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Abstract
This paper provides sufficient conditions for the stability, asymptotic stability, uni-
form stability, boundedness and uniformly boundedness of solutions of a certain class
of second-order nonlinear vector differential equations using the second method of
Lyapunov. By constructing a suitable complete Lyapunov function, which serves as
a basic tool, we establish the properties mentioned above and thereby improve and
complement some known results found in the literature. Lastly, the correctness of our
main results is justified by the examples given.
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1 Introduction

In this paper, we consider the following second order nonlinear vector differential
equation:

Ẍ + F(X , Ẋ)Ẋ + H(X) = P(t, X , Ẋ), (1.1)

or its equivalent system:

Ẋ = Y , Ẏ = −F(X ,Y )Y − H(X) + P(t, X ,Y ), (1.2)

where X ,Y : R+ → R
n, R

+ = [0,∞); H : Rn → R
n ; P : R+ × R

n × R
n → R

n ;
F is an n × n continuous symmetric positive definite matrix function dependent on
the arguments displayed explicitly and the dots indicate differentiation with respect
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to variable t . It is assumed that both H and P are continuous with respect to their
variables. Furthermore, the existence and uniqueness of the solutions of Eq. (1.1) are
assumed. The Jacobian matrix JH (X) of H(X) is given by

JH (X) =
( ∂hi
∂x j

)
,

where (i, j = 1, 2, ..., n); (x1, x2, ..., xn) and (h1, h2, ..., hn) represent the compo-
nents of X and H respectively.We also assumed throughout this paper that the Jacobian
matrix JH (X) exists and is continuous. The symbol 〈X ,Y 〉 = ∑n

i=1 xi yi is used to
denote the usual scalar product of any two vectors X ,Y ∈ R

n .

The study of qualitative behaviour of solutions of second order scalar linear and
nonlinear differential equations have been studied bymany authors in the literature due
to their applications in many fields of science and technology such as biology, physics,
chemistry, control theory, economy, communication network, financial mathematics,
medicine and mechanics among many other fields. To study the qualitative behaviour
of solutions of differential equations, the second method of Lyapunov has proven to
be an effective method among other methods available. This method, involves the
construction of a suitable functional known as Lyapunov function. Unfortunately, to
construct a good lyapunov function especially for nonlinear differential equations
remains a difficult task. For further studies on the subject of qualitative behaviour of
solutions of differential equations, interested reader(s) may look at papers of Abou-El-
Ela and Sadek [1, 2], Adeyanju [5], Adeyanju and Adams [6], Ademola [4], Ademola
et al. [3], Ahmad and Rama [7], Alaba andOgundare [8], Awrejcewicz [9], Baliki [10],
Cartwright [13], Chicone [14], Ezeilo [15–17], Grigoryan [18], Hale [19], Jordan [20],
Loud [21], Ogundare et al. [22], Omeike et al. [23–25], Reissig et al. [27], Sadek [28],
Smith [29], Tejumola [30–32], Tunc [35, 36], Tunc andMohammed [33, 38, 39], Tunc
and Tunc [40], Yoshizawa [41] and Zainab [42].
Ezeilo [16] used the well-known direct method of Lyapunov to examine the conver-
gence of solutions of a certain second order differential equation similar to (1.1) with
F(X , Ẋ) ≡ C , C being a real constant n × n matrix and H(X) = G(X). His result
was an extension of the convergence result obtained by Loud [21] for the second order
scalar differential equation:

ẍ + cẋ + g(x) = p(t),

where c is a positive constant.
Also worthy of mentioning is the work of Tejumola [31], who considered a certain
second order matrix differential equation of the form:

Ẍ + AẊ + H(X) = P(t, X , Ẋ),

A being a constant n×n symmetricmatrix, X , H(X), P are n×n continuousmatrices.
He discussed three different properties of this differential equation which are: stability
of the trivial solution when H(0) = 0 and P ≡ 0, the ultimate boundedness of all
solutions and the existence of periodic solutions. Adeyanju [5] proved some results
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on the limiting regime in the sense of Demidovic for a certain class of second order
vector differential equations similar to Eq. (1.1) with F(X , Ẋ) being replaced by an
n × n symmetric, positive definite constant matrix A.
Earlier,Omeike et al. [23] established someconditions for the boundedness of solutions
of Eq. (1.1) by using an incomplete Lyapunov function supplemented with a signum
function.
The above results of Omeike et al. [23] and other papers mentioned above serve as
a motivation for this work. Our goal is to rather use a complete Lyapunov function
to study the asymptotic stability of the trivial solution(which was not considered by
Omeike et al. [23]) and boundedness of all solutions of the Eq. (1.1) or system (1.2)
with simpler conditions.

2 Preliminary results

The following lemmas are very important for the proof of the three theorems contained
in this paper.

Lemma 2.1 Let A be a real symmetric n × n matrix and

0 < δa ≤ λi (A) ≤ �a, (i = 1, 2, ..., n),

where δa and �a are respectively the least and greatest eigenvalues of the matrix A.
Then, for any X ∈ R

n we have,

�a‖X‖2 ≥ 〈AX , X〉 ≥ δa‖X‖2.

Proof See [2, 11, 33]. ��
Lemma 2.2 Let H(X)be a continuously differentiable vector function with H(0) = 0.
Then,

(i)

〈H(X), X〉 =
∫ 1

0
XT JH (σ X)Xdσ,

(ii)

d

dt

∫ 1

0
〈H(σ X), X〉dσ = 〈H(X),Y 〉.

Proof See [2, 15, 34]. ��
Lemma 2.3 [19] Suppose f (0) = 0. Let V be a continuous functional defined on
CH = C with V (0) = 0 and let u(s) be a function, non-negative and continuous for
0 ≤ s < ∞, u(s) → ∞ as s → ∞ with u(0) = 0. If for all ϕ ∈ C, u(|φ(0)|) ≤
V (ϕ), V (ϕ) ≥ 0, V̇ (ϕ) ≤ 0,then the zero solution of ẋ = f (xt ) is stable.
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If we define Z = {ϕ ∈ CH : V̇ (ϕ) = 0}, then the zero solution of ẋ = f (xt )is
asymptotically stable, provided that the largest invariant set in Z is Q = {0}.
Definition 2.4 [12, 37]A continuous function W : Rn → R

+ withW (0) = 0,W (s) >

0 if s > 0, andW strictly increasing is a wedge.

Definition 2.5 [12, 37] Let D be an open set in R
n with 0 ∈ D. A function V :

[0,∞)×D → [0,∞) is called positive definite if V (t, 0) = 0 and if there is a wedge
W1 with V (t, x) ≥ W1(|x |), and is called a decrescent function if there is a wedge
W2 with V (t, x) ≤ W2(|x |).
Theorem 2.6 [12, 37] If there is a Lyapunov function V for the Eq. (1.1) and wedges
satisfying:

(i) W1(|φ(0)|) ≤ V (t, φ) ≤ W2(‖ φ ‖), (where W1(r) and W2(r) are wedges),
(ii) V ′(t, φ) ≤ 0,

then the zero solution of (1.1) is uniformly stable.

Theorem 2.7 [37, 42] Suppose that there exists a continuous Lyapunov function
V (t, φ)defined for allt ∈ R

+ and φ ∈ S∗,which satisfies the following conditions:

(i) a(|φ(0)|) ≤ V (t, φ) ≤ b1(|φ(0)|) + b2(‖ φ ‖), where a(r), b1(r), b2(r) ∈ C I
(CI denotes the set of continuous increasing functions) and are positive for r > H
and a(r) − b2(r) → ∞ as r → ∞,

(ii) V ′(t, φ) ≤ 0,

then the solutions of (1.1) is uniformly bounded.

3 Basic assumptions

In this section, we give the basic assumptions for the main results.
Assumptions
Suppose the following assumptions hold:

(T1) JH (X) and F(X ,Y ) are symmetric, positive definite and their eigenvalues
λi (JH (X)) and λi (F(X ,Y )) respectively satisfy

δh ≤ λi (JH (X)) ≤ �h, for all X ∈ R
n, (3.1)

α − ε ≤ λi (F(X ,Y )) ≤ α, for all X ,Y ∈ R
n, (3.2)

where δh , α, ε and �h are positive constants and H(0) = 0, H(X) �= 0
(whenever X �= 0), such that

δ ≥ α + ε

α − ε
> 1.
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(T2) There exist a positive finite constant K2 and a continuous function θ(t) such that
vector P(t, X ,Y ) satisfies:

‖ P(t, X ,Y ) ‖≤ θ(t){1 + (‖X‖ + ‖Y‖)}, (3.3)

where
∫ t
0 θ(s)ds ≤ K2 < ∞ for all t ≥ 0.

4 Main results

Here are the main results of the paper. Let

P(t, X ,Y ) ≡ 0,

then we have the following theorem.

Theorem 4.1 Suppose the conditions stated under the basic assumption (T1) above
are satisfied, then the zero solution of the Eq. (1.1) or system (1.2) is uniformly stable
and asymptotically stable.

Proof: We begin by defining a continuously differentiable function V (t) =
V (X(t),Y (t)) by

2V (t) =‖ αX + Y ‖2 +2(δ + 1)
∫ 1

0
〈H(σ1X), X〉dσ1 + δ ‖ Y ‖2, (4.1)

α and δ are as defined above. Without doubt, V (0, 0) = 0. By Lemma 2.1 and
Lemma 2.2 we have

2V (t) ≥ δh(δ + 1) ‖ X ‖2 +δ ‖ Y ‖2
≥ δ1(‖ X ‖2 + ‖ Y ‖2),

where δ1 = min{δ, δh(δ + 1)}.
Similarly, using Lemma 2.1 and Lemma 2.2, the following is evident

2V (t) ≤ (
(�h(δ + 1) + 2α2) ‖ X ‖2 +(δ + 2) ‖ Y ‖2

≤ δ2(‖ X ‖2 + ‖ Y ‖2),

where δ2 = max{((�h(δ + 1) + 2α2
)
, (δ + 2)}. It follows that

δ1(‖ X ‖2 + ‖ Y ‖2) ≤ 2V (t) ≤ δ2(‖ X ‖2 + ‖ Y ‖2). (4.2)
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The time derivative of the function V (t) along the solution path of the equation being
studied is given by

d

dt
V (t) = V̇ (t) = −α〈X , H(X)〉 − (δ + 1)〈Y , F(X ,Y )Y 〉

+α〈Y ,Y 〉 + α
(
α I − F(X ,Y )

)
〈X ,Y 〉,

where I is an n × n identity matrix. The above derivative can be written as

V̇ (t) = −U1 −U2, (4.3)

where

U1 = α

2
〈X , H〉 − α〈Y ,Y 〉 + (δ + 1)

2
〈Y , F(X ,Y )Y 〉,

and

U2 = α

2
〈X , H〉 + (δ + 1)

2
〈Y , F(X ,Y )Y 〉 + α〈X , (F(X ,Y ) − α I )Y 〉.

But

〈X , (F(X ,Y ) − α I )Y 〉 = 1

2
‖ K1(F − α I )Y + K−1

1 X ‖2 − 1

2K 2
1

‖ X ‖2

− K 2
1

2
(F − α I )2 ‖ Y ‖2

≥ − 1

2K 2
1

‖ X ‖2 −ε2K 2
1

2
‖ Y ‖2 .

Also from Lemma 2.2, we have

〈X , H〉 ≥ δh ‖ X ‖2 .

Hence,

U1 ≥ 1

2
αδh ‖ X ‖2 +1

2

(
(δ + 1)(α − ε) − 2α

)
‖ Y ‖2

≥ δ3{‖ X ‖2 + ‖ Y ‖2},

where δ3 = 1
2 min{αδh; (δ + 1)(α − ε) − 2α}.

Similarly,

U2 ≥ α

2
(δh − K−2

1 ) ‖ X ‖2 +1

2

(
(δ + 1)(α − ε) − αε2K 2

1

)
‖ Y ‖2,
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let K 2
1 = 1

2 min
(

1
δh

,
(α−ε)(δ+1)

αε2

)
, then

U2 ≥ 0.

Thus,

V̇ (t) ≤ −δ3{‖ X ‖2 + ‖ Y ‖2} ≤ 0.

The above inequality shows that the derivative with respect to t of the Lyapunov
function V (t) along the solution path of Eq. (1.1) is negative semidefinite. Thus, we
conclude by Theorem 3 that the zero solution of Eq. (1.1) is stable and also uniformly
stable.

Next is to show that the zero solution is asymptotically stable. Define

W = W (X ,Y ) ≡ {(X ,Y ) : V̇ (X ,Y ) = 0}.

Applying the so-called LaSalle’s invariance principle, it follows that (X ,Y ) ∈ W
implies that X = 0 = Y . This shows that the largest invariant set contained in the set
W is (0, 0) ∈ W . We can therefore conclude by Lemma 3 that the zero solution of the
Eq. (1.1) is asymptotically stable and thereby conclude the proof of Theorem 4.1.

Our next theorem is on boundedness of solutions of equation (1.1). Let

P(t, X ,Y ) �= 0.

Theorem 4.2 If the assumptions (T1) and (T2) hold, then there exists a positive con-
stant D such that all the solutions of equation (1.1) satisfy the inequalities

‖ X ‖≤ D, ‖ Y ‖≤ D

as t → +∞.

Proof: Now that P(t, X ,Y ) �= 0, the time derivative of the Lyapunov function V (t)
used in the proof of Theorem 5 is given by

d

dt
V (t) = V̇ (t) ≤ −δ3{‖ X ‖2 + ‖ Y ‖2} + 〈αX + (δ + 1)Y , P(t, X ,Y )〉,

≤
(
α‖X‖ + (δ + 1)‖Y‖

)
×

(
θ(t) + θ(t)(‖X‖ + ‖Y‖)

)
,

≤ δ4

(
‖X‖ + ‖Y‖

)
×

(
θ(t) + θ(t)(‖X‖ + ‖Y‖

)
,

≤ δ4θ(t)
(
‖X‖ + ‖Y‖

)
+ δ4θ(t)

(
‖X‖2 + ‖Y‖2 + 2‖X‖‖Y‖

)
,

where δ4 = max{α; (δ + 1)}.
Applying the inequalities,

‖X‖ ≤ 1 + ‖X‖2, ‖Y‖ ≤ 1 + ‖Y‖2, 2‖X‖‖Y‖ ≤ ‖X‖2 + ‖Y‖2,
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and (4.2) to V̇ (t) above, we obtain

V̇ (t) ≤ 2δ4θ(t) + 6δ−1
1 δ4θ(t)V (t),

V̇ (t) ≤ δ5θ(t) + δ6θ(t)V (t), (4.4)

where δ5 = 2δ4 and δ6 = 6δ−1
1 δ4.

Integrating both sides of (4.4) from 0 to t(t ≥ 0), yields

V (t) − V (0) ≤ δ5

∫ t

0
θ(s)ds + δ6

∫ t

0
V (s)θ(s)ds,

V (t) ≤ V (0) + δ5K + δ6

∫ t

0
V (s)θ(s)ds.

Setting δ7 = V (0) + δ5K , then we get

V (t) ≤ δ7 + δ6

∫ t

0
V (s)θ(s)ds.

Applying Gronwall-Bellman inequality [26] to the above inequality produces

V (t) ≤ δ7 exp
(
δ6

∫ t

0
θ(s)ds

)
= D1. (4.5)

From inequalities (4.5) and left hand side of (4.2) we can deduce that,

‖X(t)‖2 + ‖Y (t)‖2 ≤ 2δ−1D1 = D2. (4.6)

It then follows from (4.6) that,

‖X(t)‖ ≤ D, and ‖Y (t)‖ ≤ D. (4.7)

This completes the proof of Theorem 4.2 and the boundedness of solutions of Eq.
(1.1) or system (1.2) is established.

Corollary 4.3 Under the assumptions of Theorem 4.2, all the solutions of equation
(1.1) are uniformly bounded.

Theorem 4.4 Under the assumptions of Theorem 4.2 but with modification that

‖ P(t, X ,Y ) ‖≤ θ(t),

θ(t) ∈ L1[0,∞) for all t ∈ R
+; L1(0,∞) is the space of Lebesgue integrable func-

tions. Then there exists a positive constant D∗ such that all the solutions of equation
(1.1) ultimately satisfy the inequalities

‖ X ‖≤ D∗ and ‖ Y ‖≤ D∗

as t → +∞.
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Proof From the proof of Theorem 4.2, we have

d

dt
V (t) ≤ −δ3{‖ X ‖2 + ‖ Y ‖2} + 〈αX + (δ + 1)Y , P(t, X ,Y )〉

≤ θ(t)
(
α‖X‖ + (1 + δ)‖Y‖)

≤ δ4θ(t)
(‖X‖ + ‖Y‖).

But,

‖X‖ + ‖Y‖ ≤ 2
1
2
√

‖ X ‖2 + ‖ Y ‖2.

On applying this inequality and the left hand side of (4.2), we have

d

dt
V (t) ≤ 2

3
2 δ4δ

− 1
2

1 θ(t)V (t)
1
2

d

dt
V (t) ≤ 2

3
2 δ4δ

− 1
2

1 θ(t)V (t).

Integrating both sides of the above inequality from 0 to t(t > 0), and letting

δ8 = 2
3
2 δ4δ

− 1
2

1 , gives

V (t) ≤ V (0) exp
(
δ8

∫ t

0
θ(s)ds

)
≤ D2, (4.8)

where D2 is a positive constant. From inequalities (4.8) and the left hand side of
(4.2) it is clear that,

‖X(t)‖2 + ‖Y (t)‖2 ≤ 2δ−1
1 D2 = D2∗. (4.9)

It follows from (4.9) that,

‖X(t)‖ ≤ D∗ and ‖Y (t)‖ ≤ D∗. (4.10)

This ends the proof of the theorem. ��

Remark 4.5 This result was established without using the popular Gronwall-Bellman
inequality.

Remark 4.6 We have been able to establish the boundedness results of Eq. (1.1) or
system (1.2) without using the signum function as in the case of the boundedness
results of Omeike et al. [23] obtained for this same equation.
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5 Examples

Example 5.1 We consider the following special cases of system (1.2) for n = 2 when
P(t, X ,Y ) ≡ 0 and when P(t, X ,Y ) �= 0.

Let

F(X ,Y ) =
[
2 + 1

1+x21+y21
1

1 2 + 1
1+x22+y22

]
and H(X) =

[
4x1 + sin x1
2x2 + sin x2

]
.

After some calculations we obtain the following as the eigenvalues of matrix F(X ,Y ).

λ1 = 4 + 1

1 + x21 + y21
+ 1

1 + x22 + y22
+

√( 1

1 + x21 + y21
+ 1

1 + x22 + y22

)2 + 4,

and

λ1 = 4 + 1

1 + x21 + y21
+ 1

1 + x22 + y22
−

√( 1

1 + x21 + y21
+ 1

1 + x22 + y22

)2 + 4,

so that,
2 ≤ λi (F(X ,Y )) ≤ 6 + 2

√
2, (i = 1, 2, 3...).

The Jacobian matrix of vector H(X) is given by

JH (X) =
[
4 + cos x1 0

0 2 + cos x2

]
.

Then, we obtain the bounds for the eigenvalues of this matrix as 1 ≤ λi (JH (X)) ≤
5, (i = 1, 2, 3, ...).
In addition, let

P(t, X ,Y ) = (1 + t)−2
[
1 + x1 + y1
1 + x2 + y2

]
.

Then,

‖ P(t, X ,Y ) ‖ ≤ √
5(1 + t)−2(1+ ‖ X ‖ + ‖ Y ‖)

≤ θ(t)(1+ ‖ X ‖ + ‖ Y ‖),

where

∫ ∞

0
θ(s)ds = √

5
∫ ∞

0
(1 + s)−2ds = √

5.
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Fig. 1 Shows the stability of the trivial solution of the example constructed.

Fig. 2 Shows the boundedness of solutions of example constructed.

Therefore, all the conditions of Theorem 4.1 and Theorem 4.2 are satisfied.

Example 5.2 Suppose in the Example 5.1 above, we have

P(t, X ,Y ) = (1 + t)−2

[
1

3+sin x1+cos y1
1

3+sin x2+cos y2

]
.

Then,

‖ P(t, X ,Y ) ‖≤ √
2(1 + t)−2 = θ(t),∫ ∞

0
θ(s)ds = √

2
∫ ∞

0

ds

(1 + s)2
= √

2.

Again, all the conditions of Theorem 4.4 are satisfied.

Figure 1 below shows that the trivial solution of the example constructed is stable,
asymptotically stable and uniformly stable when P(t, X ,Y ) ≡ 0.

Figure 2 shows the boundedness of solutions of the example constructed when
P(t, X ,Y ) �= 0.
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6 Conclusion

In this paper, a certain second order vector differential equation is considered. By
constructing a new complete Lyapunov function, we established results on the sta-
bility, asymptotic stability, uniform stability, boundedness and uniform boundedness
of solutions of the equation considered. The results of this paper complement and
improve on some established results found in the literature. Examples are given to
illustrate the correctness of main results.
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