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Abstract
In this paper, we prove that each n-Jordan homomorphism ϕ from Banach algebra
A into a semisimple commutative Banach algebra B is automatically continuous.
Some useful results about characterization of n-Jordan homomorphisms and interest-
ing examples of them on Banach algebras are given as well.
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1 Introduction and Preliminaries

Let A and B be complex Banach algebras and ϕ : A −→ B be a linear map. Then ϕ

is called an n-homomorphism if for all a1, a2, ...an ∈ A,

ϕ(a1a2...an) = ϕ(a1)ϕ(a2)...ϕ(an).

The concept of n-homomorphisms was studied for complex algebras by Hejazian
et al. in [10]. One may refer to [5], for certain properties of 3-homomorphisms.

A linear map ϕ between Banach algebrasA and B is called an n-Jordan homomor-
phism if ϕ(an) = ϕ(a)n , for all a ∈ A. This notion was introduced by Herstein in
[11]. For n = 2, this concepts coincides the classical definitions of homomorphism and
Jordan homomorphism, respectively. Moreover, Jordan homomorphism is equivalent
by
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ϕ(a ◦ b) = ϕ(a) ◦ ϕ(b), a, b ∈ A,

where a ◦ b = ab + ba.
It is obvious that each n-homomorphism is an n-Jordan homomorphism, but the

converse is false, in general. In fact, the converse is true under certain conditions. For
example, it is shown in [8] that each n-Jordan homomorphism between two commuta-
tive algebras is an n-homomorphism for n ∈ {3, 4}, and this result extended to n < 8,
in [3]. Note that for n = 2, the proof is clear.

The following more general result is due to Gselmann.

Theorem 1.1 [9, Theorem 2.1] Let n ∈ N, R and R′ be two commutative rings such
that char(R′) > n and suppose that ϕ : R −→ R′ is an n-Jordan homomorphism.
Then ϕ is an n-homomorphism.

Moreover, ifR is unital, then ϕ(e) = ϕ(e)n and the map ψ : R −→ R′ defined by
ψ(x) = ϕ(e)n−2ϕ(x) is a homomorphism.

In 2018, Bodaghi and İnceboz proved that every additive n-Jordan homomorphism
between two commutative algebras is an n-homomorphism [2]. However, their proof
is different from that of Gselmann.We remark that since char(B) > n for each algebra
B, so Theorem 1.1 is stronger than the result of Bodaghi and İnceboz.

When the domain is not necessarily commutative, Żelazko in [15] proved the fol-
lowing theorem (see also [13]).

Theorem 1.2 Suppose that A is a Banach algebra, which need not be commutative,
and suppose that B is a semisimple commutative Banach algebra. Then each Jordan
homomorphism ϕ : A −→ B is a homomorphism.

This result has been proved by the author in [16] and [17] for 3-Jordan and 5-Jordan
homomorphism with the additional hypothesis that the Banach algebraA is unital. In
other words, he presented the next theorem.

Theorem 1.3 Let n ∈ {3, 5} be fixed. Let A be a unital Banach algebra, which need
not be commutative, and B be a semisimple commutative Banach algebra. Then each
n-Jordan homomorphism ϕ : A −→ B is an n-homomorphism.

Later in 2017, An extended Theorem 1.3 and obtained the next result (for alternative
proof see [20, Corollary 2.3]).

Theorem 1.4 [1, Corollary 2.5] LetA be a unital Banach algebra andB be a semisim-
ple commutative Banach algebra. Then each n-Jordan homomorphism ϕ : A −→ B is
an n-homomorphism. Moreover, if ϕ is surjective, then ϕ is automatically continuous.

Recall that a bounded approximate identity for A is a bounded net (eα)α∈I in A
such that aeα −→ a and eαa −→ a, for all a ∈ A. For example, it is known that the
group algebra L1(G), for a locally compact groupG, andC∗-algebras have a bounded
approximate identity bounded by one [7].

In this paper we prove that each n-Jordan homomorphism from Banach algebra A
into a semisimple commutative Banach algebra B is automatically continuous, and
generalize Theorem 1.4, for non unital Banach algebras which equipped a bounded
approximate identity. In the otherword, the results presented here are indeed extensions
and generalizations of the above mentioned results.
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2 Characterization of 3-Jordan homomorphisms

The next example provided that we cannot assert that n-Jordan homomorphisms of
rings are always n-homomorphisms.

Example 2.1 Let A = K [x, y] be the polynomial ring in two independent in deter-
minates over a field K of characteristic not two, and let B = K [X ,Y , Z ] be the
polynomial ring in the three elements X , Y , Z that satisfy the relations

Y X = XY + Z , X Z = Z X , Y Z = ZY , Z2 = 0.

Then the linear mapping ϕ that sends xm yn into 1
2 (X

m ◦ Yn), m, n = 0, 1, 2, ... is
a Jordan homomorphism as is shown in [12, Example 1], hence it is an n-Jordan
homomorphism by [12, Theorem 1], or [14, Lemma 6.3.2]. On the other hand, since

(1
2
(Xm1 ◦ Yn1)

)
...

(1
2
(Xmk ◦ Ynk )

) �= 1

2

(
Xm1+...+mk ◦ Yn1+...+nk

)
,

thus, ϕ is not n-homomorphism.

The commutativity of Banach algebra B in Theorem 1.3 is essential. The following
example illustrates this fact.

Example 2.2 Let

A =
{[

X 0
0 Y

]
: X ,Y ∈ M2(C)

}
.

Then under the usual matrix operations,A is a unital and semisimple Banach algebra
but it is not commutative. Define a continuous linear map ϕ : A −→ A by

ϕ

([
X 0
0 Y

])
=

[
X 0
0 Y T

]
,

where Y T denote the transpose of Y . Then, for all A ∈ A and for each n ∈ N,

ϕ(An) = ϕ(A)n .

Thus, ϕ is an n-Jordan homomorphism, but it is not an n-homomorphism.

Note that in the above example A is unital. Next we construct an example of n-
Jordan homomorphism ϕ : A −→ B, such that A is not unital.

Example 2.3 Let

A =
{[

X Y
0 0

]
: X ,Y ∈ M2(C)

}
,
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where X is the form

[
a11 0
a21 a22

]
, and let

B =
{[

z11 z12
0 z22

]
: zi j ∈ C

}
.

Then A is neither unital nor commutative and B is a noncommutative semisimple
Banach algebra. Define a continuous linear map ϕ : A −→ B by

ϕ

([
X Y
0 0

])
= XT .

Then,

ϕ(An) = ϕ(A)n,

for all A ∈ A. Consequently, ϕ is a n-Jordan homomorphism, but it is easy to see that
ϕ is not an n-homomorphism.

To achieve our aim in this section, we need the following theorem.

Theorem 2.4 [19, Theorem 2.3] Suppose that A is a Banach algebra. Then every
3-Jordan homomorphism ϕ : A −→ C is automatically continuous.

Next we generalize Theorem 1.3 for nonunital Banach algebras.

Theorem 2.5 Let A be a Banach algebra with a bounded approximate identity. Then
each 3-Jordan homomorphism ϕ : A −→ C is a 3-homomorphism.

Proof Assume thatϕ is a 3-Jordan homomorphism, thenϕ(a3) = ϕ(a)3, for all a ∈ A.
Replacing a by a + b, we get

ϕ(ab2 + b2a + a2b + ba2 + aba + bab) = 3ϕ(a)2ϕ(b) + 3ϕ(a)ϕ(b)2, (1)

and interchanging a by −a in (1), to obtain

ϕ(−ab2 − b2a + a2b + ba2 + aba − bab) = 3ϕ(a)2ϕ(b) − 3ϕ(a)ϕ(b)2. (2)

By (1) and (2),

ϕ(a2b + ba2 + aba) = 3ϕ(a)2ϕ(b), (a, b ∈ A). (3)

Suppose that (eα)α∈I is a bounded approximate identity for A, and let

E = {ϕ(eα) : α ∈ I }.
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Then we may suppose, by passing to a subnet, that ϕ(eα) −→ β ∈ C. Replacing b by
eα in (3) and using Theorem 2.4, we obtain

ϕ(a2) = βϕ(a)2, (4)

for all a ∈ A. Replacing a by a + eα in (4), we arrive at

ϕ(a) = βϕ(a) lim
α

ϕ(eα) = β2ϕ(a), (5)

which proves that β2 = 1. Define ψ : A −→ C by ψ(x) = βϕ(x), for all x ∈ A.
Then ψ(x2) = βϕ(x2) = β2ϕ(x)2 = ψ(x)2, therefore ψ is a Jordan homomorphism
and hence by Theorem 1.2, ψ is a homomorphism. Thus,

βϕ(abc) = ψ(abc) = ψ(a)ψ(b)ψ(c) = β3ϕ(a)ϕ(b)ϕ(c),

for all a, b, c ∈ A. Consequently, ϕ is a 3-homomorphism. �	
Corollary 2.6 LetA be a Banach algebra with a bounded approximate identity and let
B be a semisimple commutative Banach algebra. Then each 3-Jordan homomorphism
ϕ : A −→ B is a 3-homomorphism.

Proof LetM(B) be the maximal ideal space of B. We associate with each f ∈ M(B)

a function ϕ f : A −→ C defined by

ϕ f (a) := f (ϕ(a)), (a ∈ A).

Then ϕ f is a 3-Jordan homomorphism, so by Theorem 2.5 it is a 3-homomorphism.
Hence, by the definition of ϕ f we have

f (ϕ(abc)) = f (ϕ(a)) f (ϕ(b)) f (ϕ(c)) = f (ϕ(a)ϕ(b)ϕ(c)).

Since f ∈ M(B) was arbitrary and B is assumed to be semisimple, we obtain

ϕ(abc) = ϕ(a)ϕ(b)ϕ(c),

for all a, b, c ∈ A. This completes the proof. �	
For a Banach algebra A without bounded approximate identity, the next result

characterizes the 3-Jordan homomorphisms.

Theorem 2.7 Let A be a Banach algebra and ϕ be a 3-Jordan homomorphism from
A into a commutative semisimple Banach algebra B such that for all a, b, c ∈ A,

ϕ(abc − cba) = 0.

Then ϕ is a 3-homomorphism.

Proof By a careful adaption of the methods of Theorem 1.1, the result follows. �	
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3 Characterization of n-Jordan homomorphisms

It is shown in [19] that every n-Jordan homomorphism from unital Banach algebra
A into C is automatically continuous, and without any extra condition asked the
following: Is every n-Jordan homomorphism fromA intoC automatically continuous?
([19, Question 2.12]).

Next we answer this question in the affirmative. This result is the main key to
characterize n-Jordan homomorphism. For the case n = 2, it is [18, Proposition 2.1],
and for n = 3 it is Theorem 2.4.

Our main theorem in this section is the following.

Theorem 3.1 Every n-Jordan homomorphism ϕ from Banach algebra A into C is
automatically continuous.

Proof Let n ≥ 4 be fixed and let ϕ : A −→ C be an n-Jordan homomorphism. First
we prove that for every a ∈ A with ‖a‖ < 1, ϕ(a) �= 1. We argue by contradiction.
Suppose that there exist a ∈ Awith ‖a‖ < 1 andϕ(a) = 1. Thus,ϕ(an) = ϕ(a)n = 1.
LetA be a Banach subalgebra ofA generated by the above element a of norm ‖a‖ < 1.
Define ψ : A −→ C by ψ(x) = ϕ(x). Then ψ is an n-Jordan homomorphism, that is
ψ(xn) = ψ(x)n , for all x ∈ A. Since A is commutative by Theorem 1.1, we have

ψ(x1x2...xn−1xn) = ψ(x1)ψ(x2)...ψ(xn−1)ψ(xn), (6)

for all x1, x2, ..., xn ∈ A. Replacing xn−1 by an−1 and xi by a for all i ≥ 3 with
i �= n − 1, in (6), gives

ψ(x1x2a
2n−4) = ψ(x1x2a...an−1a) = ψ(x1)ψ(x2)ψ(a)...ψ(an−1)ψ(a), (7)

for all x1, x2 ∈ A. Since ψ(a) = 1, by (7), we have

ψ(x1x2a
2n−4) = ψ(x1)ψ(x2)ψ(an−1).

Let λ = ψ(an−1), then

ψ(x1)ψ(an−2x2) = ψ(x1)ψ(an−2x2)ψ(a)n−2 = ψ(x1x2a
2n−4) = λψ(x1)ψ(x2),

and since ψ �= 0 we obtain

ψ(an−2x2) = λψ(x2), (8)

for all x2 ∈ A. From (6) and (8) we get

ψ(x1)ψ(x2) = ψ(x1)ψ(x2)ψ(a)n−2 = ψ(an−2x1x2) = λψ(x1x2),

for all x1, x2 ∈ A. Continuing in this way, we conclude that

ψ(x1x2...xn−1xn) = λn−1ψ(x1)ψ(x2)...ψ(xn−1)ψ(xn).
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Therefore λn−1 = 1 and hence |λ| = 1. Now define f : A −→ C by f (x) =
λn−2ψ(x). For all x, y ∈ A,

f (x) f (y) = λn−2ψ(x)λn−2ψ(y)

= λ2n−4(λψ(xy)
)

= λn−1λn−2ψ(xy)

= λn−2ψ(xy)

= f (xy).

Thus, f is a multiplicative linear functional and hence by [4, Proposition 3, § 16], it
is continuous and ‖ f ‖ ≤ 1. This implies that ‖ψ‖ ≤ 1, and hence ψ is continuous.
This is a contradiction with ‖a‖ < 1 and ψ(a) = 1. Consequently, for all a ∈ A with
‖a‖ < 1, we have ϕ(a) �= 1.

Now it is easy to see that if x ∈ A in such that ‖x‖ ≤ 1, then |ϕ(x)| ≤ 1. Therefore
ϕ is norm decreasing and hence it is continuous. This finishes the proof. �	

As a consequence of preceding theorem, we get the next result.

Corollary 3.2 Suppose thatA and B are two Banach algebras, where B is semisimple
and commutative. Then each n-Jordan homomorphism ϕ : A −→ B is continuous.

Corollary 3.3 Every n-homomorphism ϕ from a Banach algebra A into a semisimple
commutative Banach algebra B is automatically continuous.

Awell-known result due to S̆ilov [7, Theorem 2.3.3] or [4, Theorem 8, § 17], states
that every homomorphism ϕ from Banach algebra A into a semisimple commutative
Banach algebra B is automatically continuous. Corollary 3.3 is an extension of this
result for all n ∈ N.

Lemma 3.4 LetA be a Banach algebra with a bounded approximate identity (eα)α∈I ,
and ϕ : A −→ C be an n-Jordan homomorphism. Then for all a ∈ A,

(i) ϕ(a) = βn−1ϕ(a), where β = lim
α

ϕ(eα), and

(ii) ϕ(a2) = βn−2ϕ(a)2.

Proof The conclusion is proved for n = 3, as is done in the proof of Theorem 2.5. By
applying Theorem 3.1 and the same method which has been used in [1, Theorem 2.4],
we can prove the result for n > 3. �	
Theorem 3.5 Let A be a Banach algebra with a bounded approximate identity. Then
each n-Jordan homomorphism ϕ : A −→ C is an n-homomorphism.

Proof Define a mapping ψ : A −→ C by

ψ(a) = βn−2ϕ(a),
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for all a ∈ A. It follows from Lemma 3.4, that ψ is a Jordan homomorphism and
hence it is a homomorphism by Theorem 1.2. By the definition of ψ and Lemma 3.4,
we have

βψ(a) = ϕ(a). (9)

By Lemma 3.4 and (9), we have

ϕ(a1a2...an) = βψ(a1a2...an)

= βψ(a1)ψ(a2)...ψ(an)

= β
(
βn−2ϕ(a1)

)(
βn−2ϕ(a2)

)
...

(
βn−2ϕ(an)

)

= β(n−1)2ϕ(a1)ϕ(a2)...ϕ(an)

= ϕ(a1)ϕ(a2)...ϕ(an).

Consequently, ϕ is an n-homomorphism. �	
From Theorem 3.5, we deduce the following result which generalize Corollary 2.5

of [1].

Corollary 3.6 Suppose that A is a Banach algebra with a bounded approximate
identity, and B is a semisimple commutative Banach algebra. Then each n-Jordan
homomorphism ϕ : A −→ B is an n-homomorphism.

As a consequence of Corollary 3.6, we have the following result.

Corollary 3.7 Let A be an amenable Banach algebra or a C∗-algebra. Then each n-
Jordan homomorphism ϕ from A into a semisimple commutative Banach algebra B
is an n-homomorphism.
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