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Abstract Here we investigate the property of effectivity for adjoint divisors. Among
others, we prove the following results: A projective variety X with at most canonical
singularities is uniruled if and only if for each very ample Cartier divisor H on X we
have H0(X,m0KX + H) = 0 for some m0 = m0(H) > 0. Let X be a projective
4-fold, L an ample divisor and t an integer with t ≥ 3. If KX + t L is pseudo-effective,
then H0(X, KX + t L) �= 0.

Keywords Termination of adjunction ·Uniruledness ·Quasi polarized pair ·Minimal
model program · Canonical singularities
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1 Introduction

Let X be a normal projective variety over the complex field C; let KX be its canonical
divisor. We assume that X has at most canonical singularities.

We would like to thank Paolo Cascini, Roberto Pignatelli and Luis Sola-Conde for fruitful conversations.
We are grateful to János Kollár for pointing out his examples and for suggesting projective varieties with
canonical singularities as a good category to settle our results. We also thank the referees for useful
comments. The research project was partially supported by GNSAGA of INdAM, by PRIN 2015
“Geometria delle varietà algebriche”, and by FIRB 2012 “Moduli spaces and Applications”.

B Claudio Fontanari
claudio.fontanari@unitn.it

Marco Andreatta
marco.andreatta@unitn.it

1 Present Address: Dipartimento di Matematica, Università degli Studi di Trento,
Via Sommarive 14, 38123 Trento, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11565-018-0300-z&domain=pdf
http://orcid.org/0000-0002-2921-3726


244 Ann Univ Ferrara (2018) 64:243–257

In the paper we fix a suitable Cartier divisor H on X and we discuss when the effec-
tivity or non-effectivity of some adjoint divisors aKX + bH determines the geometry
of X .

In the first part we consider the notion of Termination of Adjunction. This turns
out to be rather delicate, since in the literature there are different meanings for such a
property. The following are four possibilities, where m0 and m are natural numbers.

(A) For every (for some) big Cartier divisor H there exists m0 = m0(H) > 0 such
that mKX + H /∈ E f f (X) (i.e. it is not pseudo-effective) for m ≥ m0.

(B) For every big Cartier divisor H we have H0(X,m0KX + H) = 0 for some
m0 = m0(H) > 0.

(C) For every very ample Cartier divisor H we have H0(X,m0KX + H) = 0 for
some m0 = m0(H) > 0.

(D) For some (for every) big Cartier divisor H0 we have H0(X,m0KX + kH0) = 0
for every k > 0 and some m0 = m0(k) > 0.

It is clear that (A) �⇒ (B) �⇒ (C) �⇒ (D).
We prove that these four definitions are equivalent and moreover that Adjunction

Terminates in the above sense if and only if X is uniruled (see Theorem 3, Corollaries
1 and 2).

The results follow by some characterizations of pseudo-effective Cartier divisor
(see Theorem 2), which are direct consequences of a fundamental result of Siu ([21]).
The connection with uniruledness follows in turn from the fact that a projective variety
X with canonical singularities is uniruled if and only if KX is not pseudo-effective
(see [3], Corollary 0.3, or [5], Corollary 1.3.3).

A characterization of rationally connected manifolds along the same lines has been
given in [6].

The examples described in [14], Theorem 39, show that, for varieties with singular-
ities worst then canonical, uniruledness is not connected to Termination of Adjunction.

We consider also the following more general definition.

(C’) Let H be an effective Cartier divisor on X . We say that Adjunction Terminates
in the classical sense for H if there exists an integer m0 ≥ 1 such that

H0(X, H + mKX ) = 0

for every integer m ≥ m0.

We conjecture that such a definition is actually equivalent to the previous ones; a partial
result in this direction is provided by Proposition 2. In dimension two, Castelnuovo
and Enriques indeed proved that Condition (C’) implies that X is uniruled (see [7] and
also [19]).

In the second part of the paper we assume that X is a projective variety of dimension
n with at most terminal Q-factorial singularities. We take a nef and and big Cartier
divisor L on X and we call (X, L) a quasi polarized pair.

The following is a straightforward consequence of Theorem D in [5], see Remark 5
at the beginning of Sect. 5.
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Proposition 1 Let (X, L) be a quasi polarized pair and t > 0. If KX +t L ∈ E f f (X),
then there exists N ∈ N such that H0(X, N (KX + t L)) �= 0.

Note that for t = 0 the statement of the Proposition would amount to Abundance
Conjecture, together with MMP.

The next Conjecture is an effective version of the above Proposition.

Conjecture 1 Let (X, L) be a quasi polarized pair and t > 0. If KX + t L ∈ E f f (X),
then H0(X, KX + t L) �= 0.

The case t = 1 is a version of the so-called Ambro–Ionescu–Kawamata conjecture,
which is true for n ≤ 3 (see Theorem 1.5 in [13]), while for t = n − 1 we recover
a conjecture by Beltrametti and Sommese (see [4], Conjecture 7.2.7). Note that if
Conjecture 1 holds for t = 1 then it holds also for every t > 0.

In the paper we consider the following conjecture.

Conjecture 2 Let (X, L) be a quasi polarized pair and s > 0. Then H0(X, KX +
t L) = 0 for every integer t with1 ≤ t ≤ s if and only if KX+sL is not pseudo-effective.

Since L is big, in particular pseudo-effective, then the if part is obvious. Note that
Conjecture 2 for s = 1 implies Conjecture 1.

We prove thatConjecture 2 is true for s = n (see Proposition 4); we actually show
that this case happens if and only if the pair (X, L) is birationally equivalent (via a
0-reduction, see the definition in the next section) to the pair (Pn,O(1)).

For s = n − 1 the conjecture was essentially proved by Höring, see [13],
Theorem1.2.We prove a slightlymore explicit version of his result (see Proposition 7),
namely, we show that this case happens if and only if the pair (X, L) is birationally
equivalent to a finite list of pairs.

Finally, we focus on the case n = 4 (see Theorem 8 and Proposition 6) and we
generalize previous work by Fukuma ([11], Theorem 3.1).

2 Notation and preliminaries

Let X be a normal complex projective variety of dimension n. We adopt [15] and
[16] as the standard references for our set-up. In particular, we denote by Div(X) the
group of all Cartier divisors on X and by Num(X) the subgroup of numerically trivial
divisors. The quotient group N 1(X) = Div(X)/Num(X) is the Neron-Severi group
of X .

In the vector space N 1(X)R := N 1(X)⊗R,whosedimension isρ(X) := rkN 1(X),
we consider some convex cones.

(a) Amp(X) ⊂ N 1(X)R the convex cone of all ampleR-divisor classes; it is an open
convex cone.

(b) Big(X) ⊂ N 1(X)R the convex cone of all big R-divisor classes; it is an open
convex cone.

(e) E f f (X) ⊂ N 1(X)R the convex cone spanned by the classes of all effective
R-divisors.

(n) Nef (X) = Amp(X) ⊂ N 1(X)R the closed convex cone of all nef R-divisor
classes.
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(p) E f f (X) = Big(X) ⊂ N 1(X)R the closed convex cone of all pseudo-effective
R-divisor classes.

The above definitions actually lean on some fundamental results like the openess of the
ample and big cones, the facts that int{E f f (X)} = Big(X) and Nef (X) = Amp(X);
for more details see [16].

Note that Amp(X) ⊂ Nef (X) ∩ Big(X) and that there are no inclusions between
Nef (X) and Big(X).

Note also that if π : X ′ → X is a birational morphism and D is a Cartier divisor
on X then D is big (resp. pseudo-effective) if and only if π∗D is big (resp. pseudo-
effective).

We consider projective varieties with singularities of special type, as in theMinimal
Model Program. For reader convenience we recall their definition (see [15], Definition
2.11 and Definition 2.12).

Definition 1 Let X be anormal projective variety.We say that X has canonical (respec-
tively terminal) singularities if

(i) KX is Q-Cartier, and
(ii) ν∗OX̃ (mKX̃ ) = OX (mKX ) for one (or for any) resolution of the singularities

ν : X̃ → X

(respectively

ii) ν∗OX̃ (mKX̃ − E) = OX (mKX ) for one (or for any) resolution of the singularities
ν : X̃ → X , where E ⊂ X̃ is the reduced exceptional divisor).

In the category of projective varieties with canonical singularities the pseudo-
effectivity of the canonical bundle is a birational invariant, as noticed by Mori in
[18], (11.4.1). He actually conjectured the following beautiful result ([18], (11.4.2)
and (11.5)), which was proved in [3], Corollary 0.3 and in [5], Corollary 1.3.3.

Theorem 1 Let X be a projective variety with at most canonical singularities. Then
X is uniruled if and only if KX is not pseudo-effective.

As for the invariance of the global sections of adjoint bundles (or of pluri-canonical
bundles if L is trivial) we have the following.

Lemma 1 Let π : Y → X be a birational morphism between projective varieties
with at most canonical singularities, let L be a Cartier divisor on X and let a, b ∈ N.
Then

H0(X, aKX + bL) = H0(Y, aKY + bπ∗(L)).

Proof Since Y and X have canonical singularities we have π∗aKY = aKX . This is
straightforward from the definition of canonical singularities and by taking a resolution
of Y , ν : Y ′ → Y , and π ◦ ν : Y ′ → X as a resolution of X .

Since L is Cartier, by projection formula it follows

π∗(aKY + bπ∗(L)) = π∗(aKY + π∗(bL)) = π∗(aKY ) + bL = aKX + bL;
by taking global sections we obtain our statement. ��
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3 Termination of adjunction

Much of this section is based on the following Lemma, which was proved in the
analytic setting by Siu (see [21], Proposition 1). For reader convenience we provide
an algebraic proof relying on [17] (see also [20], Chapter V, Corollary 1.4).

Lemma 2 Let X be a smooth projective variety of dimension n and let H be a very
ample divisor on X. If G := (n + 1)H + KX , then for every pseudo-effective divisor
F on X we have H0(X, F + G) �= 0.

Proof Since F is pseudo-effective we have that F + H is big, hence there exists a
positive integer m > 0 such that m(F + H) ∼ A + E with A ample and E effective
(see for instance [16], Corollary 2.2.7). Let D := 1

m E and L := F + H , so that
L − D = 1

m A is big and nef; apply [17], Proposition 9.4.23, to get H0(X, KX + L +
kH + I(D)) �= 0. Since the multiplier ideal I(D) is an ideal of OX , it follows that
H0(X, KX + L + kH) �= 0 for every k ≥ n, i.e. H0(X, KX + F + (k + 1)H) �= 0
as soon as k + 1 ≥ n + 1. ��

The following characterization of pseudo-effective divisors is probablywell-known
to the specialists; however, we did not find it explicitly in the literature.

Theorem 2 Let X be a smooth projective variety and let F be a divisor on X. The
following statements, where m and N denote natural numbers, are equivalent:

(i) F ∈ E f f (X) (i.e it is pseudo-effective).
(ii) There is a big divisor G such that H0(X, N (mF + G)) �= 0 for every m > 0

and for some N > 0.
(iii) There is a big divisor G such that H0(X,mF + G) �= 0 for all m > 0.
(iv) There is a very ample divisor G such that H0(X,mF + G) �= 0 for all m > 0.
(v) For every big divisor H we have H0(X,mF + kH) �= 0 for all m > 0 and all

k ≥ k0(H).

Proof First of all note that the implications (v) �⇒ (iv), (iv) �⇒ (iii) and (iii) �⇒
(ii) are obvious. Moreover (ii) �⇒ (i) follows from F ≡ limm→+∞ mF+G

m .
The difficult part is to prove (i) �⇒ (v); for this we use Lemma 2 together with

Kodaira’s Lemma (see for instance [16], Proposition 2.2.6). Namely, let G be the
divisor of Lemma 2; then H0(X,G) �= 0 (just take F = OX ). If H is a big divisor on
X , then by Kodaira’s Lemma H0(X, kH − G) �= 0 for every k ≥ k0(H). Hence

dim H0(X,mF + kH) = dim H0(X,mF + k0H − G + G + (k − k0)H) ≥
≥ dim H0(X,mF + (k − k0)H + G) > 0,

where the last inequality follows fromLemma 2 by taking as a pseudo-effective divisor
mF + (k − k0)H . ��
Remark 1 Note that (i)�⇒ (iii) is just Lemma 2, while (i)�⇒ (ii) follows easily from
int{E f f (X)} = Big(X); this last fact was first noticed by Mori in [18], (11.3) on p.
318. Indeed, let G ∈ Big(X) and F ∈ E f f (X); then the set [G, F) := {G + mF :
m ∈ R

+} is contained in int{E f f (X)} = Big(X).
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The next Theorem proves the equivalence of the different definitions of Termination
of Adjunction stated in the Introduction.

Theorem 3 Let X be a projective variety with at most canonical singularities.
The following statements, where m andm0 denote natural numbers, are equivalent:

(i) X is uniruled (i.e. KX is not pseudo-effective).
(ii) For every big Cartier divisor H there exists m0 = m0(H) > 0 such that mKX +

H /∈ E f f (X) for m ≥ m0.
(iii) For every big Cartier divisor H we have H0(X,m0KX + H) = 0 for some

m0 = m0(H) > 0.
(iv) For every very ample Cartier divisor H we have H0(X,m0KX + H) = 0 for

some m0 = m0(H) > 0.
(v) For some big Cartier divisor H0 we have H0(X,m0KX + kH0) = 0 for every

k > 0 and some m0 = m0(k) > 0.

Proof (i) �⇒ (ii) is implied by the properties of the cone described in Sect. 2; indeed,
it follows by contradiction from KX ≡ limm→+∞ mKX+H

m . (ii) �⇒ (iii), (iii) �⇒
(iv) and (iv) �⇒ (v) are straightforward. (v) �⇒ (i) requires a resolution of the
singularities ν : X̃ → X . Assume by contradiction that X is not uniruled. Therefore
also X̃ is not uniruled and KX̃ is pseudo-effective. If H is any big Cartier divisor
on X , then H̃ = ν∗(H) is big and by [16], Corollary 2.2.7, we have l H̃ = A + N
with A ample and N effective for some l > 0. It follows that hl H̃ = hA + hN
with hA very ample for some h > 0. Hence, by Lemma 1, for every m0 > 0 we
have dim H0(X,m0KX + (n + 1)hlH) = dim H0(X̃ ,m0KX̃ + (n + 1)hl H̃) =
dim H0(X̃ , (m0 − 1)KX̃ + (KX̃ + (n + 1)hA) + (n + 1)hN ) ≥ dim H0(X̃ , (m0 −
1)KX̃ + (KX̃ + (n + 1)hA)). Lemma 2 says that this last term is positive, thus
contradicting our assumption. ��
Remark 2 Note that Mori in [18], (11.4) on p. 318, suggests that in principle (i) could
have been stronger then (iv):We say that X is κ-uniruled if KX is not pseudo-effective.
We note that κ-uniruledness is slightly stronger than saying that adjunction terminates,
i.e. H0(X,mKX + H) = 0 for each very ample divisor H and some m = m(H) > 0.

The following two corollaries show that the two formulations, respectively for some
and for every, of (A) and (D) in the Introduction are equivalent.

Corollary 1 Let X be a projective variety with at most canonical singularities.
The following statements, where m andm0 denote natural numbers, are equivalent:

(i) For every big Cartier divisor H there exists m0 = m0(H) > 0 such that mKX +
H /∈ E f f (X) for m ≥ m0.

(ii) For some big Cartier divisor H0 there exists m0 = m0(H0) > 0 such that mKX +
H0 /∈ E f f (X) for m ≥ m0.

Proof It is obvious that (i) implies (ii). Conversely, if (ii) holds then KX is not pseudo-
effective, hence X is uniruled. It follows from Theorem 3 that (i) holds. ��
Corollary 2 Let X be a projective variety with at most canonical singularities.

The following statements, where m andm0 denote natural numbers, are equivalent:
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(i) For some big Cartier divisor H0 we have H0(X,m0KX + kH0) = 0 for every
k > 0 and some m0 = m0(k) > 0.

(ii) For every big Cartier divisor H we have H0(X,m0KX + kH) = 0 for every
k > 0 and some m0 = m0(k, H) > 0.

Proof It is obvious that (ii) implies (i). Conversely, if (i) holds then by Theorem 3 X
is uniruled, i.e. KX is not pseudo-effective. Assume by contradiction that there exist a
big divisor H and some k0 > 0 such that H0(X,mKX + k0H) �= 0 for every m > 0.
Then KX = limm→+∞ mKX+k0H

m is pseudo-effective, a contradiction. ��
As pointed out by the referee, since every divisor is a difference of very ample ones,

(C) is actually equivalent to the following stronger condition.

(C*) For every Cartier divisor D we have H0(X,m0KX + D) = 0 for some m0 =
m0(D) > 0.

The following is a more general definition of Termination of Adjunction.

Definition 2 (Condition (C’)) Let X be a normal projective variety; let H be an
effective Cartier divisor on X . We say that Adjunction Terminates in the classical
sense for H if there exists an integer m0 ≥ 1 such that

H0(X, H + mKX ) = 0

for every integer m ≥ m0.

We conjecture that such a definition is actually equivalent to the previous ones. The
following partial result in this direction is straightforward.

Proposition 2 Let X be a projective variety with canonical singularities. Let H be
any effective divisor and assume that Adjunction Terminates in the classical sense for
H. Then X has negative Kodaira dimension.

Proof Recall that the Kodaira dimension of a singular variety is defined to be
the Kodaira dimension of any smooth model (see for instance [16], Example
2.1.5). Assume by contradiction that X has non-negative Kodaira dimension, i.e.
H0(X̃ , n0KX̃ ) �= 0 for some integer n0 ≥ 1, where ν : X̃ → X is any resolu-
tion of the singularities. Since X has canonical singularities, from Lemma 1 it follows
that H0(X, n0KX ) = H0(X̃ , n0KX̃ ) �= 0. Hence H0(X, H + nn0KX ) �= 0 for every
integer n ≥ 1, contradicting the assumption that H0(X, H +mKX ) = 0 form >> 0.

��
Together with the standard conjecture that negative Kodaira dimension implies

uniruledness (see for instance [18], (11.5) on p. 319, and [3], Conjecture 0.1), from
Proposition 2 it would follow that Termination of Adjunction in the classical sense
implies uniruledness. In dimension two such an implication holds unconditionally, as
it was proved by Castelnuovo and Enriques in [7] (for a modern proof we refer to
[19]).

We conclude this section with a characterization of uniruled varieties which may
suggest a different way to consider (effective) termination of adjunction. It follows as
a straightforward consequence of Lemma 2 and the main result in [3].
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Proposition 3 Let X be a smooth projective variety of dimension n and let H be a
very ample divisor on X. If H0(X,mKX + (n + 1)H) = 0 for some natural number
m ≥ 1, then X is uniruled.

Proof Assume by contradiction that X is not uniruled, so that KX is pseudo-effective
by [3]. Lemma 2 with F = (m − 1)KX gives the sought-for contradiction. ��

Theorem 3.1 in [8] gives a statement similar to the last proposition; there the variety
is singular and H is just nef and big. However m > 1 and H has to be multiplied by
a higher number, for instance n2.

4 Quasi polarized pairs

A quasi polarized pair is a pair (X, L) where X is a projective variety with at most
Q-factorial terminal singularities and L is a nef and big Cartier divisor on X . If L is
ample we call the pair (X, L) a polarized pair.

In [1], Sect. 4, following T. Fujita’s ideas as revisited by A. Höring in [13] and
using the MMP developed in [5], we described a MMPwith scaling related to divisors
of type KX + r L , for r a positive rational number.

In particular we introduced the 0-reduction of a quasi polarized pair (X, L) (see
[1], Definition 4.4) as quasi polarized pair (X ′, L ′) birational to (X, L) obtained from
(X, L) via a Minimal Model Program with scaling:

(X, L) ∼ (X,�) := (X0,�0) → − − −− → (Xs,�s) ∼ (X ′, L ′),
which contracts or flips all extremal rays R+[C] on X such that L · C = 0.
At every step of the MMP given above, we have a quasi polarized variety (Xi , Li )

with at most terminal Q-factorial singularities.
If πi : (Xi ,�i ) → (Xi+1,�i+1) is birational then Li = π∗

i (Li+1), while if
πi : (Xi ,�i ) → (Xi+1,�i+1) is a flip then Li and π∗

i (Li+1) are isomorphic in
codimension one.

Remark 3 By using Lemma 1 and Hartogs theorem we deduce

H0(X, aKX + bL) = H0(X ′, aKX ′ + bL ′)

for a, b ∈ N.

The following has been proved in [1], Theorem 5.1 and in [12], Proposition 1.3.

Theorem 4 Let (X, L) be a quasi polarized pair. Then KX + t L is pseudo-effective
for all t ≥ n unless the 0-reduction (X ′, L ′) is (Pn,O(1)). Actually, KX + (n − 1)L
is pseudo-effective unless (X ′, L ′) is one of the following pairs:

• (Pn,O(1)),
• (Q,O(1)|Q), where Q ⊂ P

n+1 is a quadric,
• Cn(P

2,O(2)), a generalized cone over (P2,O(2)),
• X has the structure of a P

n−1-bundle over a smooth curve C and L restricted to
any fiber is O(1).

Moreover, except in the above cases, KX ′ + (n − 1)L ′ is nef.
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The first-reduction of a quasi polarized pair (X, L) (see [1], Definition 5.5) is a
quasi polarized pair (X ′′, L ′′) birational to (X, L) obtained from a 0-reduction (X ′, L ′)
via amorphismρ : X ′ → X ′′ consisting of a series of divisorial contractions to smooth
points, which are weighted blow-ups of weights (1, 1, b, . . . , b) with b ≥ 1 (see [2],
Theorem 1.1).

Remark 4 According to [1], Proposition 5.4, we have

H0(KX + t L) = H0(KX ′′ + t L ′′)

for any 0 ≤ t ≤ n − 2.

The following has been proved in [1], Theorem 5.7.

Theorem 5 Let (X, L) be a quasi polarized pair.
KX + (n − 2)L is not pseudo-effective if and only if any first-reduction (X ′′, L ′′)

is either one of the pairs listed in the statement of Theorem 4 or one of the following
pairs:

• a del Pezzo variety, that is −KX ′′ ∼Q (n − 1)L with L ample,
• (P4,O(2)),
• (P3,O(3)),
• (Q,O(2)|Q), where Q ⊂ P

4 is a quadric,
• X has the structure of a quadric fibration over a smooth curve C and L restricted
to any fiber is O(1)|Q,

• X has the structure of a Pn−2-bundle over a normal surface S and L restricted to
any fiber is O(1),

• n = 3, X is fibered over a smooth curve Z with general fiber P2 and L restricted
to it is O(2).

If KX +(n−2)L is pseudo-effective then on any first-reduction (X ′′, L ′′) the divisor
KX ′′ + (n − 2)L ′′ is nef.

The following definition was given by Höring (see ([13], Definition 1.2).

Definition 3 A quasi polarized pair (X, L) is a (generalized) scroll if X is smooth
and there is a fibration X → Y onto a projective manifold Y such that the general
fiber F admits a birational morphism τ : F → P

m and that OF (L) = τ ∗OPm (1). A
quasi polarized pair (X, L) is birationally a scroll if there is a birational morphism
ν : X ′ → X such that (X ′, ν∗L) is a (generalized) scroll.

The next is Theorem 1.4 in [13].

Theorem 6 Let (X, L) be a quasi polarized pair. If (X, L) is not birationally a scroll
then �X ⊗ L is generically nef.

A key step in the proofs of Theorem 7 and of Theorem 8 is the following lemma
due to Höring (see [13], p. 741, Step 2 in the proof of Theorem 1.2).
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Lemma 3 Let (X, L) be a quasi polarized pair. Assume that KX +(n−2)L is pseudo-
effective and that KX + (n − 1)L is nef and big. Then

Ln−2[(2(K 2
X + c2(X)) + 6nLKX + (n + 1)(3n − 2)L2] > 0.

We consider now a quasi polarized pair (X, L) and we assume moreover that X is
smooth. We borrow from Y. Fukuma the following set-up for the computation of the
Hilbert polynomial of KX + t L .

Let

F0(t) := dim H0(X, KX + t L),

Fi (t) := Fi−1(t + 1) − Fi−1(t) for every integer i with 1 ≤ i ≤ n.

The following statement can be easily checked by reverse induction on b ≤ a.

Lemma 4 Fix an integer a ≥ 1. If F0(t) = 0 for every integer t with 1 ≤ t ≤ a, then
Fa−b(c) = 0 for all integers b, c with 1 ≤ c ≤ b ≤ a.

If one defines

Ai (X, L) := Fn−i (1)

then it follows easily that

dim H0(X, KX + t L) =
n∑

j=0

(
t − 1

n − j

)
A j (X, L). (1)

Moreover, by taking a = n − i + 1 and b = c = 1 in Lemma 4, we obtain the
following implication.

Corollary 3 If H0(X, KX + t L) = 0 for every integer t with 1 ≤ t ≤ n − i + 1, then
Ai (X, L) = 0.

On the other hand, byKawamata–Viehweg vanishing theorem and Serre duality, we
have dim H0(X, KX +t L) = χ(X,−t L); therefore from the Riemann–Roch theorem
we obtain the following explicit computations (for further details, see [9], (2.2), and
[10], Proposition 3.2).

Lemma 5 Let (X, L) be a polarized manifold of dimension n and let g(X, L) denote
the sectional genus of (X, L). Then we have

A0(X, L) = Ln

A1(X, L) = g(X, L) + Ln − 1

24 · A2(X, L) = Ln−2[(2(K 2
X + c2(X)) + 6nLKX + (n + 1)(3n − 2)L2]

48 · A3(X, L) = (n − 2)(n2 − 1)Ln + n(3n − 5)KX L
n−1 +

+2(n − 1)K 2
X L

n−2 + 2c2(X)(KX + (n − 1)L)Ln−3.
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5 Polarized abundance

The aim of this section is to argue around the Conjectures stated in the introduction.
We start showing that Proposition 1 is a direct consequence of (the more general)

Theorem D in [5].

Remark 5 Let (X, L) be a quasi-polarized variety and let t be a positive rational
number. Then there exists an effective Q-divisor �t on X such that �t ∼Q t L and
(X,�t ) is Kawamata log terminal. This is well-known to the specialists, a proof can
be found in [1]. If KX + t L ∈ E f f (X), then KX +�t ∈ E f f (X) and by [5], Theorem
D, there exists an R-divisor D ≥ 0 such that KX + �t ∼R D. That is, there exists
N ∈ N such that H0(X, N (KX + t L)) > 0.

We consider Conjecture 2; for s = n we recover the following easy fact.

Proposition 4 Let (X, L) be a quasi polarized pair of dimension n. We have
H0(X, KX + t L) = 0 for every integer t with 1 ≤ t ≤ n if and only if KX + nL is
not pseudo-effective. Moreover this is the case if and only if the 0-reduction (X ′, L ′)
of the pair (X, L) is (Pn,O(1)).

Proof By Remark 3 we have H0(X, KX + t L) = H0(X ′, KX ′ + t L ′) for any t ≥ 0.
Hence if H0(X, KX + t L) = 0 for every integer t with 1 ≤ t ≤ n then from
Corollary 3 it follows that A1(X ′, L ′) = g(X ′, L ′) + L ′n − 1 = 0. Since we have
g(X ′, L ′) = 0 and L ′n = 1 if and only if (X ′, L ′) = (Pn,O(1)), the claim follows
from [1], Theorem 5.1 (2). ��

Next, for s = n − 1, the following is a slightly more explicit version of [13],
Theorem 1.2; the proof is essentially the one of [13].

Theorem 7 Let (X, L)be aquasi polarized pair of dimension n.Wehave H0(X, KX+
t L) = 0 for every integer t with 1 ≤ t ≤ n − 1 if and only if KX + (n − 1)L is not
pseudo-effective.

That is, by Theorem 4, if and only if the 0-reduction (X ′, L ′) of the pair (X, L) is
one of the following:

(i) (Pn,O(1)),
(ii) (Q,O(1)|Q), where Q ⊂ P

n+1 is a quadric,
(iii) Cn(P

2,O(2)), a generalized cone over (P2,O(2)),
(iv) X has the structure of a Pn−1-bundle over a smooth curve C and L restricted to

any fiber F is O(1).

Proof Let (X ′, L ′) be the 0-reduction of the pair (X, L) and let (X̃ ′, L̃ ′) be its desin-
gularization (namely, ν : X̃ ′ → X ′ and L̃ ′ = ν∗(L ′)).

By Remark 3 and Lemma 1 we have

H0(X, KX + t L) = H0(X ′, KX ′ + t L ′) = H0(X̃ ′, KX̃ ′ + t L̃ ′)

for any t ≥ 0.
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The if part is obvious. In order to prove the only if part, assume that H0(X, KX +
t L) = H0(X ′, KX ′ +t L ′) = H0(X̃ ′, KX̃ ′ + t L̃ ′) = 0 for every integer t with 1 ≤
t ≤ n − 1. Corollary 3 implies that

A2(X̃ ′, L̃ ′) = 0. (2)

Assume by contradiction that (X ′, L ′) is not one of the pairs in (i), (ii), (iii), (iv);
then, by Theorem 4, KX ′ + (n − 1)L ′ is nef. The required contradiction is provided
by [13], Theorem 1.2. ��

The next step s = n − 2 should work as follows.

Conjecture 3 Let (X, L) be a quasi polarized manifold of dimension n. We have
H0(X, KX+t L) = 0 for every integer t with 1 ≤ t ≤ n−2 if and only if KX+(n−2)L
is not pseudo-effective, that is if and only if the first-reduction (X ′′, L ′′) is one of the
pairs (X, L) listed in Theorems 4 and 5.

Once again, the if part is obvious. Conversely, from Corollary 3 it follows that
A3(X, L) = 0, but the proof of the only if part seems to be elusive.

From now on, we focus on the case n = 4; here formula ( 1) reads simply as:

H0(X, KX + t L) =
(
t − 1

4

)
A0(X, L) +

(
t − 1

3

)
A1(X, L)

+
(
t − 1

2

)
A2(X, L) +

(
t − 1

1

)
A3(X, L) +

(
t − 1

0

)
A4(X, L)

(3)

where

A1(X, L) = g(X, L) + L4 − 1,

A2(X, L) = dim H0(X, KX + 3L) − 2 dim H0(X, KX + 2L)

+ dim H0(X, KX + L),

A3(X, L) = dim H0(X, KX + 2L) − dim H0(X, KX + L),

A4(X, L) = dim H0(X, KX + L).

We prove the following generalization of [11], Theorem 3.1.

Theorem 8 Let (X, L) be a polarized manifold of dimension 4 and let t be an integer
with t ≥ 3. If KX + t L is pseudo-effective, then H0(X, KX + t L) �= 0. In particular,

• H0(X, KX + t L) �= 0 for t ≥ 5
• H0(X, KX + 4L) = 0 if and only if (X, L) is (P4,O(1))
• H0(X, KX + 3L) = 0 if and only if (X, L) is either (Q,O(1)|Q), where Q ⊂ P

5

is a quadric, or X has the structure of a P
3-bundle over a smooth curve C and L

restricted to any fiber is O(1).
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Proof Since L is ample (X, L) is a 0-reduction, in particular by Theorem 4 we can
assume that KX+t L is nef for t ≥ 4.We can also assume that KX+3L is nef. Indeed, if
not then (X, L) is one of the exceptions listed in the statement of Theorem 4. If (X, L)

is (P4,O(1)) or (Q,O(1)), where Q ⊂ P
5 is a quadric hypersurface, then Theorem 8

is obvious. The case of a generalized cone over (P2,O(2)) does not occur since X
is smooth, while the case of a P3-bundle over a smooth curve will be considered in
Proposition 5.

Now, assume that �X ⊗ L is generically nef. By using the formulas in Lemma 5
andMiyaoka inequality as stated in [13], Corollary 2.11, with D := 4L , we compute:

A2(X, L) ≥ 1

24

(
2(KX + 3L)2L2 + 6(KX + 3L)L3 + 2L4

)

A3(X, L) ≥ − 1

24
(KX + 3L)L3.

Hence from ( 3) and the nefness of KX + 3L it follows that

dim H0(X, KX + t L) ≥ (t − 1)A3(X, L) + (t − 1)(t − 2)

2
A2(X, L) > 0

for every t ≥ 3.
Finally, assume that �X ⊗ L is not generically nef. By Theorem 6 and Lemma 1

we may assume that X is a (generalized) scroll and the claim is a consequence of the
following proposition. ��
Proposition 5 Let (X, L) be a generalized scroll of dimension 4 and let t be an integer
such that t ≥ 3. If KX + t L is nef, then H0(X, KX + t L) �= 0.

Proof Let X → Y be the scroll fibration and let F be the generic fiber with a birational
morphism τ : F → P

m as in Definition 3.
If X = P

4 the claim is obvious; therefore we can assume that m ≤ 3 and that
A1(X, L) = g(X, L) + L4 − 1 > 0 (since we have g(X, L) = 0 and L4 = 1
if and only if (X, L) = (P4,O(1))). We also have that A0(X, L) = L4 ≥ 1 and
A4(X, L) = dim H0(X, KX + L) ≥ 0.

If m = 3, then KX + sL|F = τ ∗OP3(−4 + s), hence H0(X, KX + sL) = 0 for
s ≤ 3. Thus we have A2(X, L) = A3(X, L) = 0 and from ( 3) it follows that for
t ≥ 4 we have

dim H0(X, KX + t L) ≥ A1(X, L) > 0

If m = 2, then KX + sL|F = τ ∗OP2(−3 + s), hence H0(X, KX + sL) = 0 for
s ≤ 2. In particular, we have A3(X, L) = 0 and A2(X, L) = dim H0(X, KX + 3L).

For t = 3, i.e. if we assume KX + 3L is nef, by Theorem 1.2 in [13] we must have
H0(X, KX + 3L) �= 0 since H0(X, KX + sL) = 0 for s ≤ 2.

For t ≥ 4 we deduce from ( 3) that

dim H0(X, KX + t L) ≥ A1(X, L) > 0.
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If m = 1, then KX + sL|F = τ ∗OP1(−2 + s), hence H0(X, KX + L) = 0. In
particular, we have A3(X, L) ≥ 0.

If H0(X, KX +2L) = 0, then A2(X, L) = dim H0(X, KX +3L) and we conclude
exactly as in the previous case m = 2.

If H0(X, KX + 2L) �= 0, then KX + 2L is pseudo-effective and KX + 3L is
pseudo-effective and big.

Passing to the 0-reduction we may assume that KX + 3L is nef and big. Therefore
Lemma 3 applies and by Lemma 5 we get A2(X, L) > 0.

Hence from ( 3) it follows that for t ≥ 3 we have

dim H0(X, KX + t L) ≥ A2(X, L) > 0.

��
The statement of Theorem 8 should hold also for t = 2, but we have only the

following partial result.

Proposition 6 Let (X, L) be a polarized manifold of dimension 4. If KX + 2L is
pseudo-effective, then H0(X, KX + 2L) �= 0 unless �X < 1

2 L > is not generically
nef.

Proof By Theorem 5 and Remark 4 we may assume that KX + 2L is nef.
Assume that �X < 1

2 L > is generically nef. By using the formula for A3(X, L)

in Lemma 5 and Miyaoka inequality, as stated in [13], Corollary 2.11, with D := 2L ,
we compute:

A3(X, L) ≥ 1

16
(KX + 2L)2L2 + 1

12
(KX + 2L)L3 + 1

48
L4.

Hence from ( 3) it follows that

dim H0(X, KX + t L) ≥ A3(X, L) > 0.

��
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