2 ‖ Y ‖ )

+ D1(‖ X ‖ + ‖ Y ‖)(α ‖ X ‖ +2 ‖ Y ‖ )
.

By simplifying further and using the inequality 2 ‖ X ‖‖ Y ‖≤‖ X ‖2 + ‖ Y ‖2, we
arrive at

V̇ (t) ≤ −K1{‖ X ‖2 + ‖ Y ‖2} + D0
(
α ‖ X ‖ +2 ‖ Y ‖ )

+ D1
(3α + 2

2

) ‖ X ‖2 +D1
(6 + α

2

) ‖ Y ‖2

≤ −(K1 − D1K2){‖ X ‖2 + ‖ Y ‖2} + D0
(
α ‖ X ‖ +2 ‖ Y ‖ )

,

where K2 = max{( 3α+2
2

)
,
( 6+α

2

)}. If we now choose D1 < K1K
−1
2 and follow the

same procedure of Omeike et al. [16], then there exists some β > 0 such that

V̇ ≤ − β(‖X‖2 + ‖Y‖2) + kβ(‖X‖ + ‖Y‖)
= − β

2
(‖X‖2 + ‖Y‖2) − β

2

{
(‖X‖ − k)2 + (‖Y‖ − k)2

}
+ βk2

≤ − β

2
(‖X‖2 + ‖Y‖2) + βk2,

for some k, β > 0.
It is now possible to apply Lemma 2.5 to the solutions of Eq. (1.1) as a consequence

of assumption (iii) of Theorem 3.1. Thus, from the proof of Theorem 3.1, we have
W = D2

2 {‖ X ‖2 + ‖ X ‖2}, W1 = (
�h + α2

) ‖ X ‖2 + 3
2 ‖ Y ‖2, W2 = λr(t) and

W3 = β
2 (‖X‖2 + ‖Y‖2). Hence, by Lemma 2.5, we conclude that all the solutions of

Eq. (1.1) or system (1.2) are uniform-ultimately bounded. 
�

4 Example

We provide the following example as a special case of equation (1.1).
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Example 4.1

(
x ′′
1
x ′′
2

)

+
(
13 + exp−(x21+x22 ) 0

0 13 + exp−(x ′2
1 +x ′2

2 )

) (
x ′
1
x ′
2

)

+
(
2x1(t − r(t)) + sin x1(t − r(t))
2x2(t − r(t)) + sin x2(t − r(t))

)

=
⎛

⎝
x1+x ′

1+1
1+t2

x2+x ′
2+1

1+t2

⎞

⎠ ,

where

H(X(t − r(t))) =
(
2x1(t − r(t)) + sin x1(t − r(t))
2x2(t − r(t)) + sin x2(t − r(t))

)

, r(t) = 1

8
cos2 t,

F(X , X ′) =
(
13 + exp−(x21+x22 ) 0

0 13 + exp−(x ′2
1 +x ′2

2 )

)

and

P(t, X , X ′) =
⎛

⎝
x1+x ′

1+1
1+t2

x2+x ′
2+1

1+t2

⎞

⎠ .

The variable delay r(t) and it’s derivative r ′(t), respectively, satisfy 0 ≤ r(t) =
1
8 cos

2 t ≤ 1
8 = γ and r ′(t) = − 1

4 sin t cos t < 1
4 = ξ .

The eigenvalues of F(X , X ′) are

λ1(F(X , X ′)) = 13 + exp−(x21+x22 ),

and

λ2(F(X , X ′)) = 13 + exp−(x ′2
1 +x ′2

2 ) .

Hence, we have δ f = 13 ≤ λi (F(X , X ′)) ≤ 14 = � f .

Also, the Jacobian matrix JH (X(t − r(t))) of H(X(t − r(t))) is

JH (X(t − r(t))) =
(
2 + cos x1(t − r(t)) 0

0 2 + cos x2(t − r(t))

)

,

and its eigenvalues satisfy δh = 1 ≤ λi (JH (X)) ≤ 3 = �h .

From the above calculations, we have, δ f = 13,� f = 14, δh = 1.1,�h = 4, ε =
1, α = 14, γ = 1

8 , ξ = 1
4 .

Therefore,

0 < γ = 1

8
< min

(
2δh − ε

�h
,
(1 − ξ)(2α − ε(α + 4))

�h
(
2(2 − ξ) + α

)

)

= min
(1

3
,
1

7

)
= 1

7
.
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Lastly,

P(t, X , X ′) = 1

1 + t2

(
x1 + x ′

1 + 1
x2 + x ′

2 + 1

)

|P(t, X , X ′)| ≤ (
2 + √

3{‖ X ‖ + ‖ X ′ ‖}).

Hence, the example satisfied all the conditions of the theorem.

5 Conclusion

In this paper, we made use of a suitable Lypunov–Krasovskii functional to establish
sufficient conditions for the uniform-ultimate boundedness of solutions to certain sec-
ond order non-linear vector differential equation. An example is given to demonstrate
the correctness of our result.
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