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Abstract

A number of higher order Newton-like methods (i.e. the methods requiring both
function and derivative evaluations) are available in literature for multiple zeros of
a nonlinear function. However, higher order Traub-Steffensen-like methods (i.e. the
methods requiring only function evaluations) for computing multiple zeros are rare
in literature. Traub-Steffensen-like iterations are important in the circumstances when
derivatives are complicated to evaluate or expensive to compute. Motivated by this fact,
here we present an efficient and rapid-converging Traub-Steffensen-like algorithm to
locate multiple zeros. The method achieves eighth order convergence by using only
four function evaluations per iteration, therefore, this convergence rate is optimal.
Performance is demonstrated by applying the method on different problems including
some real life models. The computed results are compared with that of existing opti-
mal eighth-order Newton-like techniques to reveal the computational efficiency of the
new approach.
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1 Introduction

Locating a zero of a nonlinear function is very significant problem in many areas such
as Physics, Chemistry, Mathematical Biology and also in Engineering science to name
a few [2, 3, 14, 20]. This is the case since problems from these areas are reduced to
finding a zero. In general, closed form solutions can not be obtained so researchers use
iterative methods for approximating the solution. In this work, we develop derivative-
free methods to compute a multiple root (say, *) with multiplicity m, that means,
fOE*)=0,k=0,1,2,....,m —Land f (*) # 0, of the equation f(r) = 0.

A plethora of higher order methods, either independent or dependent on the New-
ton’s method [17]

f (@)

@)
have been proposed in literature, see [1,4-6, 9, 11-13, 16, 19, 23, 24]. Such methods
require the evaluation of derivatives of either first or first and second order both of
the function f. However, higher order derivative-free methods to handle the case of
multiple roots are yet to be investigated. The derivative-free methods are important
in the situations when derivative f’ is complicated to evaluate or is expensive to
obtain. The most basic derivative-free method is the well-known Traub-Steffensen
method [20] which actually replaces f” in the classical Newton’s method by a suitable
approximation based on finite difference formula,

fis1 =t —m =0,1,2,... (1)

fi+aft) — f

) s
2 f () = f“(w;, 1),

1) ~

where w; = t; + « f(t;) and ¢ € R\{0}. In this way the modified Newton’s method
(1) can be transformed to Traub-Steffensen iterative scheme

S )

mfé(wi»ti).

@)

liv1 =1 —

The Traub-Steffensen iteration (2) is indeed a noticeable improvement of Newton’s
iteration for the reason that it preserves the order of convergence without requiring
any derivative computation.

Very recently, Sharma et al. in [ 18] have developed two-point derivative-free (Traub-
Steffensen-like) methods of fourth order convergence to compute the multiple zeros.
These methods require three function evaluations per iteration and, therefore, accord-
ing to Kung-Traub hypothesis these possess optimal convergence [15]. According to
this hypothesis multi-point methods without memory based on n function evaluations
have optimal order 2"~ !. Such methods are usually known as optimal methods. In this
work our aim is to develop efficient higher order iterative method that satisfies Kung-
Traub conjecture. Consequently, we introduce a derivative-free eighth order scheme
that requires four new information of the function f per iteration, and hence the
method has optimal convergence of eighth order in the sense of Kung-Traub hypoth-
esis. The iterative scheme uses the Traub-Steffensen iteration (2) in the first step and
Traub-Steffensen-like iterations in the second and third steps.
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Rest of the paper is precisely as follows. In Sect. 2, the scheme of new itera-
tive method is formulated and convergence properties for some particular cases are
explored. In Sect. 3, the main result showing eighth order of convergence is presented.
To test the applicability and efficiency of the method some numerical experiments are
performed in Sect. 4. A comparison with the existing methods is also performed in
this section. Finally, a conclusion of the main points is given in Sect. 5.

2 Formulation of scheme

Higher order Newton-like methods have been developed using various approaches
by the researchers around the world. Some useful techniques are: Composition
approach, Sampling approach, Interpolation approach, Geometrical approach, Ado-
mian approach and Weight-function approach. Of these the Weight-function approach
has been used extensively in recent times, see, for example [4-6, 11, 12, 23, 24] and
references cited therein. In the present work of computing a multiple root with mul-
tiplicity m > 1, we also use this technique. Thus, consider the following three-step

iterative scheme:
_ S

Yi =i~ mfé(wi-,ti)’

ti
zi = yi — G(u;, vi)féf(fvi),ti)’ @
tiv1 = zi —siHu;, Ui»ri)%’

where the functions G : C> — Cand H : C* — C are holomorphic in a neighborhood

of (0, 0) and (0, 0, 0), respectively with u; = m/% vi=" ffﬁ(';jf), o= m/%

si = % Notice that this is a three-step scheme with first step as the Traub-

Steffensen iteration (2) and next two steps as the Traub-Steffensen-like iterations. The
second and third steps are weighted by the factors G and H. Hence, these steps are
also called weighted Traub-Steffensen steps and the factors G and H are called weight
factors or weight functions.

In what follows, we shall explore certain conditions under which the scheme (3)
achieves convergence of order as high as possible. For simplicity the results are pre-
sented separately for different m. This strategy will also help us to construct the
generalized iterative scheme. Firstly, for the case m = 2 we prove the following
theorem:

Theorem 1 Let f : C — C be an analytic function in a region enclosing a multiple
zero t* with multiplicity 2. Assume that initial guess to is sufficiently close to t*, then
the local order of convergence of scheme (3) is at least 8, provided that Goo = O,
Gi0=3,Go1 =0,G2 =8 G11 =—1 Go2 =0, Hyoo = 3, Hioo =4, Hoio = —1,
Hijo = 1, Ha10 = 2 — 2Ha00, Ho2o = 0, Hio0 = —2, Ha0 = 4 + 2Hap0, H320 =
=96 —2H300 —2H310, Ho11 = 5—2Hoo1, Ho21 = —6+2Hoo1, Hi21 = 16 —2H01 —
2Hy11, max {|Hoo1l, |Hio1|, [Hii1ls [Haool, [Haot |, [Haail, [Hazil, [H3ool, [H3tol} <

k+j .
—32k3ij(ui’Ui)|(ul-:0,v,-:()); 0 < k,j < 2 and Hye =

H(ui, viy ri)|;=0,0,=0.r,=0), for0 <a <3,0<b <2 0<c=<1

oo, where Gy;j
aa+h+c
uadvbare
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Proof Let the error at i-th iteration be ¢; = #; — t*. Using the Taylor’s expansion of
£(t;) about r* and taking into account that f(r*) = 0, f/(¢*) = 0 and f® (t*) #£ 0,
we have

f‘”(r*) 2

(1+A161+A26 +Aze} +AgeAsed + Agel+Aze] +Aged +- - ),
4)

f)=

21 f(2+n) t*)
= Tl FOe forn e N.

Similarly we have the Taylor’s expansion of f(w;) about ¢*

where A,

f<2>( ) o
(14 Aqey, + Aze?, —|—A3e +A4e +A5e —|—A6e ),

(5)
where e, = w; —t* = ¢; + M e (14 Arej + Ase? + Aze} + Agel + Ased +

Age + Are] + )
Then the first step of (3) yields

fw;) =

ey = Yi— t
B 1<af<2>(z*)
) 2
+ 124} — 1643)e} + ((af<2>(z N3 =200 fP (%) A3 + 7243

" Al)e,2 (@) 8 f O A

+ 64a fP (%) Ay — 10A1 ((@fP (%)) 4+ 1642) + 96A3)e}

1
+ ﬁ( (@fPN* + 144a f@ (1) AT — 43247

— 48AT((af@ (1%))? — 2845) — 16(a f P (1%))? Ay — 51243
+4A1 (3 fP(1%))? — 960 f P (1*) Ay — 224A3) + 448a f P (1) A5

3
+51244); + Y el + 0(e)). (6)

n=1

where ¢, = ¢, (@, A1, A2, A3z, A4, As, As, A7),n =1, 2, 3. Here, the expressions of
¢1, ¢ and ¢3 are not being produced explicitly since they are very lengthy.
Expanding f(y;) about ¢*, it follows that

f2a o2
2!

fOi) = 2 (14 Arey, + Arel, + Aze;, + Agey, + Ase) +--+). (7)
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Using (4), (5) and (7) in u; and v;, some simple calculations yield

1 @ (%) 1 . .
Ui = 5(O‘fT + A1>e,~ — 1o (@@ = 60 f DAL+ 16(47 - 42)e]

1
+ a((ozf(z) (") — 220 f P (1) AT + 4(29A7 + 14 f P (1) A3)
—2A1(3(afP*)* + 104A4;3) + 96A3)e;

1
+ ﬁ(212af<2>(r*)A§ —800AT + 242 (=7(a f P (1%))* + 1040A,)
+ 2413 fP ")} — 2320 fP (1) A,
—576A3) — (@ fP*)* + 8(a f P (1*)* Az + 640A3

4
— 4160 f P (1*) A3 — 502A4))el + > el + 0(e)), (8)
n=1
and
(2) (4%
o t 3 1
vi=1+ %ei(l +3Are + Z(af(z)(t*)Al + 847)e?

1
+ E(305 FP AT+ 12a f P (1) A + 40A3) e}

— 5 (@@t 240 O a4 — (@ @A,
+12(afP (1) A3 +240)) e}

_ 61_4((af(2) ()2AT — 4o fP () Ay (@ f P (%) Ay + 2243)
—8(afP A3+ (@fP ) A

+5a fP (%) Ay +7As))e] + 0(65’))- ©

where ¥, = ¥y, (a, A1, A2, A3, A4, As, Ag, A7),n =1,2,3,4.
Developing G (u;, v;) by Taylor formula in the neighborhood of origin (0, 0)

1 1
G(uj, vi) = Goo + uiGio + viGo1 + EM%GZO +uiv;Gry + EvizGoz. (10)

By using (4)-(10) in the second step of (3), we obtain that
€z =2 — r*
= - Z(Goz +2Goo +2Go1)e; + E(Olf ()

(4 +2Go —2Go1 — 3G —2G1o —2G11)
+2(442Go0 +2Go1 + Goa —2G 10 — 2G11)A1)e}
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1
- 6—4((af<2> (t*))2(4 + 2Goo — 2Go1 + Goa — 4G

+ Gao) +4a fP (1) (=8 — 4Goo + 2Goa + G1o + 3G 11 + G A

+4(12 4+ 6Gop + 6Go1 +3Go2 — 10G 1o

—10G1 + Gzo)A% —16(4 4+ 2Ggo +2Go1 + Goo —2G 19 — 2G11)A2)el~3
5

8+ 0, (11)

n=1

where 8, = 6,(a, A1, Az, Az, A4, As, Ag, A7, Goo, G0, Got, G20, G11. Gz), n =
1,2,3,4,5.

It is clear from the above equation (11) that we will obtain at least fourth order
convergence if we set coefficients of ¢;, 31'2 and e? simultaneously equal to zero. Then
solving the resulting equations, one gets

Goo=0, Gio=3, Go1 =0, Gy =8, Gj1=-1, Gpp=0. (12)

By using (12), the error equation (11) is given by

Q) (4
e, = 16( fz(t) 1)((af(2>(r*))2+3af(2>(z*)A1+11A%—4A2)e;‘
+ ane;'+“ +0(e)). (13)
n=1

where &, = &§,(«, A1, Az, A3z, A4, As, Ag), n = 1,2, 3, 4. Expansion of f(z;) about
t* leads us to the expression

Q) /4%
e =108

(1+A1e21+A2e —‘,—Age +A4e 4. (14)

Using (4), (7) and (14), we obtain

1
rp = g((af@ () +3a fP (") A1 + 11A7 — 4A5)e?
1
— 3—2(2(a FP)? + 4o fP*)A? 4 14843

— 160 f@ (") Ay — A1 (S f P (1*))? + 176A;) + 3243)e}

5
+) el + 0. (15)

n=1
Where ;”l = {n(a5 A]a A25 A37 A47 A57 A67 A7)9 n= 15 27 35 47 5
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and

( af@ )
Si =
16

- A1>((ozf(2) ()2 4 3a f Q)AL + 1147 — 445)¢]

+ Z xnel T+ 0(e)), (16)

n=1

where x, = xu(a, A1, A2, A3, Ag, As, Ag),n =1,2,3,4,5.
Developing by Taylor formula the weight function H (u;, v;, r;) in the neighborhood
of origin (0, 0, 0), we have

H(u;,vi, r;)

1 1
= Hooo + ui Hipo + Ui 2 Hyoo + gl ? Haoo

1 1
+ v (How +uiHyo + SUi 2Haio + gl H310>

1 1 1
(2H02o + —uiHixo + yhat 2 Hano + Y szo)

1
+ 7 (Hom +u;Hyo1 + 2u,2H201

1 1 1 1
+ v; (Hou +u;Hyy + Ui qu) + v; <2H021 + zu;iHip) + 7l H221>)

2
(17)
By using (4)-(17) in third step of (3), we have

eiy1 =tipp —t*

a 2) t*
64( f 2( ) Al)((af(z) ()% + 30 fP (") Ay + 1142 — 4A,)
4
(4 — 2Hooo — 2Hoio — Hoxo)e} + Z ﬂn€?+4 +0(e)), (18)
n=1

where 1, = nu(a, A1, A2, A3, A4, As, A, Hape), n = 1,2,3 and 0 < a < 3,
0<b<2,0<c<l
It is clear from the above equation (18) that we will obtain at least eighth order

convergence if we set coefficients of e;‘, eiS, el.6 and 61'7 simultaneously equal to zero.

Then solving the resulting equations, we get
Hooo = 3, Hioo =4, Hoio =—1, Hijo =1,
H10 =2 — 2Hy00, Hpoo =0, Hip0 = —2, Hyo =4+ 2Hy,
H3z0 = —96 — 2H300 — 2H310, Ho11 = 5 — 2Ho1,
Hyp = —6+2Hy1, Hi1 =16 —2Hy01 — 2H) 1. (19)
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As a result the error equation is given by

1 (af@)(r*) N

G = T o150\ 2 A (@FP N +3af D0 A + 1147 - 445)
x (8af<2>(r*)(48 — 132H;01 — 66H11 + 42H)01 + 42H)y
+ 21 Hay — 4H300 — 2H310) A}
+ 12(—884 + 22 Hoo1 + 22Ho11 + 11Ho1) AT + 3AT((a f@ (1%))?
(176 + 176 Hoo1 — 272Hy01 — 136 Hi1,
+ 16 Hyo + 54 Ha01 + 5S4 Ha11 + 27 Hay — 16 H300 — 8 H310)
— 16(—=168 + 2H01 + 2Ha11 + H21)A2)
+3A1 (@ f P (%)) (—8 + 48 Hoo1 — 80H 01 — 40H 1
+ 16Hy00 + 14Ha01 + 14Ho 1 + THy1 — 8H3op
— 4Hz10) + 160 f P (t*)(8 Hyo1 + 4H111 — 2Hao1 — 2Hoy
— Ha1) Az — 256A3) + (o f @ (1%))* (48 Hoor
—48Hy01 — 24H 11 + 12Ha00 + 6 Ha01 + 6 H211 + 3Ha2)
— 4H300 — 2H310) — 3(ar f P (1%))2(48
+ 16Hoo1 — 16Hy01 — 8Hi11 + 2Hao1 + 2Hay + Hap) Az — 19243
- 96af<2>(t*)A3))e§ +0().
Thus, the theorem is proved. O

Theorem 2 Using the assumption and notation of Theorem 1, the convergence order
of (3) for the case m = 3isatleast8, if Goo = 0, Go1 = 0, Gog = 12, G11 = 3 -G,
Go2 = 0, Horo = 3 + Gio — 2Hooo, Hi10 = 3 +2G10 — 2H100, Hoz20 = 2Hooo —
2G10, Hi20 = 6 —4G10 + 2Hj00, Haoo = 12 — 2Hp00 — 2Hz10, H3o = —144 —
2H300 — 2H310, Hyp1 = 6 — 2Hoo1 — 2Ho11, Hip1 = 24 — 2Hy91 — 2H111, wherein
max {|G1ol, | Hoool, [Hoo1l, [Hoitl, | Hzo0l, [Ha01l, |H210l, |H211l, [H221 ]} < 00.

Proof By Taylor’s expansion of f(#;) about t* taking into account that f(*) = 0,
@ =0, fA@e*) =0and £ (*) £ 0, we have

(3) (4%
ran =T

1+ Bie;+Bye? 4 Bye} + Byel + Bsel + Bge®+ Bre! + Bgeb +- - ),
(20)
3' f('H—n) (I*)
where B (3+n)' W forn € N.
Also Taylor’s expansion of f(wy) about t* yields

e 3
31

flw;) = (1+Blew +Bze +B3e +B4e +Bse +B6e T ),

21
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3) (4%
where e, = w; — 1* = ¢; + %e?(l + Bie; + Bre? + Bse} + Bae! + Bse} +
BGei6 + B7el.7 + .- )
Then the first step of (3) yields

ey, =yi—t*

z?e + 2 (3 @) — 8B} +12By)e}

+ 2—(163? +3B1 (2a f (t*) — 13By) + 27B3)e}

— %(1283 + 9B (a fP(t*) — 48By) + 324B1 By + 3((a f P (1))?
— 180 f ) (1*) By + 60B3 — 72Bs))e}

+ R(sma + 6B} (T f O (%) — 368B,) + 1728 B B;

=3B (1 f D (") + 42 f P (*) By

— 630B2 + 414B4) + 81(3( f P (%) — 6B,) B + 1035))e,.6

2
+ > grel O+ o), (22)

n=1

where ¢, = ¢/ («, Bi, Ba, B3, B4, Bs, Bs, B7),n = 1, 2. Also the expansion of f (y;)
about t* is

(3)*
f()_f ()z

(l+31€}l+32€ +B3e +B4e +Bse +0). (23)

Then from (20), (21) and (23), it follows that

B 1 3 2 2 1
ui=Sei+ E(3o¢f< )(t*) — 10B] + 12By)e} + >

(2333 + %Bl (3P ("o — 32B;) + 27B3)e}

(610B4+B1(27f(3)(t Ya — 1818B;) + 11888 B3

486

+9((fPtH)* - 15f(3)(t*)a32

+ 728 —72B4) )i + Z Unett 4 0@, (24)
n=1

where ¥, = ¥, (a, By, B2, B3, B4, Bs, Bs, B7),n =1,2,3,4
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and

f(3)(t*) o2 5 3 3
N (1+ SBiei + 3Bze + 8(af< )(t*) By + 36B3)e;

1
+ a(201 FOEBT +9a P (1*) By + 126By) e}

vi =14+ ——

2
+ 5—4(4af(3)(t*)Ble +9a f O (t*)B3 + 72Bs)e} + O(e?)). (25)
The Taylor formula of G (u;, v;) in the neighborhood of origin (0, 0) is given by

1 1
G(u;, v;) = Goo +u;Gio +v;Gor + Zulszo +uiv;Gy + EU?Goz (26)

By using (20)—(26) in the second step of (3), we obtain
e; =zi —t*
1 1
= — ¢ (2Goo +2Go1 + Goo)ei + _8(6 +2Goo +2Goi

+ Gy —2G19 — 2G11)Ble — ﬁ(2(24+ 8Goo + 8Go1

+ 4Gy — 12G19 — 12G 11 + Go) B} — 3(Olf(3)(l*)(2Goo -G
- 2(—3 + G10+G11)) +4(6+2Goo + 2Go1 +Go2 —2G19 — 2G11) By) e}

+ 25/ n+3 + 0(69) 27

where 8, = 8, («, B1, Ba, B3, Ba, Bs, B, B7, Goo, G0, Got, G20, G11, Go2), n =
1,2,3,4,5.

It is clear from the above equation (27) that we will obtain at least fourth order
convergence if we set coefficients of ¢;, el.2 and e? simultaneously equal to zero. Then
solving the resulting equations, one gets

Go1 = —2Goo, G20 =12, G131 =3 — Gro, Go2 =2Gop. (28)

By using (28), the error Eq. (27) is given by

B
e = —1((010 —6)a fP (") + 12B} — 6B,)e}

1 4 3
- 97—2(8803 + 12B2(a fO () (=21 + G19) — 120By)

+ 33 fO*))? (6 + Goo — G1o) + 60 f O (t*)(15 — 2G10) By + 72B3)

n 2163133)e + Zs’ 154 0(e), (29)

n=1
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where &, = &) (a, By, Ba, B3, B4, Bs, Bs, Goo, G10),n = 1, 2, 3. Expansion of f(z;)
about t* leads us to the expression

f(3)(t*) o2

fz) = 2 (14 Bies, + Byel + Bsel + Bael + Bse +--+).  (30)

Using (20), (23) and (30), we obtain

1
= E((Gm —6)afIt*) + 12B7 — 6By)e}
(@fP*))2Goo 148 B 2 3) % 2
— (= L 72B>) + =B
( 368, + — o1 1 f ()G +72B2) + = 3 %)

+ Zc/ 1o, 31)

where ¢, = ¢, (o, Bi, B2, B3, B4, Bs, Be, B7, Goo, Go), n = 1,2,3,4,5.

B
si= —1((610 —6)af3 ") + 12B} — 6By)e}
1
- %<238B B%(af@) (r)(—=16 + G10) — 82B,)
+ Z((af(3>(t*))2(6 + Goo — Gio) + 20 f D (%)

x (15— 2G10) By + 24B2) + 543133)4‘

+ Z xnel ™+ 0(e)), (32)

where x,, = x,(a, Bi, B2, B3, B4, Bs, Bs, Goo, Gio),n = 1,2,3,4.
Writing the Taylor expansion of weight function H (u;, v;, r;) in the neighborhood
of origin (0, 0, 0), we have

1 1
H(u;i, vi, ri) = Hooo + ui Hioo + S 2 Haoo + G

1 1
(Hom +u;Hyo + Ui 2Hr10 + gl H310>

1 1 1 1
+ v; (2H020 + zul H120 —+ 4I/tl H220 + Eul H320)

1
+ ri(Hom +u;Hio1 + Ui 2 Hyo1

—u; ? Haoo + vj

1
~|—vi(H011 +uiHyp + EMI-ZH211>

+o3(

1
Hyp1 + = u Hiz1 + Yt H221)) (33)

N =
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By using (20)-(33) in third step of (3), we have

eiy1 =tiy1 —1*
(af“) (t*)(G1oo — 6) + 12B] — 6B;)

4
(6 — 2Hooo — 2Howo — Hoo)e} + Y mel ™ + 0(e)), (34)

n=1

~ 34

Where n;l = n;l(av Bls BZs 337 B47 B59 B61 GOO! G101 Habc), n = 11 27 31 4' and O S
a<3,0<b<20<c<l
It is clear from the above equation (34) that we will obtain at least eighth order

convergence if we set coefficients of e , 15 e; and e simultaneously equal to zero.

Then solving the resulting equations, we get

Goo =0, Hoio =3+ Gio —2Hooo, Hito =3 +2G10 — 2H00,

Hoz0 = 2Hooo — 2G10, Hioo = 6 —4G10 + 2H100,

Hyoo = 12 — 2Ho0 — 2H210, H320 = —144 — 2H300 — 2H310,

Hoz1 = 6 — 2Hoo1 — 2Ho11, Hi21 = 24 — 2Hy01 — 2H) 1. (35)

As a result the error equation is given by

; — OEy(—-6+G 12B} — 6B
eit1 = 8748<( af ) (=6+ Go) + 2)

x (= 2(6Ha01 + 6Ha11 + 3Ha21 — 400) B}
- %B%(af“) (t*)(G10(120 — 2Hpo1 — 2Ha11 — Haot) + 6(24Hoor + 12Hon
+ 2Hy00 4+ 2Ho01 + Ho10 + 2Ha11 + Hyp — 228)) 4 6(—276 4 2Hooy
+ 2Hy11 + Hy1)Ba) + 3((e f (%)) 10(=6 + 2 Hoor + Hoi1) — 3(Hooo
+2(=9 + 2Hoo1 + Hoi))) — 60 f O (t*)(=15 + G0 + 2Hoo1 + Hoi1) B2 + 363)
+ 10881 Bs) )ef + O(¢)).

Thus, the theorem is proved. O

Below we state the theorems (without proof ) for the cases m = 4, 5, 6 as the proof
is similar to the above proved theorems.

Theorem 3 Using the assumption and notation of Theorem 1, the convergence order
of (3) for the case m = 4 is at least 8, if Go;1 = —Goo, G20 = 16, G11 = 4 — G,
G =0, Hy1o = 4+G10—2Hooo, Hozo = 2Hoo0—2G 10, Hi20 = 16—2H100—2Hi10,
Hyo = 16 — 2H00 — 2H310, H320 = —192 — 2H300 — 2H310, Ho21 = 8 — 2Hpo1 —
2Ho11, Hi21 = 32—2Hj01 —2Hj11. Moreover, the method satisfies the error equation
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1
= C,(13C?* -8C ( 2536 — 26 Hag) — 26 Ha11 — 13Han1)CY
048576 1(13C; 2D ( 201 11 221)CY

+ 8(2Ha01 + 2Ha11 4 Hap — 400)CIC, + 512C3

€i+1

64 @) % 8 9
- ?Cl(af )2 +2G10 — 2H100 — Hi10) — 24C3)>€,- + O(e}),

where max {|Giol, |Hiool, [Hiol, [Hao1], [Haiil, [Hoi |} < oo and Cp = G
f(4+n)(t*)
Wforn e N.

Theorem 4 Using the assumption and notation of Theorem 1, the convergence order
of (3) for the case m = 5 is at least 8, if Go1 = —2Go, G20 = 20, G11 = 5 — G,
G2 = 2Goo, Hopo = 10 — 2Hopoo — 2Ho10, Hi20 = 20 — 2Hy00 — 2H110, Hapo =
20 — 2Hz00 — 2H210, H320 = —240 — 2 H300 — 2H310, Ho21 = 10 —2Hoo1 — 2Hoxy,
Hi>1 =40 — 2Hyo1 — 2Hq11. The error equation for this case is given by

eis1 = (D1 (1D} — 5D2)((~1860 + 14 Hagy + 14Hay1 + THao1) D}

1
1562500
2 125 (5) %
— 5(—540 + 2Hy01 + 2Ha11 + Hx»1)Di Dy + ?(Olf S+ Gro

— 2Hogo — Holo) — 24D2) — 500D, D3))e§g +0@),

where max {|Gol, |Hoool, | Hotol, | Hoo1l, [H211l, |[H221l} < o0 and D, =

31 f(5+")(t*)
Sl 7O forn € N.

Theorem 5 Using the assumption and notation of Theorem 1, the convergence order of
(3)forthe casem = 6isatleast8,ifGog = 24, G11 = 6—G19, Gpo = —2(Goo+Gor),
Hyoo = 12— Hooo —2Ho10, H120 = 24—2H100 —2H110, H220 = 24—2H00 —2H>10,
Hzpo = —288 —2H300 — 2H310, Ho21 = 12 —2Hoo1 — 2Ho11, Hi21 = 48 —2Hj01 —
2Hj11. Moreover, the method satisfies the error equation

1
44789760
+ 6Hy11 + 3Hy) — 1036)E3 — 60(—696 + 2Hagy + 2Hay)

+ Hyo1) E} E> — 8640E) E3 — 8640ET E3) )ef + O(¢),

i1 = ((SE - 4E2)(4320.£ © (") 2Goo + Gor) +25(6 Haon

6! f(6+n)(t*)
where max {|Gool, |Gol, |Haot1l, [H211l, | H221|} < 00 and E, = G+l FO )

neNlN.

for

Remark 1 In order to prove the eighth order convergence of the method (3) we
can observe from the above results that the number of conditions on Gy; and
Hype are 6, 5, 4, 4, 3 and 12, 8, 7, 6, 6 respectively, corresponding to the cases
m =2, 3,4, 5, 6.1t has been seen that the conditions on Gy; and H,. are always
fixed (i.e. three and six, respectively) in number when m > 6. However, the error
equations differ from each other in the sense that the terms containing the parameter
o do not appear in the equations for m > 7. We shall prove this fact in next section.
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3 Main result

For the multiplicity m > 7, we prove the order of convergence of scheme (3) by the
following theorem:

Theorem6 Let f : C — C be an analytic function in a region enclosing a zero
t* with multiplicity m > 7. Further assume that initial guess ty is sufficiently close
to t*, then the local order of convergence of scheme (3) is at least 8, provided that
Gy =4m, Gi1 =m — Gio, Gz = —2(Goo + Gor), Hoxo = 2m — 2Hooo — 2Hoio,
Hizo = 4m — 2Hjo0 — 2H110, Hao = 4m — 2Ho0 — 2Hz10, H3pp = —48m —
2H300 — 2H310, Hpo1 = 2m — 2Hoo1 — 2Ho11, Hi21 = 8m — 2Hjo1 — 2H111,
max {|Hyo1|, |H211], | H2211} < 00. Moreover, error equation of the scheme is given
by

1
e = = o (K1(O+mK} —2mK>)

((27Hx1 — 862m + 3Hapym — 204m* — 14m> + 6 Hao1 (9 + m)
+ 6Hy11(9 + m)K{ — 6m(2Ha1 + 2Ha1y + Hag — 68m — 8m*) KK

— 24m’K? — 24mK, K3))e§ +0(e),

m!

where Ky = ¢ NiOIoN

Proof Taking into account that f()(*) =0, j =0,1,2,...,m—1and f (t*) £ 0,
the Taylor’s expansion of f(¢;) about ¢* is expressed as

GO

F) = =" (14 Kiei + Kaef + Kae] + Kael + Kse] + Koef + Ke] +:-),
| (m+n) (36)
i f m-+n (t*)
where K,, = (m’j-n)' W forn € N.
Also the Taylor’s expansion of f(w;) about t* is
£ 4
fw) = — (1 + Kiew, + Kye?, .+ K3ed, .+ Kaey 4 ), (37)

(m) (4%
where ey, =wi—t*=ei+% m( —I—Kle,—l-Kze +qu +K4e +I(5e +

K6ei6 + - )
From the first step of (3)
€y, = Vi — t*
K —(14+m)K? +2mK, 1
=—+ mzl e+ ﬁ((l +m)?K}

1
—m(4+3m)K 1K + 3m*K3)ef — W((l +m)* K}
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- 2m(3 +5m +2m*) K Ky + 2m* (2 + m)K3 + 2m*(3 + 2m) K1 K3) e}

+ qu” "5 0(e), (38)

where ¢ = ¢)/(m, K1, K2, K3, K4, K5, K¢, K7), n = 1,2, 3. Expand f(y;) about
t*, we have

Fm @) 2

m!

fOi) = 5 (14 Kiey, + Kaey, + Kae), + Kael, +--+). (39

Using (36), (37) and (39) in the expressions of u; and v;, we have that

K —Q2+m)K? 4+ 2mK, 1
u = —lei + 21 e,-2 +53
m m 2m

((7+Tm +2m*)K; = 2m(7 + 3m)K 1 K2 + 6m*K3)e}

+ Z Yrel 4+ 0(e), (40)

where ¥, = ¢ (m, K1, K2, K3, K4, K5, K¢, K7),n = 1,2,3,4,5 and

vi=1+M€’-n_l<l+(m+ ) l€[+(m+ ) 262+(m+ ) 363
m! ! m m ! m i
5

n=1

where p, = p,(m, K1, K>, K3, K4, Ks, K¢, K7),n = 1,2,3,4,5.
Expanding G (u;, v;) by Taylor formula in the neighborhood of origin (0, 0)

1 1
G(ui, vi) = Goo + uiGio + viGo1 + 5”1‘2G20 +uiv;Gy + EviZGoz- (42)

By inserting (36)—(42) in the second step of (3), we have

e =z — 1"
1
=——(2Gp +2Go1 + Gp)e;
2m
1
+5-3(2Goo +2Go1 + Goz —2G10 — 2611 + 2m)Kef

1
- %((Goz —6G190—6G11 +Gr+2m+m Gy —2m Gy
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—2m Gy +2m* +2(1 +m) Goo + 2(1 + m)Go)K? — 2m(2Goo
5
+2Go1 + Goo — 2G 10 — 2G 11 + 2m)Ka)e} + Y 8¢l + 0(e]). (43)

n=1

where 8§, = &, (m, K1, K», K3, K4, K5, Kg, K7, Goo, G0, Go1, G20, G11, Go2),
n=1,2,3,4,5.

It is clear from the above Eq. (43) that we will obtain at least fourth order conver-
gence if we set coefficients of ¢;, el.2 and e? simultaneously equal to zero. Then solving
the resulting equations, one gets

Gy =4m, G =m— G, Goo =—2(Goo + Gor). (44)

By using (44), the error equation (43) is given by

e; =

LT om3
— 24m(7 + m)K12K2 + 12m°K3

1
(O +m)K} —2mK 1 K2)ef — — ((125 + 84m + Tm*) K}
6m*

+ 12m%K  K3)e + Zs” S 1 0(e)), (45)

n=1

where §, = §//(m, K1, K2, K3, K4, K5, Kg),n = 1,2, 3. Expansion of f(z;) around
t* yields

f(’")(t*) 2 3 4
@) = ———€el'(1+ Kie;, + Kae?, + Kze, + Kqel +---).  (46)
Using (36), (39) and (46), we obtain

1 1
=0+ m)K{ — 2mK>)e} — —((49 +27m +2m*) K}

—6m(9 +m)K1 K> + 6m*K3)e; + ((899 + 1002m + 313m?

24m4
+ 18m3) K} — 12m (167 + 87m + 6m2)K2K2 +24m%(26 + 3m)K | K3

+ 12m%((35 4 3m) K3 + 2mK4))e? + Zg” "1 0Ge), (47)

n=1

where ¢,/ = ¢,/ (m, K1, K>, K3, K4, K5, K¢, K7),n =1,2,3,4.

Si

1 3 3 1 2 4
= 55O+ mK} —2mK Ky)e] - 6m—4((152 +87m + Tm?)K!

— 6m(29 + 4m)K2K> + 12m2 K2 + 12m%K, Kg)e;‘
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1
+ 24m>
+53m?) K3 Ky + 12m*(87 + 13m)K? K3 — 168m> K1 K3

((2061 + 2246m + T11m? + 46m>) K} — 4m(1123 + 624m

3
+ 12m2K, (121 + 17Tm) K2 + me4))e,.5 +Y xS 1 o), (48)

n=l1

where x,/ = x, (m, K1, K2, K3, K4, K5, K¢),n = 1,2, 3.
Developing H (u;, v;, r;) by Taylor formula in the neighborhood of origin (0, 0, 0),
we have

1 1
H (u;, vi, ri) = Hooo + u; Hioo + Eu,-szoo + gu?Hmo

1 1
+v; <H01o +u;iHyo + EMI'ZH210 + gu?Hslo)

,/1 1 1, 1,
+ v; <§H020 + EuiHIZO + i Hao + T4 Hszo)

1
+ 7 <H001 +u;Hyo1 + Euiszm + v (Hou +u; Hipp

1, /1 1 1,
+ Sui H211) +v; (EHOZ] + EuiHm + hat H221)>. (49)

By using (36)—(49) in third step of (3), we have

1
iyl = — m(m(@ +m)K? —2mK2)(2Hooo + 2Hoto + Hooo — 2m))e}
4
+ 3 et + o). (50)
n=1

where )’];{ = n,’{(m, Ki, K>, K3, Ky, K5, Kg, Hjpe), n = 1,2,3,4and 0 < a < 3,
0<b<20<c<l

It is clear from the above Eq. (50) that we will obtain at least eighth order conver-
gence if we set coefficients of e;‘, ef, e? and el.7 simultaneously equal to zero. Then
solving the resulting equations, we get

Hoxo = 2m — 2Hooo — 2Ho10, Hi20 = 4m — 2H100 — 2H110,
Hyog = 4m — 2Hyo0 — 2H310, H3po = —48m — 2H300 — 2H310,
Hy1 =2m — 2Hyo1 — 2Hy11 Hi21 = 8m — 2Hy91 — 2H) 1. (51)

As a result the error equation is given by

1 2
o (Kl((9 +m)K? = 2mK,)
((27Hxo1 — 862m + 3Hapym — 204m* — 14m> + 6 Hoo1 (9 + m)

Citl = —
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+ 6Ha11(9 +m)) K} — 6m(2Hao1 + 2Ha11 + Hay — 68m
— 8m?)K2K, — 24m3K? — 24m3K1K3))e§ + 0. (52)

Thus, the theorem is proved. O

Many special cases of the family (3) can be generated satisfying the corresponding
conditions on the functions G (u;, v;) and H (u;, v;, r;) shown above in theorems 1—
6 depending on the multiplicity m. However, we must generate a unified iterative
scheme that may satisfy the conditions of theorems 1-6 simultaneously for all m > 1.
Moreover, we will restrict choices to consider the forms of low order polynomials.
These choices should be such that the resulting methods may converge to the root with
order eight for m > 1. Accordingly, the following simple forms are chosen:

G(uj,v;) = (3 + 2mu; + (m — 3)v,-)u,-, (53)
Hu;,vi,ri) =(1 — v,~)(3 + (5ri — 3u; — 6)vi) + m(4 + (ri — 3)vl-)v,-

1
+ 2m(1 + v + Qri — 1)vi2)ui — m(4u,~v,~ — 5(1 + vi))u%vi.
(54)

Combining Eqgs. (3), (53) and (57), the eighth order method for m > 1 is expressed as

R (/) I
Yi =l — Mmoo TS (t;
Zi= yi— (3 + 2mu; + (m — 3)1)1')”“ Zf(gji),ti)’
tiv1 = zi — 5i[(1 = vi)(3 4 (5ri = 3u; — 6)v;) +m(4+ (ri — 3)vi)v;
) 1 2 f@)
+2m(1+ v + Qri = D7 )ui — m(duiv; — 3 (14 vp))ujvi | e

55)

For further reference the new method (55) is now denoted by NM.

Remark 2 1t is important to note that parameter «, which is used in w;, appears only
in the error equations of the cases m = 2, 3, 4, 5, 6 but not for m > 7 (see equation
(52)). It has been observed that this parameter appears in the terms of e? and higher
order. However, such terms are difficult to compute in general. Moreover, we do not
need these in order to show the required eighth order convergence.

Remark 3 The new method (NM) reaches at eighth order of convergence under certain
conditions on weight functions used. This convergence rate is achieved by using only
four functional evaluations viz. f(#;), f(w;), f(v;) and f(z;) per iteration. Therefore,
NM is optimal by the Kung-Traub hypothesis [15].

Remark 4 Besides the cases (53) and (54) of weight functions G (u, v) and H (u, v, r),
respectively, some other forms satisfying the conditions can also be explored. For
readers’ interest we provide the following forms:
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G( . . J— 1 3 5 .
i 1) = ey (e
1 1

+ui(5m +3v; — 3) + u; (3 + vp)m + (3 — 2m)v} —3)), (56)

1
Gui,v;) = — (2mui + u; 3m — 3 + (3 — 2m)v;)
us
l
+uf(Bm — 3+ (3 —2m)vy) + 2u3 m + v})), (57)
1
H(u,, Ui, r,) = m( — Smuf.vlz +mu?(1 — 71)1 — SV,U,)UI

+ ui2(4m + (5m +mr; — 6)v; + (6 —3m + 9mr,~)vi2)
4+ u; (6 +4m + 4mr; + (12m + 4r; + 4mr; — 24)v;
+ (18 — 10m — 4r; 4 6mr; + 8mr})v?) +2(3 + 3r;
+ (4m — 4r; + 4mr; + Sri2 + rf‘ — v,

+ (6 =3m +r; —2mr; —5r2 +mr? + rl~4)vl~2>. (58)

However, being complicated expressions we will not consider these in our further
work.

4 Numerical results

In this section, we consider some numerical problems to illustrate the convergence
behavior and computational efficiency of the new method (NM). Performance is also
compared with existing eighth order Newton-like methods requiring derivative eval-
uations in their formulae. For example, we consider the methods by Akram et al. [1],
Behl et al. [4] and Zafar et al. [23]. For ready reference the methods are expressed as
follows:
Method by Akram et al. (AM-1):

Yi= _m;/((ttii))’

zi= yi —mui(1+2u; —u? + 6u?);;((tlii)),

tiv1 = zi —mu;(2s; +4ris; +ri + rl-z) ]{’((tt[i))'

Method by Akram et al. (AM-2):
i =i _mJ{'((tfii))’

=y — c_S5H18ui  f(t)
o= i i 5+8u;—11u? f'(t)°

ti+l = Zi —mui(Zsi +4riSj +ri +rl-2)}c/((t;i))-
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Method by Behl et al. (BM-1):

Yi = li _m;/((tti;))’
zi = yi —mui(1+2u; — M?)]{/((t,’l))

fi = 2k m U] = 1= 25— 2u; + 6uF — §(85 + 20m + 2mPuf | HL.

f(@)
Method by Behl et al. (BM-2):

Yi =l _m;’((ttii))’
zi = yi — mui (14 2u;) F,
riu; [1+2s,-+u,-(6+8s1)+9u,-2] £

ligl = Zi =M1 T+4u; Ok

Method by Zafar et al. (ZM-1):

A ()
yl - tl mf’(t,-)’

1-5u+8u} 7 £(1)
i = Yi— mul[#] )’

i = 2 — muiri(1 4 2u)(1+ ) (1 4 257) 58

Method by Zafar et al. (ZM-2):

yi =t — mf:/((_ttii)),
Zi= yi — mui(l + 2u; — u? + 6ul.3) ;’((tti,-))’

i = 2 — mugri (14 2u) (14 ) (1 + 25) L

1

1 1
= (LG . — (LG = (LG
where u; = (f(m) Ji = (f(yi)) and 5; = (f(n)) :
Computational work is compiled in the programming package of Mathematica

software [22] using multiple-precision arithmetic in a PC with Intel(R) Pentium(R)
CPU B960 @ 2.20 GHz, 2.20 GHz (32-bit Operating System) Microsoft Windows
7 Professional and 4 GB RAM. Performance of the considered method is tested by
choosing value 0.01 of the parameter «. The tabulated results obtained by the methods
for each problem include (i) number of iterations (i) required to obtain the solution
using the stopping criterion |t; 1 —1; |+ | f (#)] < 107100 (ji) estimated error [tip1—t|
in the first three iterations, (iii) computational order of convergence (COC) and (iv)
CPU time (CPU-time) in seconds utilized in execution of a program, which is computed
by the command “TimeUsed[ ]”. The computational order of convergence (COC) is
calculated by the formula (see [21])

COC — In|(tiyo — %)/ (tiz1 — t*)l'
In|(tiy1 —t*)/(t; — t*)]

(59)

The following numerical examples are chosen for experimentation:
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Example 1 Consider a standard test function which is defined as
fi)=e —t—1.

This function has multiple zero at t* = 0 of multiplicity 2. We select initial approx-
imation fy = % to obtain zero of this function. Numerical results are exhibited in
Table 1.

Example 2 Next, consider a problem of continuous stirred tank reactor. We observe a
reaction scheme that develops in the chemical reactor (see [8] for more information),
which is defined as follows:

Wi+T —> W,
Wo+T — W3
W3+ T — Wy
Wa+T — Ws (60)

The above model was studied in detail by Douglas [10] to find a simple system that

can control feedback problem. Finally, he transferred the above model to the following
mathematical equation:

* 4+ 11.50 + 47.491% + 83.063251 + 51.23266875 = —2.98(1 +2.25)K . (61)

where K denotes the gaining proportional controller. The control system in Eq. (61)
is balanced with the values of K. If we assume Ky = 0, we obtain the poles of the
open-loop transferred function as the solutions of univariate equation

fo(t) = t* + 11.508% + 47.491> + 83.063257 + 51.23266875 =0,  (62)

given as: t = —2.85, —2.85, —1.45, —4.35. It is straightforward to say that we have
oneroot t* = —2.85, having multiplicity 2. We select initial approximation fy = —2.7
to obtain zero of this function. The computational results are displayed in Table 1.

Example 3 Van der Waals equation-of-state (see [6])

m1n2
(P + 7)(v — myn) =nRT,

is considered that describes the behavior of a real gas by presenting in the perfect gas

equations two parameters, m1 and my, particular for each gas. Finding the volume V
of a real gas in terms of m, my, P, R and T, requires the solution of equation

PV3 — (nmy P —l—nRT)V2 +m1n2V — m1m2n2 =0.

@ Springer



182

ANNALI DELL'UNIVERSITA’ DI FERRARA (2022) 68:161-186

Table 1 Numerical results of the methods.

Methods i Ity — 11 I3 — o] ta — t3] coc CPU-time
Ex. 1

AM-1 3 1.62 x 1070 4.14 x 10730 0 8.000  0.2032
AM-2 3 1.30 x 1076 5.15 x 10751 0 8.000  0.2184
BM-1 4 334 x 1077 8.28 x 10721 1.26 x 107! 3.000  0.2495
BM-2 4 6.18 x 1078 5.25 x 10723 3.22 x 10798 3.000  0.2501
ZM-1 3 143 x 1076 1.26 x 10720 0 8.000 0.2344
ZM-2 3 9.45 x 1077 3.16 x 10732 0 8.000  0.2183
NM 3 1.03 x 1076 5.22 x 10752 0 8.000 0.1876
Ex.2

AM-1 3 1.95 x 1072 418 x 10718 0 7.985 0.0232
AM-2 3 1.95 x 1072 418 x 10718 0 7.985 0.0275
BM-1 4 271 x 1074 9.13 x 10714 3.45 x 10742 3.000 0.0310
BM-2 4 271 x 1074 9.13 x 10714 3.45 x 10742 3.000 0.0350
ZM-1 3 2.01 x 1072 522 x 10718 0 7.985 0.0272
ZM-2 3 2.01 x 1072 522 x 10718 0 7.985 0.0235
NM 3 2.17 x 1072 1.61 x 10717 0 7.989 0.0235
Ex. 3

AM-1 4 4.80 x 1072 425 x 1074 1.60 x 10716 7.992 0.0773
AM-2 4 4.80 x 1072 422 x 1074 127 x 10716 7.992 0.0786
BM-1 4 3.94 x 1072 1.14 x 1074 1.45 x 10723 7.998 0.0790
BM-2 4 3.93 x 1072 1.16 x 1074 2.28 x 10722 8.001 0.0764
ZM-1 4 452 x 1072 3.07 x 1074 1.01 x 10717 7.994 0.0781
ZM-2 4 451 x 1072 291 x 1074 1.01 x 10718 7.994 0.0775
NM 4 4.81 x 1072 415 x 1074 8.22 x 10717 7.993 0.0776
Ex. 4

AM-1 3 3.76 x 107° 6.71 x 10761 0 8.000 1.2793
AM-2 3 2.99 x 1070 8.31 x 10702 0 8.000 13115
BM-1 4 1.94 x 1076 1.71 x 10722 1.19 x 1070 3.000 2.0754
BM-2 4 1.59 x 1077 9.41 x 10720 1.97 x 1080 3.000 1.9976
ZM-1 3 321 x 107° 1.56 x 10761 0 8.000 1.3422
ZM-2 3 223 x 1070 6.01 x 10703 0 8.000 13106
NM 3 2.18 x 107° 4.19 x 10793 0 8.000  0.8584
Ex. 5

AM-1 Failure - - - - -
AM-2 Failure - - - - -
BM-1 3 2.77 x 1072 3.76 x 10715 0 7.995 1.0307
BM-2 3 2.77 x 1072 5.25 x 10715 0 7.995 0.9824
ZM-1 Failure - - - - -
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Table 1 continued

Methods i lth — 11 13 — 1] |14 — 13 cocC CPU-time
7ZM-2 Failure - - - - -

NM 4 1.41 x 107! 3.62 x 1072 1.77 x 10713 7.982 0.7963
Ex. 6

AM-1 3 3.05 x 1072 2.45 x 10716 0 7.995 2.3876
AM-2 3 3.05 x 1072 232 x 10716 0 7.995 23713
BM-1 4 5.84 x 1074 1.78 x 10~ 11 5.08 x 10734 3.000 2.8233
BM-2 4 5.84 x 1074 1.78 x 10~ 11 5.09 x 10734 3.000 27462
ZM-1 3 3.19 x 1072 2.77 x 10716 0 7.995 24181
ZM-2 3 3.19 x 1072 2.58 x 10716 0 7.995 23714
NM 3 3.06 x 1072 2.00 x 10716 0 7.996 2.0446

Given the constants m and m» of a specific gas, one can find values for n, P and T,
such that this equation has a three real zeros. By using the specific values, we get the
nonlinear function

f3(t) =13 —5.224% +9.08251 — 5.2675.

The zeros of function f3 are given by r* = 1.75, 1.75, 1.72. However, our desired zero
is t* = 1.75 with multiplicity 2. We assumed initial guess o = 2.5 for this example.
Numerical results are displayed in Table 1.

Example 4 The fourth example we consider is originated from the equation of L-C-R
circuitin electrical engineering [7]. The equation governing the L-C-R circuitis given
by

whose solution ¢ (¢) is

q(1) = goe™*"* co

where att = 0, g = qo.

For a particular case study, the problem is given as: Assume that the charge must be
dissipated to I percent of its original value (q/qo = 0.01) in t = 0.05 seconds, with
L =5 Henry and C = 10~* Farad. Find proper value of R?

Using the numerical values, the problem reduces to

¢ 70005 ¢og ( 2000 — 0.0172 (0.05)) — 0.0 =0,
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where t = R.
We consider this case for five times and obtained the required nonlinear function

f1(t) = (e*0~0°5f cos (v/2000 — 0.0172 (0.05)) — 0.01)5.

The function f4 has a multiple zero at 328.15142908514817 ... of multiplicity 5.
We choose the initial approximation fy = 300 for obtaining the zero of the function.
Numerical results are displayed in Table 1.

Example 5 Next, we assume a nonlinear test function of the academic interest which

is defined by
t
Fs(t) = 1> + 1) 442 — l)cosh“(—ﬂ2 )

This function has a imaginary zero * = i with multiplicity 6. We choose the initial
approximations ty = 1.5i for computing the zero. The obtained results are shown in
Table 1.

Example 6 Lastly, we consider another standard test function which is defined as
5
fo(t) = [tan*1 (‘/7—) —tan ' (W2 = 1)

ot ()~ (343) 5]

This function has multiple zero t* = 1.84112940685019962 . .. of multiplicity 10.
Let us choose the initial approximation 7y = 2 to compute this zero. The computed
results are displayed in Table 1.

From the numerical results as shown in Table 1 we observe that the errors gener-
ated by the methods show the increasing accuracy in the successive approximations,
which justifies the good convergence. In case of the existing eighth order methods, the
performance is not uniformly consistent, see the results of example 5. The entry O for
|ti+1 — t;| means that the stopping criterion |f;i+1 — ;| + | f(#;)] < 107190 has been
reached. Results of computational order of convergence shown in penultimate col-
umn in the table overwhelmingly support the theoretical eighth order of convergence.
However, note that this is not true in case of existing eighth-order methods BM-1 and
BM-2. Computational efficiency of the methods can be judged by observing the entries
of CPU-time. Indeed, the NM is efficient in general, since CPU time consumed is less
than that of the time taken by the existing ones in majority of the cases. The similar
robust nature of the new method has been observed by implementing it on many other
different numerical examples.

5 Conclusions

In the present work, we have derived a Traub-Steffensen-like derivative-free iterative
scheme having eighth order convergence for computing multiple roots of nonlinear
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equations. The analysis of convergence has been studied in detail under standard
hypotheses. The most important feature of the obtained scheme is its optimal eighth
order convergence which is difficult to attain in derivative-free numerical algorithms.
Performance has been examined by numerical testing on variety of problems including
those that arise in real applications. Moreover, the comparison of performance of the
methods with existing optimal eighth order methods has also been shown. It has
been observed that unlike that of some of existing techniques the proposed technique
has consistent convergence behavior. Comparison of estimated CPU-time has also
proved the efficient and robust character of the new method. We conclude the work
with a remark that Traub-Steffensen-like techniques are good options to Newton-type
techniques in the problems where derivatives are costlier to compute or complicated
to evaluate.
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