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Abstract
In this paper, we consider the following pseudo-parabolic equation with variable expo-
nents:

ut − �u − �ut +
∫ t

0
g(t − τ)�u(x, τ )dτ = |u|p(x)−2u.

Under suitable assumptions on the initial datium u0, the relaxation function g and the
variable exponents p, we prove that any weak solution, with initial data at arbitrary
energy level, blows up in finite time.
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1 Introduction

In this paper, we are concerned with the following pseudo-parabolic problem, with
variable exponents, of the form

⎧⎪⎨
⎪⎩
ut − �u − �ut + ∫ t

0 g(t − τ)�u(x, τ )dτ = |u|p(x)−2u, in � × (0, T )

u(x, t) = 0, on ∂� × (0, T )

u(x, 0) = u0(x), in �,

(P)
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where 0 < T < ∞, � ⊂ R
n (n ≥ 2) is a bounded regular domain with a smooth

boundary ∂�, g is a positive nonincreasing function and the exponent p(·) is a given
measurable function on � satisfying

2 ≤ p1 = ess infx∈� p(x) ≤ p(x) ≤ p2 = ess supx∈� p(x) ≤ 2n

n − 2
, n ≥ 3,

(1.1)
and the log-Hölder continuity condition:

|p(x) − p(y)| ≤ − A

log |x − y| , for a.e. x, y ∈ �, with |x − y| < δ, (1.2)

A > 0, 0 < δ < 1.
In the case when p is constant, a great deal of mathematical effort has been devoted

to the study of existence and uniqueness of solutions, regularity, asymptotic behaviour
and blow-up of the solutions for such kind of nonlinear pseudo-parabolic equations.
In fact the pseudo-parabolic equation

ut − k�ut − �u = f (u)

is used to describe many interesting physical and biological phenomena, such as the
unidirectional propagation of nonlinear dispersive long waves [13], the aggregation
of population [35], the heat conduction involving two temperatures [15] and the non-
stationary processes in semiconductors [24].

Xu and Su [36] considered

⎧⎪⎨
⎪⎩
ut − �u − �ut = u p, in � × (0, T )

u(x, t) = 0, on ∂� × (0, T )

u(x, 0) = u0(x), in �,

(1.3)

where 1 < p < ∞ if n = 1, 2; 1 < p ≤ n+2
n−2 if n ≥ 3. By exploiting the potential well

method and the comparison principle, they obtained global existence and finite-time
blow-up results for the solutions with initial data at high energy level.

Fenglong Sun et.al. [34] considered problem (P) with p constant. Under suitable
assumptions on the initial datium u0 and the relaxation function g, they obtained the
global existence and finite time blow-up of solutions with initial data at low energy
level. They also derived the upper bounds for the blow-up time.

In recent years, a great deal of attention has been paid to the study of mathematical
nonlinearmodelswith variable-exponent nonlinearity. For instance,modeling of phys-
ical phenomena such as flows of electro-rheological fluids or fluids with temperature-
dependent viscosity, nonlinear viscoelasticity, filteration processes through porous
media and imageprocessing.Moredetails on these problems canbe found in [2,6,7,26].
Regarding parabolic problems with nonlinearities of variable-exponent type, many
works have appeared. Let us mention some of them. For instance, Pinasco [31] stud-
ied the following problem
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⎧⎪⎨
⎪⎩
ut − �u = f (u), in � × [0, T )

u(x, t) = 0, on ∂� × [0, T )

u(x, 0) = u0(x), in �,

(1.4)

where � ⊂ R
n is a bounded domain with a smooth boundary ∂�, and the source term

is of the form

f (u) = a(x)u p(x) or f (u) = a(x)
∫

�

uq(y)(y, t)dy, (1.5)

with p(x), q(x) : � → (1,∞) and the continuous function a(x) : � → R are given
functions satisfying specific conditions. He established the local existence of positive
solutions and proved that solutions with sufficiently large initial data blow up in finite
time. Parabolic problems with sources of the form (1.5) appear in several branches of
applied mathematics and have been used to model chemical reactions, heat transfer or
population dynamics. Antontsev, Chipot and Shmarev [9] studied the homogeneous
Dirichlet problem for the doubly nonlinear parabolic equation with anisotropic vari-
able exponent:

ut = div
(
a(x, t, u)|u|α(x,t)|∇u|p(x,t)∇u

)
+ f (x, t), (x, t) ∈ � × (0, T ),

and established conditions on the data which guarantee the comparison principle and
uniqueness of bounded weak solutions in suitable Orlicz–Sobolev spaces subject to
some additional restrictions. The uniqueness was proved in a narrower class of func-
tions than that of the existence of solutions. Alaoui et al. [11] considered the following
nonlinear heat equation

ut (x, t) − div
(|∇u|m(x)−2∇u

) = u|u|p(x)−2,

in a bounded domain in� ⊂ R
n (n ≥ 1)with a smooth boundary ∂�. Under appropri-

ate conditions on the exponent functions m and p, they showed that any solution with
a nontrivial initial datum blows up in finite time. They also gave a two-dimensional
numerical example to illustrate their result. Guo, Lie and Gao in [23] considered the
following p(x)—Laplacian equation

ut = div
(
|∇u|p(x)−2∇u

)
+ |u|r−2u, (x, t) ∈ � × (0, T ),

subject to homogeneous Dirichlet boundary condition, where r > 1 is a constant.
The authors improved the regularity of weak solutions, and then proved that the weak
solutions blow up in finite time for some positive initial energy or vanish in finite
time by using energy estimate method. In [30], the authors considered the nonlinear
parabolic problem with nonstandard growth:

ut = div
(
a(u)|∇u|p(x)−2∇u

)
+ f (x, t). (1.6)
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By using themethod of parabolic regularization, they proved the existence and unique-
ness of weak solutions. Also, they studied the localization property of weak solutions
for the Eq. (1.6).

The following nonlinear diffusion equation

ut − div(|∇u|p(x)−2∇u) = f (x, t), (1.7)

in a bounded domain � ⊂ R
n (n ≥ 1) with a smooth boundary ∂�, has been used to

study image restoration and electrorheological fluids (see [3,4,14,16,19,22,25,32]). In
particular, Bendahmane et al. [12] proved thewell-posedness of a solution, for L1-data.
Akagi and Matsuura [5] gave the well-posedness for L2 initial datum and discussed
the long-time behaviour of the solution using the subdifferential calculus approach.
Al-Smail et al. [10] gave an alternative proof of the well-posedness to (1.7) and, in
addition, they gave a two-dimensional numerical example to illustrate the decay result
obtained in [5].

Recently, Shangerganesh et al. [33] studied the following fourth-order degenerate
parabolic equation

ut + div
(|∇�u|p(x)−2∇�u

) = f − divg, (1.8)

in a bounded domain � ⊂ R
n (n ≥ 1), with a smooth boundary ∂�, and proved

the existence and uniqueness of weak solutions of (1.8) by using the difference and
variation methods under suitable assumptions on f , g and the exponent p. Gao et al.
[21] studied the nonlinear diffusion problem:

ut = div
(
|∇u|p(x,t)−2∇u + b(x, t)∇u

)
+ f (u), (x, t) ∈ � × (0, T ),

subject to homogeneous Dirichlet boundary condition, where f is a continuous func-
tion satisfying

| f (u)| ≤ a0|u|α−1, 0 < a0 = constant, 1 < α = constant.

They constructed suitable function spaces and used the Galerkin method to obtain the
existence of weak solutions. They also obtained the conditions for the existence of
finite-time blow-up solutions by using the concavity method and the energy estimates
of energy functional. Liu and Dong [27] considered the following nonlinear diffusion
problem with p(x, t)−Laplacian:

ut = div
(
a|∇um |p(x,t)−2∇um + b(x, t)∇um

)
+ uq(x,t), (x, t) ∈ � × (0, T ),

where � ⊂ R
n (n ≥ 1) is a bounded domain with a smooth boundary ∂�. Under

suitable conditions on a, b,m and the exponents p(x, t), q(x, t), the authors proved
the existence of weak solutions and obtained suitable energy estimate of solutions in
anisotropic Orlicz–Sobolev spaces. They also established blow-up criteria of solutions
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by applying the energy functionalmethod and the concavitymethod, and showed some
result on global solutions without assumption on initial data.

Very Recently, Antontsev et al. [1], studied the evolution differential inclusion for
a nonlocal operator that involves p(x)—Laplacian,

ut − div
(
|∇u|p(x)−2∇u

)

−
∫ t

0
g(t − s)div

(
|∇u(x, s)|p(x)−2∇u(x, s)

)
ds ∈ F(u) ∈ � × (0, T ),

where � ⊂ R
n (n ≥ 1) is a bounded domain with Lipschitz-continuous boundary

∂�. Under appropriate assumptions on p(·), g and the multivalued function F(·), they
proved that the homogeneous Dirichlet problem has a local in time weak solution.
Also they showed that the weak solution possesses the property of finite speed of
propagation of disturbances from the initial data and may exhibit the waiting time
property.

Our aim in this work is to establish a blow-up result of solutions for problem (P),
with initial datium at arbitrary high energy level, under suitable conditions on the
exponent p, g and the initial datuim. Our technique of proof is similar to the one in
[34] with some necessary modifications due the nature of the problem treated here.
This result extends that in [34] to problems with variable-exponent nonlinearities.
This paper consists of two sections in addition to the introduction. In Sect. 2, we
recall the definitions of the variable exponent Lebesgue spaces L p(·)(�), the Sobolev
spaces W 1,p(·)(�), as well as some of their properties. We also state, without proof,
an existence result. In Sect. 3, we state and prove our blow-up result.

2 Preliminaries

In this section, we present some preliminary facts about Lebesgue and Sobolev spaces
with variable-exponents (see [17,18,20]). Let q : � → [1,∞] be a measurable
function, where � is a domain of Rn with n ≥ 1. We define the Lebesgue space with
a variable exponent q(·) by

Lq(·)(�) :=
{
u : � → R; measurable in � : �q(·)(λu) < ∞, for some λ > 0

}
,

where

�q(·)(u) =
∫

�

|u(x)|q(x)dx .

Equipped with the following Luxembourg-type norm

‖u‖q(·) := inf
{
λ > 0 :

∫
�

∣∣∣u(x)

λ

∣∣∣q(x)
dx ≤ 1

}
,
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Lq(·)(�) is a Banach space (see [25]).
We, next, define the variable-exponent Lebesgue Sobolev space W 1,q(·)(�) as fol-

lows:

W 1,q(·)(�) =
{
u ∈ Lq(·)(�) such that ∇u exists and |∇u| ∈ Lq(·)(�)

}
.

This space is a Banach space with respect to the norm ‖u‖W 1,q(·)(�) = ‖u‖q(·) +
‖∇u‖q(·). Furthermore, we set W 1,q(·)

0 (�) to be the closure of C∞
0 (�) in W 1,q(·)(�).

Here we note that the space W 1,q(·)
0 (�) is usually defined in a different way for the

variable exponent case. However, both definitions are equivalent under (1.2) (see [25]).
The dual ofW 1,q(·)

0 (�) is defined asW−1,q ′(·)(�), in the sameway as the usual Sobolev
spaces, where 1

q(·) + 1
q ′(·) = 1.

Lemma 2.1 [25] Let � be a bounded domain of Rn and q(·) satisfies (1.2), then

‖u‖q(·) ≤ C‖∇u‖q(·), for all u ∈ W 1,q(·)
0 (�),

where the positive constant C depends on q(·) and �. In particular, the space
W 1,q(·)

0 (�) has an equivalent norm given by ‖u‖W 1,q(·)(�) = ‖∇u‖q(·).

Lemma 2.2 [25] If q : � → [1,∞) is a continuous function and

2 ≤ q1 ≤ q(x) ≤ q2 <
2n

n − 2
, n ≥ 3.

Then the embedding H1
0 (�) ↪→ Lq(·)(�) is continuous and compact.

Lemma 2.3 [25] If q : � → [1,∞) is a measurable function with q2 < ∞, then
C∞
0 (�) is dense in Lq(·)(�).

Lemma 2.4 (Hölder’s Inequality) [25] Let r , q, s ≥ 1 bemeasurable functions defined
on � such that

1

s(y)
= 1

r(y)
+ 1

q(y)
, for a.e y ∈ �.

If f ∈ Lr(·)(�) and g ∈ Lq(·)(�), then f g ∈ Ls(·)(�) and

‖ f g‖s(·) ≤ 2 ‖ f ‖r(·)‖g‖q(·).

Lemma 2.5 [25] If q is a measurable function on � satisfing (1.1), then

min
{‖u‖q1q(·), ‖u‖q2q(·)

} ≤ �q(·)(u) ≤ max
{‖u‖q1q(·), ‖u‖q2q(·)

}
,

for any u ∈ Lq(·)(�).
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We state the local existence theorem that can be established by combing arguments
from [28] and [34].

Theorem 2.6 (Existence Theorem) Assume that (1.1) and (1.2) hold. Let u0 ∈ H1
0 (�)

be given. Assume further that g satisfies

g ∈ C1(
R

+,R+)
, g′(s) ≤ 0, 1 −

∫ ∞

0
g(s)ds := � > 0. (2.1)

Then problem (P) has a unique local solution

u ∈ C
([0, T ], H1

0 (�)
)
, ut ∈ C

([0, T ], L2(�)
) ∩ L2([0, T ], H1

0 (�)
)
. (2.2)

for some T > 0 depending on ‖u0‖H1
0 (�). Moreover, denoting by T ∗ the maximal

existence time of solution, then we have

lim sup
t→(T ∗)−

‖u(t)‖H1
0 (�) = +∞

if T ∗ < +∞.

3 Finite-time blow–up

In this section, we prove a finite-time blow-up result of solutions with initial datium
at high level energy. First, we define the energy functional for problem (P) by

E(u(t)) = 1

2
(1 − G(t))‖∇u‖22 + 1

2
(g ◦ ∇u)(t) −

∫
�

|u|p(x)
p(x)

dx, (3.1)

where

(g ◦ ∇u)(t) :=
∫ t

0
g(t − τ)‖u(t) − u(τ )‖22dτ,

and

G(t) :=
∫ t

0
g(s)ds.

Bymultiplying the equation in (P) by ut and performing routine calculations, one gets

d

dt
E(u(t)) = −‖ut‖2H1

0
+ 1

2
(g′ ◦ ∇u)(t) − 1

2
g(t)‖∇u‖22 ≤ −‖ut‖2H1

0
≤ 0, (3.2)

and, consequently, we have

E(u(0))−E(u(t)) =
∫ t

0

[
‖ut (τ )‖2

H1
0
− 1

2
(g′ ◦∇u)(τ )+ 1

2
g(τ )‖∇u(τ )‖22

]
dτ. (3.3)
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By applying Levine’s concavity method, we obtain the following blow-up result.

Theorem 3.1 Assume that (1.1), (1.2), and (2.1) hold and

� = 1 −
∫ ∞

0
g(s)ds >

1

(p1 − 1)2
,

and

0 ≤ Ê(u0) = 1

2
‖∇u0‖22 −

∫
�

|u0|p(x)
p(x)

dx <
C

2p1
‖u0‖2H1

0 (�)
, (3.4)

where

C = (p1 − 1)2� − 1

p1

( λ1

1 + λ1

)
> 0

and λ1 is the principle eigenvalue of −� on H1
0 (�). Then the maximal existence time

T ∗ of the solution u of problem (P) is finite with

lim
t→(T ∗)−

‖u(t)‖H1
0 (�) = +∞

and

0 < T ∗ ≤
8(p1 − 1)‖u0‖2H1

0 (�)

(p1 − 2)2
(
C‖u0‖2H1

0 (�)
− 2p1 Ê(u0)

) .

Proof Let u be the solution of problem (P) with initial datuim u0 ∈ H1
0 (�) satisfying

(3.4). Multiplying (P) by u and integrating over �, we have

∫
�

uutdx +
∫

�

|∇u|2dx +
∫

�

∇u · ∇utdx −
∫ t

0
g(t − τ)

∫
�

∇u(τ ) · ∇u(t)dxdτ

=
∫

�

|u|p(x)dx .

By using (3.1) and Young’s inequality, we get for some ρ > 0,

d

dt

(1
2
‖u‖2

H1
0 (�)

)
= −‖∇u‖22 +

∫ t

0
g(t − τ)

∫
�

∇u(τ ) · ∇u(t)dxdτ +
∫

�

|u|p(x)dx

= −‖∇u‖22 +
∫ t

0
g(t − τ)

∫
�

(∇u(τ ) − ∇u(t)) · ∇u(t)dxdτ

+
∫ t

0
g(t − τ)

∫
�

∇u(t) · ∇u(t)dxdτ +
∫

�

|u|p(x)dx .

= −(
1 − G(t)

)‖∇u(t)‖22 +
∫

�

|u|p(x)dx
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+
∫ t

0
g(t − τ)

∫
�

(∇u(τ ) − ∇u(t)) · ∇u(t)dxdτ

≥ −(
1 − G(t)

)‖∇u(t)‖22 +
∫

�

|u|p(x)dx

− 1

4ρ

∫ t

0
g(t − τ)‖∇u(τ ) − ∇u(t)‖22dτ

− ρ

∫ t

0
g(t − τ)‖∇u(t)‖22dτ

= −(
1 − G(t) + ρG(t)

)‖∇u(t)‖22 +
∫

�

|u|p(x)dx

− 1

4ρ

(
g ◦ ∇u

)
(t)

= −(
1 − G(t) + ρG(t)

)‖∇u(t)‖22 +
∫

�

|u|p(x)dx

− 1

4ρ

[
2E(u(t)) − (

1 − G(t)
)‖∇u‖22 + 2

∫
�

|u|p(x)
p(x)

dx
]

≥
[( 1

4ρ
− 1

)
+

(
1 − ρ − 1

4ρ

)
G(t)

]
‖∇u‖22

+
(
1 − 1

2ρ p1

) ∫
�

|u|p(x)dx

− 1

2ρ
E(u(t)).

Taking ρ = 1
2p1

and recalling the assumption that � > 1
(p1−1)2

, we arrive at

d

dt

(1
2
‖u‖2

H1
0 (�)

)
≥

( p1 − 2

2
− (p1 − 1)2

2p1
G(t)

)
‖∇u‖22 − p1E(u(t))

≥
( p1 − 2

2
− (p1 − 1)2

2p1
(1 − �)

)
‖∇u‖22 − p1E(u(t))

≥ (p1 − 1)2� − 1

2p1

( λ1

λ1 + 1

)
‖u(t)‖2

H1
0 (�)

− p1E(u(t)). (3.5)

Since d
dt E(u(t)) ≤ 0, then for any α > 0, we obtain

d

dt

(1
2
‖u‖2

H1
0 (�)

− αE(u(t))
)

≥ d

dt

(1
2
‖u‖2

H1
0 (�)

)

≥ (p1 − 1)2� − 1

2p1

( λ1

λ1 + 1

)
‖u(t)‖2

H1
0 (�)

− p1E(u(t))

= C
(1
2
‖u‖2

H1
0 (�)

− p1
C

E(u(t)),
)

(3.6)
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where

C = (p1 − 1)2� − 1

p1

( λ1

λ1 + 1

)
> 0.

Let

α = p1
C

and H(t) =
(1
2
‖u‖2

H1
0 (�)

− p1
C

E(u(t))
)
,

then

d

dt
H(t) ≥ d

dt

(1
2
‖u(t)‖2

H1
0 (�)

)
≥ CH(t).

Therefore, Gronwall’s inequality and the assumption (3.4) lead to

d

dt
H(t) ≥ d

dt

(1
2
‖u(t)‖2

H1
0 (�)

)
≥ CH(t) ≥ CeCt H(0) > 0,

for any t ∈ [0, T ∗). So H(t) and ‖u(t)‖2
H1
0 (�)

are both strictly increasing on [0, T ∗).
For any T ∈ (0, T ∗), we define the positive function M(t) on [0, T ] by

M(t) =
∫ t

0
‖u(τ )‖2

H1
0 (�)

dτ + (T − t)‖u0‖2H1
0 (�)

+ γ (t + σ)2, (3.7)

where γ, σ > 0 are positive parameters. Through simple calculations, we easily get,
for t ∈ [0, T ]

M ′(t) = ‖u(t)‖2
H1
0 (�)

− ‖u0‖2H1
0 (�)

+ 2γ (t + σ)

= 2
∫ t

0

∫
�

u(τ )ut (τ )dxdτ + 2
∫ t

0

∫
�

∇u(τ ) · ∇ut (τ )dxdτ + 2γ (t + σ)

and

M ′′(t) = 2
∫

�

u(t)ut (t)dx + 2
∫

�

∇u(t) · ∇ut (t)dx + 2γ

= −2‖∇u(t)‖22 + 2
∫ t

0
g(t − τ)

∫
�

∇u(τ ) · ∇u(t)dxdτ

+ 2
∫

�

|u|p(x)dx + 2γ.

By using Cauchy–Schwartz inequality and Young’s inequality, we obtain, ∀t ∈ [0, T ]

η(t) :=
( ∫ t

0
‖u‖2

H1
0 (�)

+ γ (t + σ)2
)( ∫ t

0
‖ut‖2H1

0 (�)
+ γ

)
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−
( ∫ t

0

∫
�

uutdxdτ +
∫ t

0

∫
�

∇u · ∇utdxdτ + γ (t + σ)2
)

=
[ ∫ t

0
‖∇ut‖22dτ

∫ t

0
‖∇u‖22dτ −

( ∫ t

0

∫
�

∇u · ∇utdxdτ
)2]

+
[ ∫ t

0
‖u‖22dτ

∫ t

0
‖ut‖22dτ −

( ∫ t

0

∫
�

utudxdτ
)2]

+
[ ∫ t

0
‖∇u‖22dτ

∫ t

0
‖ut‖22dτ +

∫ t

0
‖∇ut‖22dτ

∫ t

0
‖u‖22dτ

− 2
( ∫ t

0

∫
�

∇ut · ∇udxdτ
)( ∫ t

0

∫
�

utudxdτ
)]

+
[
γ

∫ t

0
‖∇u‖22dτ + γ (t + σ)2

∫ t

0
‖∇ut‖22dτ

− 2γ (t + σ)

∫ t

0

∫
�

∇ut · ∇udxdτ
]

+
[
γ

∫ t

0
‖u‖22dτ + γ (t + σ)2

∫ t

0
‖ut‖22dτ

− 2γ (t + σ)

∫ t

0

∫
�

uutdxdτ
]

≥ 0.

So, for any arbitrary α > 0, it follows that

MM ′′ − α

4

(
M ′)2 = MM ′′ − α

( ∫ t

0

∫
�

uutdxdτ +
∫ t

0

∫
�

∇u · ∇utdxdτ

+ γ (t + σ)
)2

= MM ′′ + α
[

−
( ∫ t

0

∫
�

uutdxdτ +
∫ t

0

∫
�

∇u · ∇utdxdτ

+ γ (t + σ)
)2

+
( ∫ t

0
‖u‖2

H1
0 (�)

dτ + γ (t + σ)2
)( ∫ t

0
‖ut‖2H1

0 (�)
dτ + γ

)

−
(
M(t) − (T − t)‖u0‖2H1

0 (�)

)( ∫ t

0
‖ut‖2H1

0 (�)
dτ + γ

)]

= MM ′′ − αM
( ∫ t

0
‖ut‖2H1

0 (�)
dτ + γ

)
+ αη(t)

+ α(T − t)‖u0‖2H1
0 (�)

( ∫ t

0
‖ut‖2H1

0 (�)
dτ + γ

)

> Mψ(t),∀t ∈ [0, T ], (3.8)
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where

ψ(t) = M ′′ − α
( ∫ t

0
‖ut‖2H1

0 (�)
dτ + γ

)

= −α

∫ t

0
‖ut (τ )‖2

H1
0 (�)

dτ − 2‖∇u(t)‖22 + 2
∫ t

0
g(t − τ)

∫
�

∇u(τ ) · ∇u(t)dxdτ

+2
∫
�

|u(t)|p(x)dx − (α − 2)γ.

By recalling (3.1), (3.3) and using Young’s inequality, we get, for some β > 0,

ψ(t) = −α

∫ t

0
‖ut (τ )‖2

H1
0 (�)

dτ − 2‖∇u(t)‖22 + 2
∫ t

0
g(t − τ)

∫
�

∇u(t) · ∇u(t)dxdτ

+ 2
∫ t

0
g(t − τ)

∫
�

(∇u(τ ) − ∇u(t)) · ∇u(t)dxdτ

+ 2
∫
�

|u(t)|p(x)dx − (α − 2)γ

≥ −α

∫ t

0
‖ut (τ )‖2

H1
0 (�)

dτ − 2(1 − G(t))‖∇u(t)‖22

+ 2
∫
�

|u(t)|p(x)dx − (α − 2)γ

− 2
(
β

∫ t

0
g(t − τ)‖∇u(t)‖22dτ + 1

4β

∫ t

0
g(t − τ)‖∇u(τ ) − ∇u(t)‖22dτ

)

≥ −α

∫ t

0
‖ut (τ )‖2

H1
0 (�)

dτ − 2(1 − G(t))‖∇u(t)‖22 + p1(1 − G(t))‖∇u(t)‖22
+ p1(g ◦ ∇u)(t) − 2p1E(u(t)) − 2βG(t)‖∇u(t)‖22
− 1

2β
(g ◦ ∇u)(t) − (α − 2)γ

= −α

∫ t

0
‖ut (τ )‖2

H1
0 (�)

dτ +
(
(p1 − 2)(1 − G(t)) − 2βG(t)

)
‖∇u(t)‖22

+
(
p1 − 1

2β

)
(g ◦ ∇u)(t) − 2p1E(u(0))

+ 2p1

∫ t

0
‖ut (τ )‖2

H1
0 (�)

dτ − (α − 2)γ

+ 2p1

∫ t

0

(1
2
g(τ )‖∇u(τ )‖22 − 1

2
(g′ ◦ ∇u)(τ )

)
dτ

= (2p1 − α)

∫ t

0
‖ut (τ )‖2

H1
0 (�)

dτ +
(
(p1 − 2)(1 − G(t)) − 2βG(t)

)
‖∇u(t)‖22

− (α − 2)γ

+
(
p1 − 1

2β

)
(g ◦ ∇u)(t) − 2p1E(u(0))

+ p1

∫ t

0

(
g(τ )‖∇u(τ )‖22 − (g′ ◦ ∇u)(τ )

)
dτ.

123



ANNALI DELL’UNIVERSITA’ DI FERRARA (2019) 65:311–326 323

By taking α = 2p1, and recalling (2.1), we get

ψ(t) ≥
(
(p1 − 2)(1 − G(t)) − 2βG(t)

)
‖∇u(t)‖22

+
(
p1 − 1

2β

)
(g ◦ ∇u)(t) − 2p1E(u(0)) − 2(p1 − 1)γ, ∀t ∈ [0, T ]. (3.9)

Combining (3.8), (3.9) and letting β = 1
2p1

, we have

MM ′′ − p1
2

(M ′)2 > Mψ(t), ∀t ∈ [0, T ]

with

ψ(t) ≥
(
(p1 − 2)(1 − G(t)) − 1

p1
G(t)

)
‖∇u(t)‖22 − 2p1E(u(0)) − 2(p1 − 1)γ.

From (3.5), (3.6) and considering the monotonicity of ‖u(t)‖2
H1
0 (�)

, we obtain

ψ(t) ≥
(
(p1 − 2)(1 − G(t)) − 1

p1
G(t)

)
‖∇u(t)‖22 − 2p1E(u(0)) − 2(p1 − 1)γ

≥ C‖u(t)‖2
H1
0 (�)

− 2p1E(u(0)) − 2(p1 − 1)γ

≥ C‖u0‖2H1
0 (�)

− 2p1E(u(0)) − 2(p1 − 1)γ

= 2CH(0) − 2(p1 − 1)γ ≥ 0, ∀t ∈ [0, T ],

where γ ∈
(
0, CH(0)

p1−1

)
. Therefore, by (3.8), we get

MM ′′ − p1
2

(M ′)2 > 0, ∀t ∈ [0, T ]. (3.10)

We set F(t) = M1− p1
2 (t). Then, simple calculations yield

F ′(t) =
(
1 − p1

2

)
M− p1

2 (t)M ′(t),

F ′′(t) =
(
1 − p1

2

)
M− p1

2 −1(t)
(
M(t)M ′′(t) − p1

2
(M ′(t))2

)
.

Using (3.10) and since M(t) > 0, we have F ′′(t) < 0 for all t ∈ [0, T ], which means
that F(t) is strictly concave on [0, T ]. Therefore, we have

0 < F(T ) < F(0) + F ′(0)T . (3.11)

Noting that

F ′(0) =
(
1 − p1

2

)
M− p1

2 (0)M ′(0) = (2 − p1)M
− p1

2 (0)γ σ < 0,
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then (3.11) yields

0 < T <
F(0)

−F ′(0)
= 2M(0)

(p1 − 2)M ′(0)
=

‖u0‖2H1
0 (�)

(p1 − 2)γ σ
T + σ

p1 − 2
.

Fixing γ ∈
(
0, CH(0)

p1−1

)
and choosing σ >

‖u0‖2
H1
0 (�)

(p1−2)γ , we have

0 <

‖u0‖2H1
0 (�)

(p1 − 2)γ σ
< 1, 0 < T <

γσ 2

(p1 − 2)γ σ − ‖u0‖2H1
0 (�)

. (3.12)

Let

Tγ (σ ) = γ σ 2

(p1 − 2)γ σ − ‖u0‖2H1
0 (�)

, σ ∈
(‖u0‖2H1

0 (�)

(p1 − 2)γ
,∞

)
.

One can easily verify that Tγ (σ ) takes its minimum at σ =
2‖u0‖2

H1
0 (�)

(p1−2)γ and

0 < T ≤ inf

σ∈
( ‖u0‖2

H1
0 (�)

(p1−2)γ ,∞
) Tγ (σ ) =

4‖u0‖2H1
0 (�)

(p1 − 2)2γ

≤
8(p1 − 1)‖u0‖2H1

0 (�)

(p1 − 2)2
(
C‖u0‖2H1

0 (�)
− 2p1 Ĵ (u0)

) .

Since T ∈ (0, T ∗) is arbitrary, we finally obtain that

0 < T ∗ ≤
8(p1 − 1)‖u0‖2H1

0 (�)

(p1 − 2)2
(
C‖u0‖2H1

0 (�)
− 2p1 Ĵ (u0)

) < +∞.

By Theorem 2.6, we have

lim sup
t→(T ∗)−

‖u(t)‖H1
0 (�) = +∞.

By considering the monotonicity of ‖u(t)‖H1
0 (�), we get

lim
t→(T ∗)−

‖u(t)‖H1
0 (�) = +∞.

This completes the proof. ��
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