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Abstract

In this paper, we consider a one-dimensional porous-elastic system with past his-
tory and nonlinear damping term. We established the well-posedness using the
semigroup theory and we showed that the dissipation given by this complemen-
tary controls guarantees the general stability for the case of equal speed of wave
propagation.
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1 Introduction

In the present work, we consider the following porous elastic system with past history
and nonlinear damping term
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puy — uxy — b, =0,x € (0,1),¢t >0,

T — 8¢ux +buy +E¢ + [° g (5) bux (1 —5) ds
+x @) f(¢)=0,x€0,1),t>0,

u(x,0) =uo(x), ur (x,0) =u; (x),x €0, 1),

¢ (x,0) =¢o(x), ¢ (x,0) =¢ (x),x €(0,1),
uy (0, ) =u, (1,t) =¢0,t) =¢(1,¢t) =0,t > 0,

(1.1

where the functions u and ¢ represent respectively the longitudinal displacement and
the volume fraction. The parameter p designates the mass density and J equals to the
product of the mass density by the equilibrated inertia. The term x (¢) f (¢;) is the
nonlinear damping term where yx is a positive non-increasing differentiable function
and f is specified in the preliminaries, the integral represents the infinite memory term
and g is the relaxation function which satisfies

g < —a()g@), t >0, (1.2)

where « is a positive non-increasing differentiable function. The parameters u, b, &,
8 are positive constitutive constants such that

uE > b>. (1.3)

The original motivation of this problem was introduced by Goodman and Cowin
[7] in 1972 when they proposed the idea of introducing the concept of a continuum
theory of granular materials with interstitial voids into the theory of elastic solids with
voids. This idea gives the relation between the elasticity theory and the porous media
theory, for more details we cite the works of Cowin and Nunziato [5] from 1983 and
Cowin [4] from 1985.

The system (1.1) was constructed by considering the following two basic evolution
equations of the one-dimensional porous materials theory

pugr =Ty, Sy = Hy + D, (1.4)

where T, H and D represent respectively the stress tensor, the equilibrated stress
vector and the equilibrated body force. Consequently, to get the system (1.1) we take
the constitutive equations 7, H and D in this form

T = puy +bp, H=25¢p — /Oog(S)¢x (t—s)ds,
0
D= —buy —&p—x (1) f(¢), (1.5

and by combining (1.5) and (1.4), we obtain (1.1).

In [16], Quintanilla gave a result concerning the slow decay for a one-dimensional
porous dissipation elasticity, after Apalara [2] showed an exponential stability of the
same system considered in [16] under the hypothesis (1.7).

In[1], Apalara established a general decay result for the energy of the same problem
considered in [2,16] where he replaced the porous dissipation by a non linear damping
term as follows
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{ Pl — fityx — bey =0, (1.6)
St — Spxx +bux +Ed + x @) f (¢) = 0. '

Note that, if we consider the problem (1.6) with viscoelasticity (—yu;y,) that is
acting only on the first equation and y () = 0, we come across the work of Magana
and Quintanilla [14] where they showed that viscoelasticity is not strong enough to
make the solutions decay in an exponential way. If we consider the same problem
(1.6) with x (t) = 1, we refer to the work of Boussouira [3] in the case of Timoshenko
system where the authors established a general semi explicit decay of the system.

The purpose of this paper is to study the well posedness and the asymptotic behavior
of the solution of (1.6) with past history term when this last is acting only on the second
equation. We prove the general decay of this system for the case of equal speed of
wave propagation in both equations of the system, that is

= (1.7)

" 1)

P
Introducing a function x (¢) in the nonlinear damping term and « (¢) which satisfies
(1.2) makes our problem different from those considered so far in the literature.

The importance of the past history term and its influence on the asymptotic behavior
of the solution appears in many works for different types of problems. To learn more
about this term we refer the readers to [6,8—11,13,17] in the case of Timoshenko
system, thermoelastic Laminated Beam and the transmission problem.

The paper is organized as follows. In Sect. 2, we introduced some transformations
and assumptions needed to prove the main result. In Sect. 3, we used the semigroup
method to prove the well-posedness of problem (1.1). In Sect. 4, we considered several
lemmas that help us to construct the Lyapunov functional. In Sect. 5, we proved our
general stability result.

2 Preliminaries

In this section we present the backgrounds mathematics needed later to prove our main
result. We shall use the following hypothesis

(H1) g: Ry - Ry isa C! function satisfying
o0 o0
g0) >0, § —/ g(s)ds =1>0, / g(s)ds = go. 2.1)
0 0

(H2) f : R — Ris a non-decreasing C-function such that there exist the positive
constants vy, vz, € and a strictly increasing function G € C ! ([0, 00)), with
G (0) = 0. Moreover, G is linear or strictly convex C 2_function on (0, €] such
that

{s2 + f2Hs) < G7H(sf (), VIs| <e, 2.2

vils| S [ = valsl, Vis| > €,

which implies that sf (s) > 0, for all s # 0.
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(H3) The function f satisfies the following property

|f WD) = FWD| < kol 1® + 12D —vol, Y1, ¥2 € R, (23)

where kg > 0, 0 > 0.

Note that the hypothesis (H2) was first introduced by Lasiecka and Tataru [12] in
1993.

Consider the following inequalities, that will help us in some estimations; we omit
their proof.

Lemma 1 The following inequalities hold,

1
f(/ 8() (1) — Pt —s))ds
o \Jo

1 00
/ (/ g () (@ (1) — Pu(t —5)) dS>
0 0
1 00 2
/O (/0 8(s) (Px (1) — px(t —5)) dS> dx < go(go¢x) (1), (2.6)

1 2
/ </ §'(s) (@) —p(t —s))ds
o \Jo

where dy, d» are positive constants and

2
dx < di(go¢x) (1), 2.4

2
dx

| /\

—g0) (g oy) (), (2.5

/\

| /\

—d(g 0 9:) (1), 2.7

(gov)(t) = /01 /000 g)(w(x,t) —v(x,t — s))2 dsdx.
Here are some notations that will help us for the computation of energy
n'(x,s) =¢(x,t) —p(x,t —s), (x,t,5) € (0,1) x Ry x Ry,
which was adopted in articles [6,15]. Here 5’ is the relative history of ¢ and verifies

nﬁ—i—né—qﬁ,:O, (x,t,5) € (0,1) x Ry x Ry.
n'(0,s)=n"(1,5)=0,t,5 >0
n'(x,0) =0, n°(x,s) = no(x,s),x € (0, 1),7>0, (2.8)
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then, the system (1.1) is equivalent to

puyy — MUy —bp, =0,x € (0,1),1 > 0,

T e — 8ux +bux + ¢ + [ 8 (5) dux (t — 5) ds
+x (1) f(¢) =0,x€(0,1),7>0,

nt+nt =g, s,1>0,

ux,0) =ugx), us (x,0) =u; (x),x € (0,1),
¢ (x,0) =¢o(x), ¢ (x,0) =¢1(x),x €(0,1),
n'(x,0) =0, no(x,s) =no(x,s),x €(0,1),s >0
uy (0,)=u, (1,)=¢ 0, )= 1,t) =1n"(0,s) =n'(1,5) =0,s,t > 0.

(2.9)

In order to be able to use Poincaré’s inequality for u , we introduce

1 1
ﬁ(x,t):u(x,t)—tf ul(x)dx—/ ug (x)dx.
0 0

Using (2.9)1, we have
1
/ u(x,t)ydx =0,Vt > 0.
0

In what follows, we will work with u but, for convenience, we write u instead of u.

3 Well-posedness

In this section, we give the existence and uniqueness result for problem (2.9) using
the semigroup theory. First, we introduce the vector function

P = (u, Ug, ¢v ¢tv UZ)T s

and the two new dependent variables
V= Uy, w = ¢[.
Note that, the second equation of (2.9) can be rewritten as follows
o
SO — lpxx +buy +6¢ — /0 g () My (x,8)ds 4+ x (1) f (¢r) =0,

then the system (2.9) is equivalent to

3
5 @ +HAP=T (@), 3.1

® (x,0) = D¢ (x) = (uo, u1, o, $1,n0)" ,
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where A : D(A) C H — H is the linear operator defined by

—Uv
_%uxx - %‘/J’x
A(D = _Ip ’
_§¢xx + %ux + %‘b - %fooog (5) n;)‘ (x, 5) ds
n—
0
0
I(®) = 0 ;
~LPf )
0

and H is the energy space given by
H=H!(,1)x L2(0,1) x H} (0, 1) x L*(0, 1) x Lg,
such that
H' 0, ) =H'©O,1)NL2©, 1),
L2(0,1) = {(pe L? (0, 1):/01<p(x)dx =0},

1 poo
Lg={<p:R+—>H01(o, 1),/ / g(s)¢§dsdx<oo},
0 JO

the space L, is endowed with the following inner product
1 00
(or.02),, = / / g (8) g1z () 92 (s) dsdx.
0 JO

- - T
For any & = (u v, ¢, Y, n’)T eH, ® = (ﬂ 0,0, V, ﬁt> € H, we equip H
with the inner product defined by

1 1 1 1
<<I), Cf>> =p/ vf)dx—}—,u/ uxﬁxdx—i—J/ Iﬁlf;dx-i-b/ (uxq~5+ﬁx¢> dx
H 0 0 0 0
1 1
+$/ ¢>¢dx+l/ rfxdx + (0,77}, .
0 0
The domain of A is given by:

D(A):{d)eHluer(O,l)ﬂH*l(O,l); ¢ € H>(0, )N HL (0, 1);

ve HN 0. 1); v € HL (0, 1); nfeLg},
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where
H20.1) = fg € H2(0.1) 1 g2 (0) = g (1) = 0.

Clearly, D (A) is dense in H. Now, we can give the following existence result.

Remark 1 Note that, the inner product (®, ®)4; is positive. Indeed

1
(CD,(D)Hzp/ vzdx—l—u,/
0 0

| | 1 oo
+sf ¢2dx+lf ¢§dx+/fg(s) (n" (x,s))zdsdx,
0 0
0 0

1 1 1
uldx + J/ Yldx + Zb/ uypdx
0 0

and it can easily be verified that

2 2
ity + 2bucd +£¢* = ! Iz (ux + 2</>> +& (¢ + éux)
2 I §

2 2
+<u—b—)u§+<s—b—)¢2],
§ 2

thanks to (1.3), we conclude that
1 1 1 1
(D, D)y > ,0/ vidx + J/ V2dx +51/ $>dx +m/ udx
0 0 0 0

1 1 oo
+1/ ¢fdx+/fg(5) (n} (x,S))2dsdx,
0
00

hero £ 1 : b? 0 and 1 b? 0
ere = — - — > an = — - — > U.
w 1=3 M M=K £

Theorem 1 Let ®g € H and assume that (Hy) — (H3) hold. Then, there exists a unique
solution ® € C (R4, H) of problem (3.1). Moreover, if &y € D (A) then
®eCRy, DAYNC' Ry, H).

Proof We use the semigroup approach. It is sufficient to show that A is a maxi-
mal monotone operator. First, we give the expression of (AP, ®)y, for any & =

(u, v, o, Y, n’)T eH, B = (0, 0,, 03,4, @5)T € H. Then, by a simple calcu-
lation using the integration by parts, we have
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1
(A, ®)H = M/ (ux Oy —vxO1y) dx + b/ (¢O2r —v,03)dx
0

1 1
y / (Y Osex — exOu) dx + f ($O4 — Y ©3) dx
+b/(ux®4—¢®1x)dx—/®4/g<s> e (v, 5) dsdx

1 oo
+//g(s) (i (x.9) — ¥) Oscdsdx.
00

Therefore, using the integration by parts and the boundary conditions, we can
conclude that

1 00
(AD, D)y = —/ 1#/ g ()nk, (x,s)dsdx
0 0
1 oo

+ /g(s) (n} (x.8) =), 0k (x,5)dsdx
00

1 o0
=(/‘/ng(S)UQ;OaS)n;(x,s)dsdx.
0 0

Again, integrating by parts with respect to s and using the fact that ', (x, 0) = 0, we
obtain (see also Lemma 1)

0t (x,$) 0t (x, 5) dxds

\_

(AD, D)y = /
0

g (s) nx (x, s)) dsdx

t\JI'—‘

0\8 -

3

—= (g o¢x) (1) = 0.

l\)lb—‘

Thus, A is monotone. Next, we prove that the operator (I + A) is surjective. Given
= (ky, kp, k3, kg, k)T e H, we prove that there exists a unique ® € D (A) such
that

I+A)d=K. (3.2)
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That is,

u—v=>k €H! 01,

PV — ity — b = pka € L} (0, 1),

¢—v =ks e H} (0,1, (3.3)

JY —lpx +buy +5¢ — [§% g ()1, (x,8)ds = Jky € L*(0,1),

n'+nl — ¢ =ks € L.
Using (3.3)s, we obtain

N
n' = e_S/O e* (Y +ks(s)ds. 3.4

Insertingu — v = k1, ¢ — ¥ = k3 and (3.4) in (3.3), and (3.3)4, we obtain

pu — [ty — by =hy € L7 (0, 1), (35
J+8E¢+bux—(I+ [, g) (1 —e%)ds)pex =ho € L2(0, 1),

where

h1 = pky + pki, '
hy = Jks + Jks + 7 g (s)e™ [y e (ks — k3) ., dcds.

To solve (3.5), we consider the following variational formulation
B ((u, ¢), (u1,91) =G (u1, ¢1), (3.6)

where B : [H (0, 1) x Hj (0, 1)]2 — R is the bilinear form defined by
1 1 1
B ) o) =p [ wndr+u [ wands+ 746 [ oo
0 0 0
1
+ b/ (ux$1 + Quix) dx
0

00 1
+ <l+/ g (s)(1 —e_s)ds>/ O P1rdx, 3.7)
0 0

and G : [H*1 0,1) x H(} O, 1)] — R is the linear functional given by
1 1
G (ur. 1) = / hiurdx +f hadidx.
0 0

Now, for V = H*1 0,1) x HO1 (0, 1) equipped with the norm

(e, I3 = llull3 + IPl3 + luxll3 + llpsll3,
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we have

1 1 1 1
B ((u, ¢), (u, $)) :p/ u2dx+u/ uldx + (J + &) ¢2dx+2b/ Pudx
0 0 0 0

o] 1
+ <1+/ g (s) (l—e_s)ds>/ P2dx.
0 0

On the other hand, we can write

is")z
+<“ Jlié) (Hg__)}

2
W§+2bux¢+(1+€)¢2=%|:M<ux+§¢> +(J~I—§)(

by using (1.3), we deduce that

1 1 1
B o)z p [ wdnti [ i [
0 0

+(l+/oog(s) (1—e) )/ P2dx,
0

! b’ 0 L(ste LA P
k1 == |pm— >0,k == - — >0,
N iy 273 "

then, for some My > 0

where

1B ((u, §), (u, o) = p llull3 + k1 Nux |3 + w2 1613

4 (z +/0 2 () (1 —e—S)ds> s 12

> Mo (Il + 113 + s 13 + 116:13)
= Mo || . $)1I5 -

Thus, B is coercive. On the other hand, by using Cauchy-Schwarz and Poincaré’s
inequalities, we obtain

[B ((u, @), (u1, ¢1))l
< pllullz lurlly + plluxllz luicllzs + (7 +€) 1@12 [1¢1ll2
+b (luxliz llg1lla + gl lurxl2)

+ <z+/0 g (1 —es)ds) 6112 iprxll2
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< &1 (lully + 181y + lluxlly + llgxlla) x (lurlly + Iprlly + lurelz + d1xll2)
= 164y [[(u, P)lly 11, DIy -

Similarly, we can show that
G (1, ¢V = &2 1 (i, ¢Dly -
Consequently, by the Lax-Milgram Lemma, the system (3.5) has a unique solution
(u,$) € H} (0,1) x Hy (0, 1),
satisfying
B ((u, @), (ur, 1)) =G (ur, 1),V (ur,¢1) € V.
The substitution of u and ¢ into (3.3) and (3.3)3 yields
(v, ¥) € H (0, 1) x Hy (0,1).

Similarly, inserting v in (3.4) and bearing in mind (3.3)s, we obtain ' € L ¢+ More-
over, if we take u; =0 € H*l (0, 1) in (3.6), we get

1

1
(J—i-E)/ qbqbldx—i-bf uxPrdx
0 0
oo 1 1
+ (l—i—[ g (s) (1 —e_s) ds)/ (])xqﬁlxdx:/ hyprdx.
0 0 0

Hence, we obtain
[e'¢) 1
(l +/ g (1—e™) ds) / DxP1xdx
0 0
1
:/0 (hy — (J + &) — buy) drdx, V¢ € HO1 O, 1). (3.8)

By noting that hy — (J + &) ¢ — bu, € L?(0,1), we obtain ¢ € H>(0,1) N
H(} (0, 1) and, consequently, (3.8) takes the form

1 00
/(-(z+f g(s>(1—e—f)ds)%—h2+<J+s>¢+bux>¢1dx
0 0

=0,¥$; € H} (0, 1).

Therefore, we obtain
0
- <l+f g(s)(1 _es)ds)¢xx +(J + &)@+ bux = hy.
0
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This gives (3.5),. Similarly, if we take ¢; =0 € HO1 (0, 1) in (3.6), we get
Jite = pu — by —hyin L7 (0, 1),
using the fact that u, (0) = u, (1) = 0, then we conclude
ue H20,1)NH0,1).
Hence, there exists a unique ® € D (A) such that (3.2) is satisfied. Therefore,
A is a maximal monotone operator. Now, we prove that the operator I" defined

in (3.1) is locally Lipschitz in H. Let ® = (u,v, ¢, v, n’)T € H and ®; =
(ur,vi, ¢1, 91, nﬁ)T € H, then we have

T (@) =T (POl < villf ) = f @Dll2-

By using (2.3), Holder and Poincaré inequalities, we can get

Lf @) = f @Iz < vikoCIW IS, + 1l 5) 1Y — vl <y ¥ — Yiellz2

which gives us
IT(®) =T (Pl = y2 [P = Pillp-

Then the operator I" is locally Lipschitz in H. Consequently, the well-posedness result
follows from the Hille—Yosida theorem. O

4 Technical Lemmas

In this section, we use the multipliers method to construct the Lyapunov functional
that must be equivalent to the energy of system (2.9). To achieve our goal we state and
prove the following lemmas.

Lemma 2 The energy functional E, defined by

1
E) = %/0 [ 4 a2 4+ 197 + 26,y + 607 + 5 — 20) 97 dx
1
+5 (8000 ), @D

satisfies
! 1/
EO=-x0 [ a:f @oar+ (¢ 00) 0 <0 42)
0
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Proof Multiplying the first equation of (2.9) by u;, the second equation of (2.9) by
¢, using (2.8), integrating over (0, 1) and summing them up, we obtain
1
s [, ol 187 4 2t 459+ 6~ 0) 67

1 1 ()
+X(’)/O ¢ f ($0) dx —/0 ¢t/0 gL, (x,5)dsdx=0.  (4.3)
We estimate the last term of (4.3) as follows
1 oo
_/ ¢1/ g(s)n’  (x, s)dsdx
0 0
1 00
= _/0 (’7; +’7;)/O g()n’ (x, s)dsdx

oo 1 oo 1
= —/O g(S)/O nﬁnix(x,S)dde—/O g(S)/0 i, (x, s)dxds,

integrating by parts, we have

Yo [ et dsdx = - Ly 4.4
—/0 @fo 8l (. 5)dsdx = 5 (g0 90) () = 5 (& 06:) ). (4d)

By substituting (4.4) in (4.3), bearing in mind (4.1), yields (4.2). O

Remark 2 The energy E(t) defined by (4.1) is non-negative. In fact, by the same
technique as in Remark (1), we can write

pu + 2busd + £¢% > pu + E1¢%

Consequently,
l : 2 2 2 2 _ 2 l
E@) > 2 G iy + I+ 5167+ 0 = go) by dx + 5 (g0 ¢x) (1)

Lemma3 Let (u, ¢) be the solution of (2.9). Then for any positive constant € the
functional

1 b,O 1 X
F (r)=1/ ¢t¢dx+—/ ¢/ ur (v) dydx,
0 2 0 0

satisfies

1
) o
0

1 1
+k1/0 f? (¢>z)dx+81/0 Mtde-i-i_(l)(gO(bx) (0, 4.5)

l 1 1 b2,02
Flo=-3 /0 ¢2dx — & /0 ¢dx + (J o

where c, ki are positive constants.
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Proof By differentiating F(¢) with respect to 7, using (2.9) and integration by parts
1 1 1
F| (1) = —3/ P2dx —b/ urpdx —s/ d*dx
0 0 0

1 00 1 1
+/ d)x(/o g(S)¢x(l—S)dS)dx—X(t)/o ¢f(¢t)dX+J/O ¢ dx

b x b d x
2L ¢z (f u,(y)dy>dx+l o~ (/ u:(y)dy)dx. (4.6)
M o dt\Jo

Using Cauchy-Schwarz inequality, we have

(s o< [ o)

1
dx < / utzdx.
0
By a simple computation it’s easy to prove that

— u = —uy + —¢.
4 \ Js ry)ay P 0

Using Young’s inequality and (2.6), for any €1, 81, 5> > 0, we obtain

1 00
/ O« (/ g(s)¢x(t—s)ds)dx
0 0

1 e’} 1
—/ m(/o g(s)(cbx(r)—¢x(r—s)>ds)dx+gofo $2dx
2

1 1 00
<(51+go)/ ¢>dx+45 (/0 g($)(¢x(f)—¢x(t—s))ds> dx

2

=@+ go)/ Pdx + Kgo (g 0 ¢x) (1), 4.7

b 1 X
—p/ é (/ u,(y)dy)dxg
“ o Jo 0

1
2dx+81/ udx, (4.8)
0

and
! ! 2 x (1) 2
—X(f)/0 ¢f(¢z)dXSX(l)52/0 ¢dx+ /f (¢) dx

. x()
5X(0)52f0 ¢*dx + =— ff (¢)dx. (4.9)

[
By substituting (4.7)—(4.9) into (4.6) and letting §; = ok 8y = )
X
4.5). O

&1, we obtain
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Lemma4 Let (u, ¢) be the solution of (2.9). Then for any positive constants €3, €3
the functional

1 e’}
Byt) = —J /0 ¢ /0 2@ (1) — d(t — s))dsdx,

satisfies
20 1 1 1
Fy(1) < —17/ $>dx +382/ P2dx +83f uldx
0 0 0

t, Jdy 11
+k2/ S (P)dx — 2—(g o)) +c¢ (1 +—+ —) (g 0 Px)(1),
0 80 &2 &3
(4.10)

where k», ¢, dy are positive constants.

Proof First, we note that

a o0
3 </ g(s) () —p(r — S))dS>
t \Jo

8 13
=3 (/ gt —s)(@ (1) — ¢>(S))dS>

t t
2/ gt —$)(@(1) — p(s))ds +/ gt — ) ()ds

—00

= godi (1) + /000 g $)@) — ¢ —s))ds.
Then, by a simple differentiation of F(f) and using (2.9), we have
Fy(t) =4 /0] éx /Ooog(S)(qﬁx(t) — ¢x(t — s5))dsdx — Jgo/O1 ¢ dx
—1/01 of /Ooo g () (P (1) — ¢t — s))dsdx
+ b/OI Ux /OOO 8(s)(@(1) — (1 — 5))dsdx
+£ /01 ¢/OOO 8(s)(@(1) — (1 — 5))dsdx
- /01 /Ooog(S)fbx (x,1—s)ds fooog(S)(tbx(t) — ¢x(t — s))dsdx

1 00
+X(t)/0 f(¢’)/() 8(s)(@(1) — (1 — 5))dsdx, (4.11)

and together with (2.9), by using Young’s inequality, (2.4), (2.6) and (2.7) we have
the following estimations:
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1 e’}
5 /0 s /O 2(5)(a (1) — by (¢ — 5))dsdx
1 32 1 [ee) 2
<6 / $2dx + / ( / g(s><¢x<r>—¢x(r—s>)ds) dx
0 4e2 Jo 0
1 52
< 82/ B2+ T g0lg 0 60,
0 129)
1 %)
—J f & / ¢ () (1) — ¢t — 5))dsdx
e’} 2
< J8; / ¢3dx— — ( / g’<s>(¢<r>—¢>(r—s>>ds) dx
0
< 78 /0 2dx — E(g/ 0 b (D),

1 [e’s)
b /0 s /O ¢ @(1) — d(t — s))dsdx
2

1 2 1 e’}
< &3 / uldx + b ( / g(s) (B (1) — p(t — s))ds) dx
0 4e3 0

<g3/ zdx—i-i(goqﬁx)(l‘)
/ / g($)px (1 — s)ds fo 9(5) (@2 (1) — $u(t — ))dsdx
= /O ( /0 g(s)(@(t)—d)x(t—s))ds)zdx
~ 2 f 5 0) / " 4 elt) — et — $))dsdx
§c< )(go¢x><r>+52f o2dx,

(1) /O £ ) /0 2@ (1) — Bt — ))dsdx
x(r)dl

1
< x(0)e2 /0 Fodx + (g 0B (1)

1
< x(0)e; /O FA(@dx + X( ) 1(g o ¢)(1).

By using Young’s and Poincaré inequalities and (2.4),

5

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

5/ ¢/ 8 (@) — P(r — s))dsdx = Ezf ¢2dx+ (g0¢x)(t)

@ Springer

4.17)



ANNALI DELL'UNIVERSITA’ DI FERRARA (2019) 65:249-275 265

By substituting (4.12)—(4.17) into (4.11), we have
1 1 1
Fy(1) < —J (g0 — 53)f P2dx + 382/ P2dx + 83/ uldx
0 0 0
b, Jdy 11
thky | fo@P)dx — ——=(g 0og)(@)+c|1+—+ —)(god)).
0 453 & &3

Finally, letting 63 = %, we obtain (4.10). O

Lemma5 Let (u, @) be the solution of (2.9). Then for any positive constant 4 the
functional

1 1 1 00
F3(t>=J/ ¢xutdx+J/ ¢,uxdx—£/ s (/ g(s)@(t—s)ds)dx,
0 0 M Jo 0

satisfies

1 1 1
Fg(t)f—é/ uﬁdx+c/ ¢§dx+k3/ 2 (¢) dx
2 Jo 0 0
1
4+ c(gody) (t)—i—c&;/(; u%dx—é(g’od)x) ). (4.18)

Proof First, we note that

d o0
7 (/0 g(s)px (1 — S)dS>
d t
-2 ( ﬁ s~ s)@(s)ds)

t

=g0)¢x (1) +/ §'(t = $)px(s)ds
= /o §'(8) (@x(t —5) — dx (1)) ds + g(0)px (1) + ¢x (1)/0 §'(s)ds
= /o §'(9) (@x(t —5) — $x (1)) ds.

By differentiating F3(¢), using (2.9) and then integrating by parts, we obtain

bJ 1 1 1 1
F3’(t)=—/ ¢§dx—b/ uﬁdx—s/ qbuxdx—x(t)/ uy f(¢r) dx
P Jo 0 0 0

1 o0
2/ ¢x</ g(S)¢>x(t—S)dS>dx
nJo 0
£ 1
N

- /O U (/0 g (5) (fx (1 —5) — ¢ (t))dS> dx (4.19)
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Using Young’s inequality, (2.5) and (2.6)

1 00
—3/ u(/ g/(s)(qsx(t—s)—¢x(r>)ds>dx
mJo 0

1
84[0 u?dx - 4;;84g(0) (g/ o ¢x) ),

1 00
—2/ ¢x(/ g(S)¢x(t—S)dS>dx
nJo 0

b 1 e b 1
=—/ m(f g<s>(¢>x(r)—¢x(r—s))ds)dx——go/ ¢ldx
0 1% 0

IA
AR

wJo
b by b?
< (8- —g0) | ¢ldx+—5 (g0 (). (4.20)
iz 0 4641
. b
By letting 64 = —go, we get
m
b 1 00
——/ éx (f 8 (8) &« (t—S)dS)deC(g°¢x) ), (4.21)
HmJo 0
1 L 1 N
0 [ ues @oax=x 085 [ wavt goxw [ £ @0
0 0 445 0
1 1 1
=x O 55/ uldx + —x (0)/ £ (@) dx. (4.22)
0 485 0
By using Young’s and Poincaré inequalities, we have
1 g2 ! b [l
—5/ Purdx < —/ ¢§dx+—/ udx. (4.23)
0 b Jo 4 Jo

Insert (4.20)—(4.23) in (4.19). So, the estimate (4.19) becomes

b 1 1 1
Fg(t)g—(b—x(0)55—1>f uﬁdx+c/ ¢§dx+ce4/ u’dx
0 0 0

1 ! 2 c /
+Kx<0)/ FP@ndx+c(gode) (1) — — (g o) (1),
5 0 &4

and letting 85 = the proof is, hence, complete. O

b
4x (0

Lemma 6 Let (1, ¢) be the solution of (2.9). Then the functional

1
Fi(t) = —p/ usudx,
0
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satisfies

3 1 1 1
F (1) < %f uldx +c/ $2dx — ,0/ udx. (4.24)
0 0 0

Proof

1 1
F,(t) = —p/ uZdx + p/ uprudx
0 0

1 1 1
= — / ulzdx — ,u/ Uypyudx — b[ drudx
0 0 0

1 1 1
= ,u/ uidx + b/ Qudx — p/ utzdx,
0 0 0

by using Young’s and Poincaré inequalities, we obtain easily the estimation (4.24). O

Now, we define the Lyapunov functional L(¢) by
L(t) = NE(t) + N1 F1(t) + N2 F2(1) + N3F3(t) + Fu(t), (4.25)

where N, Ny, N, N3 are positive constants.

Lemma 7 Let (u, ¢) be the solution of (2.9). Then, there exist two positive constants
by and by such that the Lyapunov functional (4.25) satisfies

b1E(t) < L(t) < byE(1),Vt >0, (4.26)
and

1
L'(t) = =1 E@) +c2(g 0 ) (1) +c3 /O (67 + r2@0)ax.  @21)

Proof From (4.25), we get

|L(t) — NE@)]

1 b,O 1 X
sJM/ |¢,¢|dx+—1v1f ¢f uz(y)dy‘dx
0 12 0 0

1
+JN2/
0

1
+JN3/ |¢,ux|dx+£N3/
0 12 0

1
+ ,0/ |usu|dx.
0

00 1
¢>sz 8(s)(@(1) — (1 —s5))ds dx+JN3/o s dx

up </o g (s) Px (l—S)dS)

1
dx
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By using Young’s, Cauchy-Schwarz, and Poincaré inequalities, we have

1
IL(t) — NE(t)| < c/ (¢3+¢f +u? +u? + ¢2) dx +c(go¢y) (t) < cE®),
0
that is
(N—=c)E(@) <L) <(N+c)EQ).

Now, by choosing N (depending on Ny, N, and N3) sufficiently large we obtain (4.26).
By differentiating L(¢), we obtain

b 3u o e P>
N34_l_7>f0 uxdx—le,?l/ ¢)dx—§/0 u;dx

4c* sz

N
8

121\722 4N3

) + CN3> (g0 dx)(2). (4.28)

[ [Ny bN3
By setting
o LNy bN3 P
81 = &) = k] 83 = ’ = )
4N 12N 4N> 4c¢N3

-n- N2§> (&' 0 be) )+ / 12 () dx

ot
(v2-3)]
+<§ 4c Jd>r
(

—ON + N> + ! N2 + — N2 +cN3 | ( dx)(1)
o) .
1 =€ 2 IN bN; CIN3 | (& X
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First, we choose N3 large enough such that

b 3
Loy
4 2

For fixed N3 > 0, we take N| large enough such that

[
N1Z—N3c—c>0.

Then we select Ny > 0 large so that

J b?
280N, — Ny (J + —fz\q) > 0.
2 M

Finally, we choose N large enough such that

N 4c? Jd
S Y )
2 P 280

Consequently, we obtain the estimation (4.27) of L'(¢). O

5 Stability result

In this section, we state and prove our stability result.

Theorem 2 Assume that (H1)-(H3) hold. Let h(t) = a(t)x(t) be a positive non-
increasing function, then, for any ®q € D (A)satisfying, for some cy > 0,

1
/ $3,(x, s)dx < cg, Vs > 0, (5.1
0

there exist the positive constants ay, aa, a3, such that

ax + a3 fot h(s) [7° g (t)drds
fé h(s)ds '

E(t) <ai1Gy' ( (5.2)

where
Go (1) = tG’ (got) , Ve = 0.

Proof Multiplying (4.27) by h(t), we get

1
hOL'(1) < =ethE®) + e2h(t) (g 0 ) (1) + e3h() /0 (67 + 290 dx.
(5.3)

We distinguish two cases
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1) G is linear on [0, €]. By using (5.3) and the hypothesis (H3), we have
1
h()L' (1) < —cih(t)E(t) 4 c2h(t) (g 0 dy) (1) + 03h(t)/0 ¢ f (Pr)dx
< —cthE(t) + c2h(t) (g 0 ¢x) (1) — e3¢ (1) E'(1). (5.4

To estimate h(t) (g o ¢, ) (t) we use the following technique

1 t
h(r)/ / () (@r (s 1) — u(x, t — ) ds dx
0 0
1 t
< x (0 /0 /O a(s)g(s) (e (x, 1) — P (x, 1 —5))* ds dx
1 t
<—x (r)/o /0 §() (X, 1) — Gy (x, 1 — 5))2ds dx

1 [ee)
<—x (t)fo /0 g () (px(x, 1) — P (x, 1 — ) ds dx
< =2x (1) E'(1).

On the other hand, by using (5.1) and the fact that E (¢) is non-increasing, for ¢, s € R,

1 1 1
/(qu(x,r)—¢x(x,r—s)>2dx52/ ¢>,%(x,r>dx+2/ 62(x, 1 — 5)dx
0 0 0

1 1
<4sup qbf(x, s)dx + 2 sup/ qng (x, T)dx
s>0J0 >0J0

8E(0)
=62 "

then, we obtain

1 00
h(t)/ / g(s)(¢x(x, 1) — pu(x, 1 — 5))* ds dx
0 Jr

_ ( 8E(0)
~\(—¢go)

+ 26‘0) h(t) /'OO g(s)ds.
t

Therefore, we deduce that, for all r € R,

8E(0)
(3 — go)

h(t) (8 o dx) (N=—=2x (1) E'(1)+ ( + 200) h(l)/ g(s)ds.  (5.5)
t
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Inserting (5.5) in (5.4) and using the fact that E’(¢) < 0, we get

h()L (1) + (c30(1) + 2c2x (1) + 71) E'(1)
<h®L' (1) + (c3a(t) + 2cox (1) + 1) E'(1) = T E' (1)

< —cth()E(t) + Bh(t)v (1), (5.6)
where 8 = ¢ <(§€(ZZ) + 2c0> v (@) = [T gls)ds, 1 > 0.
Since o/ (r) < 0, x'(r) <0, k(1) < 0, then (5.6) is equivalent to
L)1) < —cthE@) + Bh(t)v (1), (5.7)
where
Li(t) = h(t)L(t) + (c3a(t) + 2c2x (1) + 71) E(t)~ E(1). (5.8)

It’s easy to verify that this last relation holds. Indeed, we have from (4.26)
b1E(t) < L(t) < byE(1),Vt = 0,

and because (), a(t) and yx () are positive non-increasing functions, then for every
t > 0, we deduce that exists m, mp > 0, satisfying

miE(@t) < Li(r) <maE(1),
with m; = 11, my = b2h(0) + c30(0) + 2c2x (0) + 7. This proves that (5.8) is

checked.
Because E (¢) is a non-increasing function, for all 7 € R4, by using (5.7), we have

T T
E(T)/ h(r)dt < <L'(0) +£/ h(t)v(t)dt). (5.9)
0 C1 c1 Jo

Using the fact that G, ! () is linear, then (5.9) can be rewritten as follows

Lo 8 I v @y dr
E(T) <Gy | < fCTl o Jh> 0,
0
L1(0)

which gives (5.2) witha; = A, ax =

and a3 = E The proof is complete.
C

cl 1
2) G is nonlinear on [0, €]. In this case, we use the same estimation in the above
case of h(t) (g o ¢y) (¢) for the second term of (5.3). It’s left to estimate the last term
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of (5.3). For that we first choose 0 < €] < ¢, such that sf (s) < min (e, G (¢)),
Y |s| < €1 and by using (H3), for s # 0, it follows that

{s2 + f2() < G (sf (5), Vs| < ey,
vilsl < 1F@)] < v lsl, Yis| > e,

and we consider the following two sets
Li={xeOD:lpl=er}, b={x €, 1):1|¢]>e1}.

Now, we define 7 (¢) by
I(I)Z/I & f (Pr)dx,
1

using Jensen’s inequality and the hypothesis (H3) , we have

C3h(t)/01 (¢,2 + f2(¢,)) dx < Gh(G™' (1 (1) — ha(E'(1).  (5.10)
Inserting (5.10) in (5.3), we obtain
Li(t) < —cth(t)E(t) + Bh(t)v (1) + c’3h(t)G_1 @), (5.11)
where
Li(t) = h(t)L(1) + (c30(t) + 2cox (1) + 71) E()~ E(1),11 > 0,
we use the same technique as in the precedent case to show that L1(¢) is equivalent to
fl(()iz/ for &9 < €; and using the fact that E’(r) < 0, G’ > 0, G” > 0 on (0, €], we
find that the functional L, (¢), defined by
Ly (1) = G'(e0EM) L1 (1) + E () ~ E (1), 12 > 0,

satisfies

2 () = E'() (200G (0E ) Ly (1) +72) + L} (1) G (e0 E(1))
< —cth(t)Go (E(1) ++BG (20E(1)) h(t)v (1)
+ 4h(DG (e0E) G~ (I (1)) . (5.12)

Note that, the equivalence between L (¢) and E (¢) is due to the fact that G’ (o E (¢))
is positive non-increasing function and L () ~ E(¢). Indeed, we have for all > 0,

miE(t) < L1(t) <myE(1),
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and
0 < G'(20E(1)) < G' (80E(0)),
then
DE (1) < Ly (1) < (G' (€0E(0)) my + 12) E(1).
Therefore, there exists o1, oo > 0, satisfying
o1E(t) < Ly (1) < 02 E(1),

with 01 = 10, 02 = G’ (9 E(0)) m> + 13.

To estimate the last term of (5.12), we apply the following general Young’s inequality

AB <G*(A)+G(B),if A€ (0,G' (6)].B € (0,¢l,
where
G* () =5(¢) " ©-6((6)" ). ifse(0.6'@].
we deduce that
Sh(DG' (s0E(0) G (1 (1)) < heoh()Go (E(1) — cha() E' (1),

Substituting (5.13) in (5.12) and letting g9 = 26_1/ we have
€3

L5 (t) + c3a(OE'(t) < —kh(t)Go (E(1)) + BG (€0 E (1)) h(t)v (1),
which can be rewritten as

(L (1) + ha()E(®)) — cyo/ (D E (1)
< —kh(1)Go (E(1)) + BG (0E (1)) h(t)v (1) ,

since o’ (t) < 0, then (5.15) is equivalent to
5 (1) < —kh(1)Go (E(1) + BG' (e0E(1)) h(t)v (1) .
where

L3 (1) = Lo (t) + (D E@®) ~ E(),

(5.13)

(5.14)

(5.15)

(5.16)

this last relation is checked from the fact that «e(¢) is a positive non-increasing function

and L; (t) ~ E(t). Indeed, for every ¢ > 0, we have already

o1E(t) = Ly (1) < 02E(1),
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then
o1 E(t) < L3(t) < o3E(1),
with 03 = 02 + 5 (0).

By using (5.16), because G (E(t)) and G’ (s9E(t)) are non-increasing functions,
then for all T € R, we have

T T
kGo (E(T))/ h(tydr < <L3(0) + BG’ (soE(O))/ h(t)v(t)dt>,
0 0

that can be rewritten as follows

L3(0)  BG' (s0E(O
3(0) n BG' (e0E(0)) fOTh(t)v(t)dt
E(T) <Gy | & k ,
Jo h(n)dt
L0 G’ (e0E(0
which gives (5.2) with a; = 1, ay = % and ay = W The proof is
complete. O
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