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Abstract
In this paper, we prove some hyperstability results of the following cubic functional
equation

f (2x + y) + f (2x − y) = 2 f (x + y) + 2 f (x − y) + 12 f (x)

on a restricted domain.
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1 Introduction

The starting pont for studying the stability of functional equations seems to be the
famous talk of Ulam [16] in 1940, in which he discussed a number of important
unsolved problems. Among those was the question concerning the stability of group
homomorphisms:

Let G1 be a group and let G2 be a metric group.
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Given δ > 0 does there exists a ε > 0, such that if a mapping f : G1 → G2
satisfies

d( f (x .y), f (x) f (y)) ≤ δ

for all x, y ∈ G1, then there exists an homomorphism φ : G1 → G2 such that

d( f (x), φ(x)) ≤ ε

for all x ∈ G1?
The first partial answer to Ulam question was presented by Hyers [10] in the case

of Cauchy functional equation in Banach spaces.
Later, the result of Hyers was significantly generalized by Rassias [15] in 1978 and

Găvruţa [8] in 1994. Since then, the stability problems of several functional equations
have been extensively investigated.

In 2014, Brzdek [1] responded to a problem formulated by Th. M. Rassias in 1991
concerning the stability of the Cauchy equation; in which he presents a new method
to prove the stability results of the functional equations.

The next definition describes the notion of hyperstability that we apply here (BA to
mean “ the family of all functions mapping from a nonempty set A into a nonempty
set B ”).

Definition 1.1 Let X be a nonempty set, (Y , d) be a metric space, ε ∈ R
Xn

0 and F1,
F2 be operators mapping from a nonempty set D ⊂ Y X into Y Xn

. We say that the
operator equation

F1ϕ(x1, . . . , xn) = F2ϕ(x1, . . . , xn), (x1, . . . , xn ∈ X) (1.1)

is ε-hyperstable provided that every ϕ0 ∈ D which satisfies

d (F1ϕ0(x1, . . . , xn),F2ϕ0(x1, . . . , xn)) ≤ ε(x1, . . . , xn), (x1, . . . , xn ∈ X)

fulfills the Eq. (1.1).

Fromwhichwe deduce a functional equation is hyperstable if any function f satisfying
the equation approximately (in some sense) must be actually solution to it.

It seems that the first hyperstability result was published in [9]. However, The term
hyperstability has been used for the first time in [13]. Let X be a nonempty subset
symmetric with respect to 0 and Y be a Banach space.

Themethod of the proof of themain theorem ismotivated by an idea used byBrzdȩk
in [2] and further by Piszczek in [14]. It is based on a fixed point theorem for functional
spaces obtained byBrzdȩk et al in [4]. Some generalizations of their result were proved
by Cǎdariu et al. in [5]. The case of fixed point theorem for non-Archimedean metric
spaces was also studied by Brzdȩk and Ciepliński in [3]. It is worth mentioning that
using fixed point theorem is now one of the most popular methods of investigating the
stability of functional equations in single as well as in several variables.
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In 2014, Brzdȩk et al. in [3] discussed the fixed point method, namely the second
most popular way to stabilize functional equations.

Let us recall a few recent approaches of Jung in [11], Lee and Jung in [12]. More
information on the application of the fixed point method was collected by Ciepliński
in [7]. First, we take the following three hypotheses (all notations come from [6]).

Now,we present some results inBanach spaces using the fixed pointmethod. Before
proceeding to the main results, we state Theorem 1.2 which is useful for our purpose.
To present it, we introduce the following three hypotheses:

(H1)X is a nonempty set, Y a Banach spaces, and f1, . . . , fk : X → X and
L1, . . . , LK : X → R+ are given.

(H2)F : Y X → Y X is an operator satisfying the inequality

‖Fξ(x) − Fμ(x)‖ ≤
k∑

i=1

Li (x)‖ξ( fi (x)) − μ( fi (x))‖ ξ, μ ∈ Y X , x ∈ X

(H3)� : RX+ → R
X+ is defined by:

�δ(x) :=
k∑

i=1

Li (x)δ( fi (x)), δ ∈ R
X+, x ∈ X .

The mentioned fixed point theorem is stated as follows.

Theorem 1.2 [4] Let hypotheses (H1)− (H2) be valid, functions ε : X → R+ and let
ϕ : X → Y fulfill the following two conditions:

i) ‖Fϕ(x) − ϕ(x)‖ ≤ ε(x), x ∈ X

ii) ε∗(x) :=
∞∑

n=0

�nε(x) < ∞, x ∈ X .

Then there exists a unique fixed point ψ of F with ‖ϕ(x) − ψ(x)‖ ≤ ε∗(x), x ∈ X.
Moreover ψ(x) = limn→∞ Fnϕ(x), x ∈ X .

Throughout the paper, N, N0 and Nm0 denote the set of all positive integers, the set
of all nonnegative integers and the set of all integers greater than or equal to m0,
respectively, the set of real numbers by R, R+ := [0,∞), and we use the notation X0
for the set X\{0}.

We say that a function f : X → Y satisfies the cubic functional equation on X if

f (2x + y) + f (2x − y) = 2 f (x + y) + 2 f (x − y) + 12 f (x) (1.2)

for all x, y ∈ X such that x + y, x − y ∈ X .
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2 Main results

In this section, we use Theorem 1.2 as a basic tool to prove the hyperstability results
of the cubic functional equation in Banach spaces.

Theorem 2.1 Assume that X is a nonempty symmetric with respect to 0 subset of a
normed space such that 0 /∈ X and there exist n0 ∈ N with nx ∈ X for x ∈ X and
n ∈ Nn0 . Let Y be a Banach space, c ≥ 0, and p + q < 0. If f : X → Y satisfies

∥∥∥∥
1

12
f (2x + y) + 1

12
f (2x − y) − 1

6
f (x + y)

−1

6
f (x − y) − f (x)

∥∥∥∥ ≤ c

12
‖x‖p‖y‖q (2.1)

for all x, y ∈ X such that x + y, x − y ∈ X, then f satisfies the cubic equation on X .

Proof First observe that there exists m0 ∈ Nn0 such that

αm = 1

12
(2 + m)p+q + 1

12
(m − 2)p+q + 1

6
(1 + m)p+q + 1

6
(m − 1)p+q < 1.

Assume that q < 0 and replacing y with mx in (2.1) we get:

∥∥∥∥
1

12
f ((2 + m)x) + 1

12
f ((2 − m)x) − 1

6
f ((1 + m)x)

−1

6
f ((1 − m)x) − f (x)

∥∥∥∥ ≤ c

12
mq‖x‖p+q

if x ∈ X .

Further put

Fmξ(x) := 1

12
ξ((2 + m)x) + 1

12
ξ((2 − m)x) − 1

6
ξ((1 + m)x) − 1

6
ξ((1 − m)x),

x ∈ X , ξ ∈ Y X and εm(x) := c
12m

q‖x‖p+q .

Then the inequality (2.1) takes the form ‖Fm f (x) − f (x)‖ ≤ εm(x).
The operator

�δ(x) := 1

12
δ((2 + m)x) + 1

12
δ((m − 2)x)

+1

6
δ((1 + m)x) + 1

6
δ((m − 1)x), δ ∈ R

X+, x ∈ X

has the form described in (H3) with k = 4 and

f1(x) = (m + 2)x, f2(x) = (2 − m)x, f3(x) = (1 + m)x, f4(x) = (1 − m)x,
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L1(x) = L2(x) = 1

12
, L3(x) = L4(x) = 1

6
.

Moreover, for every ξ, μ ∈ XX and x ∈ X

‖Fmξ(x) − Fmμ(x)‖ ≤
4∑

i=1

Li (x)‖(ξ − μ)( fi (x))‖.

So (H2) is valid.
Next we can find m0 ∈ N such that

αm = 1

12
(2 + m)p+q + 1

12
(m − 2)p+q + 1

6
(1 + m)p+q + 1

6
(m − 1)p+q < 1.

Therefore we obtain that

ε∗(x) : =
∞∑

n=0


nε(x)

= c

12
mq‖x‖p+q

∞∑

n=0

(
1

12
(2 + m)p+q + 1

12
(m − 2)p+q

+1

6
(1 + m)p+q + 1

6
(m − 1)p+q

)n

= cmq‖x‖p+q

12(1 − αm)
.

Thus according to theorem (1.2) there exists a unique solution F : X → Y of the
equation

F(x) = 1

12
F((2 + m)x) + 1

12
F((2 − m)x) − 1

6
F((1 + m)x) − 1

6
F((1 − m)x)

such that

‖ f (x) − F(x)‖ ≤ cmq‖x‖p+q

12(1 − αm)
.

Moreover: F(x) = limn→∞ Fn f (x). To prove that F satisfies the cubic equation on
X, observe that

∥∥∥∥
1

12
Fn f (2x + y)+ 1

12
Fn f (2x − y)− 1

6
Fn f (x + y)− 1

6
Fn f (x − y)−Fn f (x)

∥∥∥∥

≤ c

12
(αm)n‖x‖p‖y‖q (2.2)

for every x, y ∈ X , such that x + y ∈ X , x − y ∈ X .
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Indeed: if n = 0 then, (2.2) is simple. So, fix n ∈ N0 and suppose that (2.2) holds
for n and x, y ∈ X such that x + y, x − y ∈ X .

Then
∥∥∥∥
1

12
Fn+1 f (2x + y) + 1

12
Fn+1 f (2x − y) − 1

6
Fn+1 f (x + y)

−1

6
Fn+1 f (x − y) − Fn+1 f (x)

∥∥∥∥

=
∥∥∥∥
1

12

(
1

12
Fn f ((2 + m)(2x + y)) + 1

12
Fn f ((2 − m)(2x + y))

− 1

6
Fn f ((1 + m)(2x + y))

−1

6
Fn f ((1 − m)(2x + y))

)
+ 1

12

(
1

12
Fn f ((2 + m)(2x − y))

+ 1

12
Fn f ((2 − m)(2x − y))

−1

6
Fn f ((1 + m)(2x − y)) − 1

6
Fn f ((1 − m)(2x − y))

)

− 1

6

(
1

12
Fn f ((2 + m)(x + y))

+ 1

12
Fn f ((2 − m)(x + y)) − 1

6
Fn f ((1 + m)(x + y))

−1

6
Fn f ((1 − m)(x + y))

)

− 1

6

(
1

12
Fn f ((2 + m)(x − y)) + 1

12
Fn f ((2 − m)(x − y))

− 1

6
Fn f ((1 + m)(x − y))

−1

6
Fn f ((1 − m)(x − y))

)
− 1

12
Fn f ((2 + m)(x))

− 1

12
Fn f ((2 − m)(x)) + 1

6
Fn f ((1 + m)(x))

+1

6
Fn( f ((1 − m)(x))

∥∥∥∥

≤
∥∥∥∥
1

12

(
1

12
Fn f ((2 + m)(2x + y)) + 1

12
(Fn f ((2 + m)(2x − y))

− 1

6
Fn f ((2 + m)(x + y))

−1

6
Fn f ((2 + m)(x − y)) − Fn f ((2 + m)x)

)∥∥∥∥

+
∥∥∥∥
1

12

(
1

12
Fn f ((2 − m)(2x + y))
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+ 1

12
(Fn f ((2 − m)(2x − y)) − 1

6
(Fn f ((2 − m)(x + y)))

− 1

6
(Fn f ((2 − m)(x − y)))

−Fn f ((2 − m)x)
) ∥∥∥∥ +

∥∥∥∥
1

12

1

6
Fn f ((1 + m)(2x + y))

+ 1

12

(
1

6
Fn f ((1 + m)(2x − y))

− 1

6

(
1

6
Fn f ((1 + m)(x + y))

)
− 1

6

(
1

6
Fn f ((1 + m)(x − y))

)

−1

6
Fn f (1 + m)x

)∥∥∥∥

+
∥∥∥∥
1

12

1

6
Fn f ((1 − m)(2x + y)) + 1

12

(
1

6
Fn f ((1 − m)(2x − y))

− 1

6
(
1

6
Fn f ((1 − m)(x + y)))

−1

6

(
1

6
Fn f ((1 − m)(x − y))

)
− 1

6
Fn f (1 − m)x

)∥∥∥∥

≤ c

12

(
1

12
(2 + m)p+q + 1

12
(m − 2)p+q + 1

6
(1 + m)p+q

+1

6
(m − 1)p+q

)n

‖x‖p‖y‖q
(

(2 + m)p+q

12

+ (m − 2)p+q

12
+ (m + 1)p+q

6
+ (m − 1)p+q

6

)

= c

12

(
1

12
(2 + m)p+q + 1

12
(m − 2)p+q + 1

6
(1 + m)p+q

+1

6
(m − 1)p+q

)(n+1)

‖x‖p‖y‖q .

By induction, we have shown that (2.2) holds. Letting n → +∞ in (2.2) we obtain
F(2x + y)+ F(2x − y) = 2F(x + y)+ 2F(x − y)+ 12F(x). Thus, we have proved
that for every m ∈ Nm0 there exists a function Fm : X → Y such that Fm is a solution
of the cubic equation on X and

‖ f (x) − Fm(x)‖ ≤ c

12
(αm)n‖x‖p‖y‖q .

Since p + q < 0 with q < 0, the sequence

{
cmq‖x‖p+q

12(1 − (αm)
)

}

m∈Nm0
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tends to zero. Consequently f satisfies the cubic equation on X as the pointwise limit
of (Fm)m∈Nm0

. ��
Theorem 2.2 If f : X → Y satisfies

∥∥∥∥
1

12
f (2x + y) + 1

12
f (2x − y) − 1

6
f (x + y)

−1

6
f (x − y) − f (x)

∥∥∥∥ ≤ c

12
‖x‖p‖y‖q (2.3)

for all x, y ∈ X such that x + y, x − y ∈ X, and 0 < p + q < 1. Then f satisfies the
cubic functional equation on X.

Proof Assume that q > 0.
Replacing y by x

m we get:

∥∥∥∥
1

12
f

((
2 + 1

m

)
x

)
+ 1

12
f

((
2 − 1

m

)
x

)
− 1

6
f

((
1 + 1

m

)
x

)

−1

6
f

(
1 − 1

m

)
x) − f (x)

∥∥∥∥ ≤ c

12

1

mq
‖x‖p+q = εm(x)

such that x ∈ X .

Similarly as previously we define

Fmξ(x) := 1

12
ξ

((
2 + 1

m

)
x

)
+ 1

12
ξ

((
2 − 1

m

)
x

)

−1

6
ξ

((
1 + 1

6

)
x

)
− 1

6
ξ

((
1 − 1

m

)
x

)
, x ∈ X , ξ ∈ Y X

and

�mδ(x) := 1

12
δ

((
2 + 1

m

)
x

)

+ 1

12
δ

((
1

m
− 2

)
x

)
1

6
δ

((
1 + 1

m

)
x

)
+ 1

6
δ

((
1

m
− 1

)
x

)

δ ∈ R
X+, x ∈ X and see that (2.2) is

‖Fm f (x) − f (x)‖ ≤ εm(x), x ∈ X .

Obviously �m has the form described in (H3) with k = 4 and f1(x) = (2 + 1
m )x

f2(x) = (2 − 1
m )x , f3(x) = (1 + 1

m )x , f4(x) = (1 − 1
m )x , L1(x) = L2(x) = 1

12 ,
L3(x) = L4(x) = 1

6

‖Fmξ(x) − Fmμ(x)‖ ≤
4∑

i=1

Li (x)‖(ξ − μ)( fi (x))‖.
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So (H2) is valid.
Next we can find m0 ∈ Nn0 such that

βm = 1

12

(
2 + 1

m

)p+q

+ 1

12

(
2 − 1

m

)p+q

+ 1

6

(
1 + 1

m

)p+q

+ 1

6

(
1 − 1

m

)p+q

< 1,

for all m ≥ m0.

Therefore we obtain that

ε∗(x) : =
∞∑

n=0


nε(x)

= cmq‖x‖p+q
∞∑

n=0

(βm)n

= cmq‖x‖p+q

1 − βm
.

Thus, according to theorem (1.2) there exists a unique solution F : X → Y of the
equation

Fm(x) = 1

12
Fm

((
2 + 1

m

)
x

)
+ 1

12
Fm

((
2 − 1

m

)
x

)

−1

6
Fm

((
1 + 1

m

)
x

)
− 1

6
Fm

((
1 − 1

m

)
x

)

such that:

‖ f (x) − Fm(x)‖ ≤ cmq‖x‖p+q

12(1 − βm)

and Fm(2x + y) + Fm(2x − y) = 2Fm(x + y) + 2Fm(x − y) + 12Fm(x), x ∈ X ,
y ∈ X , x + y ∈ X , x − y ∈ X .

In this way we obtain a sequence (Fm)m∈Nm0
of cubic functions on X such that

‖ f (x) − Fm(x)‖ ≤ cmq‖x‖p+q

12(1 − βm)
,

it follows, with m → ∞, that f is cubic on X . ��
Remark 2.3 : In the case p > 1 and q > 1, the considered cubic equation is not
hyperstable.

Example 2.4 Let X = R − {[−√
14;√

14]} and f : X → R be a constant f (x) =
c, x ∈ X for some c > 0.

Then f satisfies the inequality
∥∥∥∥
1

12
f (2x + y) + 1

12
f (2x − y) − 1

6
f (x + y) − 1

6
f (x + y) − f (x)

∥∥∥∥ ≤ c

12
‖x‖p‖y‖q

123



326 ANNALI DELL’UNIVERSITA’ DI FERRARA (2023) 69:317–328

for all x, y ∈ X such that x + y, x − y ∈ X , with p > 1 and q > 1, but is not a
solution of the cubic equation on X .

Theorem 2.5 Assume that X is a nonempty, symmetric with respect to 0 subset of a
normed space such that 0 /∈ X and there exists n0 ∈ N with nx ∈ X for x ∈ X and
n ∈ Nn0 . Let Y be a Banach space, c ≥ 0, and p < 0. If f : X → Y satisfies

‖ f (2x + y) + f (2x − y) − 6 f (x + y)

−6 f (x − y) − 12 f (x)‖ ≤ c(‖x‖p + ‖y‖p) (2.4)

for all x, y ∈ X such that x + y, x − y ∈ X, then f satisfies the cubic equation on X.

Proof Replacing (x, y) by (mx, (2m − 1)x), where m ∈ N
∗ − {1; 2} in (2.4), we get

‖ f (x) + f ((4m − 1)x) − 6 f ((3m − 1)x) − 6 f ((1 − m)x) − 12 f (mx)‖
≤ c(mp + (2m − 1)p)‖x‖p (2.5)

for all x ∈ X .

Further put

Fmξ(x) := 12ξ((m)x) + 6ξ((3m + 1)x) + 6ξ((1 − m)x) − ξ((4m − 1)x)

x ∈ X , ξ ∈ Y X and εm(x) := c(mp + (2m − 1)p)‖x‖p.

Then the inequality (2.5) takes the form ‖Fm f (x) − f (x)‖ ≤ εm(x). x ∈ X .

The operator�mδ(x) := 12δ(mx)+6δ((3m+1)x)+6δ((1−m)x)+δ((4m−1)x)
δ ∈ R

X+, x ∈ X has the form described in (H3) with k = 4 and f1(x) = mx,
f2(x) = (3m + 1)x, f3(x) = (1 − m)x, f4(x) = (4m − 1)x, L1(x) = 12, L3(x) =
L4(x) = 6, L4(x) = 1 for all x ∈ X .

Moreover, for every ξ, μ ∈ Y X and x ∈ X , we have

‖Fmξ(x) − Fmμ(x)‖ ≤
4∑

i=1

Li (x)‖(ξ − μ)( fi (x))‖.

So, H2 is valid. Now, we can find m ∈ N∗ − {1; 2} such that

12mp + 6(3m + 1)p + 6(m − 1)p + (4m − 1)p < 1

for all m ≤ m0.

Therefore, we obtain that

ε∗(x) :=
∞∑

n=0


nε(x) = c(mp + (2m − 1)p)‖x‖p

∞∑

n=0

(12mp + 6(3m + 1)p + 6(m − 1)p + (4m − 1)p)n
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= c(mp + (2m − 1)p)

1 − (12mp + 6(3m + 1)p + 6(m − 1)p + (4m − 1)p)

for all x ∈ X and m ≥ m0. The rest of the proof is similar to the proof of theorem
(2.1.) ��
Corollary 2.6 Assume that X is that a nonempty symmetric with respect to 0 subset of
a normed space such that 0 /∈ X and Y be a Banach space. Let F : X2 → Y be a
mapping such that F(x0, y0) �= 0 for some x0, y0 ∈ X and

‖F(x, y)‖ ≤ c‖x‖p‖y‖q , (2.6)

or

‖F(x, y)‖ ≤ c(‖x‖p + ‖y‖p) (2.7)

for all x, y ∈ X, where c ≥ 0 and p, q ∈ R. Assume that the numbers p; q satisfy
p + q < 1 and p + q �= 0. In the case (2.6) and p < 0 in the case (2.7), then the
functional equation:

h(2x + y) + h(2x − y) + F(x, y) = 2h(x + y) + 2h(x − y) + 12h(x) (2.8)

x, y ∈ X has no solution in the class of functions h : X → Y .

Proof Suppose that h : X → Y is a solution to (2.6), Then (2.1) or (2.7) holds,
and consequently, according to above theorems, h is cubic on X , which means that
F(x0, y0) = 0. This is contradiction. ��
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