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Abstract In this paper two mathematical models are proposed and analyzed to elu-
cidate the influence on a generalist predator of its hidden and explicit resources.
Boundedness of the system’s trajectories, feasibility, local and global stability of the
equilibria for both models are established, as well as possible local bifurcations. The
findings indicate that the relevant behaviour of the system, including switching of
stability, extinction and persistence of the involved populations, depends mainly on
the reproduction rate of the favorite prey. To achieve full ecosystem survival some
balance between the respective grazing pressures exerted by the predator on the prey
populations needs to be maintained, while higher grazing pressure just on one species
always leads to its extinction.

Keywords Predator–prey model · Hidden prey · Explicit prey · Global stability ·
Bifurcation

Ezio Venturino is the Member of the INdAM research group GNCS.

B Ezio Venturino
ezio.venturino@unito.it

Luciana Mafalda Elias Assis
lucianam@unemat-net.br

Malay Banerjee
malayb@iitk.ac.in

1 Faculdade de Ciências Exatas e Tecnológicas, Universidade do Estado de Mato Grosso,
Av. dos Ingás 3001, Sinop 78555000, Brazil

2 Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kalyanpur,
Kanpur 208016, India

3 Dipartimento di Matematica “Giuseppe Peano”, Università di Torino, Via Carlo Alberto 10,
10123 Turin, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11565-018-0298-2&domain=pdf
http://orcid.org/0000-0001-7215-5114


260 Ann Univ Ferrara (2018) 64:259–283

Mathematics Subject Classification 92D25 · 92D40

1 Introduction

The mathematical study of predator–prey interactions is an important research com-
ponent in mathematical ecology. Various types of interactions and population models
with two ormore trophic levels have been formulated and received significant attention
from several researchers in the past and the more recent literature. The basic building
block for a wide range of study are the two populations predator–prey models, in
which mathematical models describe the interactions of a hunter species that feeds on
a prey, thereby being beneficial for the former and detrimental for the latter. In real
life situations this may occur when possibly also other resources are available for the
predator. The latter can be subdivided into two broad sets, the specialist predators,
that feed only on one species, see for instance the case of the weasel Mustela nivalis
exploiting the field vole Microtus agrestis, [3], and the generalist predators with sev-
eral options for their diet, e.g. the spiders, that hunt every possible insects, [13,17]. In
this latter situation, mainly with more than two resources available, predators focus
generally on the most abundant one, changing to exploiting the substitute prey, the
second most abundant population, when the primary becomes scarce, [4].

It is a matter of fact that the literature on predator–prey models with generalist
predator appears to be smaller compared to that with specialist predator. Primarily,
this is due to the fact that the models with a generalist predator are a little bit tougher to
handle mathematically. Indeed in most of the cases the components of the coexisting
equilibrium point cannot be obtained explicity when the functional responses are
represented by highly nonlinear functions of both populations involved, prey and
predators.

In case of a two species predator–prey model with a specialist predator, the latter
cannot survive in the absence of prey as its reproduction and growth rates are functions
of the prey density and in its absence these functions vanish. On the other hand,
the growth rate of the generalist predator is different from zero even if the explicit
prey disappears, because they can feed on other resources. The mathematical models
of two-species generalist predator–prey models can be divided into two types: (i)
those in which the predators growth rate follows a logistic law, to which the prey
density contributes enhancing it with an additional growth; (ii) those whose predators
growth rate follows logistic growth, where the carrying capacity is a function of prey
population density. The second type of systems is known as Leslie–Gower [9] or
Holling–Tanner [1,6] model, depending upon the type of the functional response
[7,8,19] term involved to describe the grazing pattern of the prey by their predator.

Predator–prey models with two-prey and one predator are investigated in particular
because this leads to the question of prey switching, [10,11]. This occurs when the
primary resource by overexploitation becomes more difficult to find. The alternative,
less palatable prey at that moment is seen as a new potential diet for their survival
by the hungry predators. They thus switch their attention to it, instead of wasting
time in a difficult search for the primary hard-to-find resource. As a result, in these
cases the absence of either primary or substitute prey does not necessarily drive the

123



Ann Univ Ferrara (2018) 64:259–283 261

predator towards extinction. The main objective of the present work is to elucidate the
existing relationship between two predator–prey models with a generalist predator,
distinguishing the model with implicit secondary prey and the one in which the latter
population is explicitly modeled as an additional ecosystem’s variable.

The paper is organized as follows. In the next section the two types of models are
formulated and their basic properties are analyzed. Global stability of the coexistence
equilibria in both models is assessed in Sect. 3 and next the possible bifurcations
are analytically, Sect. 4, and numerically, Sect. 5, investigated. Section 6 performs
the system’s comparative study, the subsequent section contains further numerical
simulations on bifurcations. A final discussion concludes the paper.

2 The predator–prey models

The predator population is denoted by Z , thriving in the presence respectively of
one and two of its only resources, the prey are represented by X and Y . Considering
the two possible demographic situations, the following two different predator–prey
models can be formulated. The first one with two-populations, i.e. the primary food
source for the predators, whose equilibria are denoted by [p_hp], the first “p” referring
to predators, the second one to prey, “h” standing for the “hidden” substitute resource
not explicitly modeled in the equations, is classical, see Chapter 3 of [15]:

d X

dt
= r X

(
1 − X

K

)
− aX Z ,

d Z

dt
= u Z

(
1 − Z

L

)
+ aeX Z , (1)

The first equation models the logistic prey growth and its additional mortality due to
encounters between prey individuals with the predators. The last term in the second
one in the last term accounts for the benefits the latter gain from this successful
hunting, while the first term indicates that the predators have alternative food sources.
Its three dimensional counterpart, with the additional resource explicitly modeled, has
equilibria denoted by [p_ep], “e” standing for “explicit”. As a one-predator-two prey
system, it is also present in the literature, but here a correction on the mortality rate
discussed below is made:

d X

dt
= r X

(
1 − X

K

)
− aZ X,

dY

dt
= sY

(
1 − Y

H

)
− bZY,

d Z

dt
= −m Z2 + e(aZ X + bZY ). (2)

The first and second equations are replicae of the first equation in (1) for the prey, in
this case there being explicitly two food resources in the ecosystem. Note that here
the alternative prey Y is the unnamed resource in model (1). The predators’ equation
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is the same of the former model, with the exception that now they feed only on these
two types of prey, and therefore are no more generalist as in (1), but two-population
specialists on X andY . This entails that theywill not survive in the absence of both prey.

The parameters are nonnegative in both models. In (2) we take mortality in the
quadratic form −m Z2 since this term is related to the intraspecific competition term
−uL−1Z2 of the system (1). Indeed, comparing the second equation of (1) with the
third one of (2), the last term in the former is identical with the second one of the latter.
The first (reproductive) term in the generalist model (1) is now replaced by the hunting
on the Y prey, last term of (2). To make the comparison fair, then the mortality due to
intraspecific competition in (1)must correspond to the first term in (2). This entails that
in the specialist system the predators essentially die by intraspecific competition for
the needed resources. Mathematically, the connection between (1) and (2) is given by

u = ebY, L = eb
Y

m
, i.e. u = Lm. (3)

Here we should understand the value of the population Y at steady state, namely
Y = Y ∗, otherwise (3) would be “unbalanced”, i.e. it would have only one time-
dependent side.

The Jacobians for models (1) and (2) are respectively

J [p_hp] =
(

r − 2 r
K X − aZ −aX
aeZ u − 2 u

L Z + aeX

)
(4)

and

J [p_ep] =
⎛
⎝ r − 2 r

K X − aZ 0 −aX
0 s − 2 s

H Y − bZ −bY
aeZ ebZ −2m Z + e(aX + bY )

⎞
⎠ . (5)

2.1 Boundedness of models (1) and (2)

In order to obtain a well-posed model, we need to show that the systems trajectories
remain confined within a compact set. Consider the total environment population
ϕ(t) = X (t) + Z(t). Let ϕ(t) be a differentiable function, then taking an arbitrary
0 < μ, summing the equations in model (1), and observing that e ≤ 1 we find the
estimate:

dϕ(t)

dt
+ μϕ(t)≤r X

(
1 − X

K
+ μ

r

)
+u Z

(
1 − Z

L
+ μ

u

)
= p1(X) + p2(Z). (6)

The functions p1(X) and p2(Z) are concave parabolae, with maxima located at X�,
Z�, and corresponding maximum values

M1 = p1(X�) = r K

4

(
1 + μ

r

)2
, M2 = p2(Z�) = uL

4

(
1 + μ

u

)2
,
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Thus,

dϕ(t)

dt
+ μϕ(t) ≤ M1 + M2 = M.

Integrating the differential inequality, we find

ϕ(t) ≤
(

ϕ(0) − M

μ

)
e−μt + M

μ
≤ max

{
ϕ(0),

M

μ

}
.

From this the boundedness of the original ecosystem populations is immediate.
The proof for system (2) follows a similar patter, after remarking that settingψ(t) =

X (t) + Y (t) + Z(t) and summing the equations in model (2), we find again for an
arbitrary 0 < μ,

dψ(t)

dt
+ μψ(t) ≤ r X

(
1 − X

K
+ μ

r

)
+ sY

(
1 − Y

H
+ μ

s

)
+ Z(μ − m Z).

The above right hand side contains now three concave parabolae; the proofs follows
then similarly from the previous steps and is therefore omitted.

Thus for both models, the solutions are always non-negative and remain bounded.

2.2 Equilibria of model (1)

The model (1) is standard in mathematical biology, see for instance Chapter 3 of [15]
where also more complex models of such type are described. For this reason here we
just summarize the equilibrium analysis, for the convenience of the reader and for later
comparison purposes. The following equilibria are found: the origin P [p_hp]

1 = (0, 0),

always unstable, (eigenvalues r , u) and the points P [p_hp]
2 = (K , 0), also unstable,

(eigenvalues −r , u + aeK ), P [p_hp]
3 = (0, L), (eigenvalues −u, r − aL) which is

stable for
r < aL; (7)

finally steady-state coexistence, P [p_hp]
4 = (X [p_hp]

4 , Z [p_hp]
4 ). For the latter, explic-

itly,

X [p_hp]
4 = uK

r − aL

ur + a2eK L
, Z [p_hp]

4 = r

a

(
1 − u

r − aL

ur + a2eK L

)
.

The coexistence equilibrium P [p_hp]
4 is feasible for K ≥ X [p_hp]

4 ≥ 0, which explicitly
give just the condition

r ≥ aL , (8)

as the first inequality is easily seen to be always satisfied, namely being equivalent to
aeK + u ≥ 0. Note also the transcritical bifurcation at r = aL between P [p_hp]

3 and
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P [p_hp]
4 . P [p_hp]

4 , whenever feasible, is unconditionally stable, because the Routh–
Hurwitz conditions are satisfied:

−tr
(

J [p_hp]
P4

)
= r K −1X [p_hp]

4 + uL−1Z [p_hp]
4 > 0,

det
(

J [p_hp]
P4

)
=

(
r K −1uL−1 + a2e

)
X [p_hp]
4 Z [p_hp]

4 > 0.

Remark 1 In particular, note that the condition on the trace being strictly positive
prevents the occurrence of Hopf bifurcations at this equilibrium. They cannot also
occur at P [p_hp]

3 since the corresponding eigenvalues are both real.

2.3 Equilibria of model (2)

In this subsectionwe outline the results for (2) and in theAppendix somemathematical
details are provided. There are 7 possible equilibria. Four points are always unstable:
the origin P [p_ep]

1 = (0, 0, 0), (eigenvalues r , s, 0), P [p_ep]
2 = (0, H, 0), (eigenvalues

r , −s, ebH ), P [p_ep]
3 = (K , 0, 0), (eigenvalues −r , s, eaK ), P [p_ep]

4 = (K , H, 0),
(eigenvalues −r , −s, aeK + beH ). The conditionally stable points are instead the
primary-prey-free equilibrium P [p_ep]

5 = (0, Y [p_ep]
5 , Z [p_ep]

5 ) and the substitute-prey-

free point P [p_ep]
6 = (X [p_ep]

6 , 0, Z [p_ep]
6 ), with population levels that are explicitly

evaluable:

Y [p_ep]
5 = ms H

b2eH + ms
, Z [p_ep]

5 = ebs H

b2eH + ms
,

X [p_ep]
6 = mr K

a2eK + mr
, Z [p_ep]

6 = aer K

a2eK + mr
.

Feasibility conditions are always satisfied for both equilibria. Stability of these equi-
libria hinges on the following inequalities: for P [p_ep]

5

aZ [p_ep]
5 = abes H

b2eH + ms
> r, (9)

and for P [p_ep]
6

bZ [p_ep]
6 = aber K

a2eK + mr
> s, (10)

as the characteristic equations factorize in both cases to give one explicit eigenvalue
producing the above conditions,while theRouth–Hurwitz conditions for the remaining
minors are always satisfied, namely

s

H
Y [p_ep]
5 + m Z [p_ep]

5 > 0,
(ms

H
+ b2e

)
Y [p_ep]
5 Z [p_ep]

5 > 0,

r

K
X [p_ep]
6 + m Z [p_ep]

6 > 0,
(mr

K
+ a2e

)
X [p_ep]
6 Z [p_ep]

6 > 0.
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For the steady-state coexistence P [p_ep]
7 = (K −aKr−1Z [p_ep]

7 , H −bHs−1Z [p_ep]
7 ,

Z [p_ep]
7 ), we find

Z [p_ep]
7 = ers(bH + aK )

s(a2eK + mr) + b2er H
> 0.

Feasibility requirements for X [p_ep]
7 ≥ 0 and for Y [p_ep]

7 ≥ 0 are given, respectively,
by

r ≥ aZ [p_ep]
7 = abes H

b2eH + ms
, s ≥ bZ [p_ep]

7 = aber K

a2eK + mr
. (11)

For stability of the latter, the diagonal entries in the generic Jacobian simplify to
−r K −1X [p_ep]

7 ,−s H−1Y [p_ep]
7 ,−m Z [p_ep]

7 and it then follows that

−tr
(

J [p_ep]
P7

)
= r

K
X [p_ep]
7 + s

H
Y [p_ep]
7 + m Z [p_ep]

7 > 0,

− det
(

J [p_ep]
P7

)
= X [p_ep]

7 Y [p_ep]
7 Z [p_ep]

7

H K

(
a2esK + b2er H + mrs

)
> 0

and the remaining Routh–Hurwitz condition given by

r2s

K 2H

(
X [p_ep]
7

)2
Y [p_ep]
7 +

(
ra2e

K
+ r2m

) (
X [p_ep]
7

)2
Z [p_ep]
7

+
(
3rms

K H
+ rb2e

K
+ sa2e

H

)
X [p_ep]
7 Y [p_ep]

7 Z [p_ep]
7

+
(

sm2

H
+ mb2e

) (
Y [p_ep]
7

)2
Z [p_ep]
7

+
(

s2m

H2 + sb2e

H

) (
Y [p_ep]
7

)2
Z [p_ep]
7 +

(
m2r

K
+ ea2m

)
X [p_ep]
7

(
Z [p_ep]
7

)2

+ s2r

K H2 X [p_ep]
7

(
Y [p_ep]
7

)2

+
(

b2er H + a2esK + rms

K H

)
X [p_ep]
7 Y [p_ep]

7 Z [p_ep]
7 > 0

is clearly satisfied as well. Thus the coexistence equilibrium P [p_ep]
7 of (2) is uncon-

ditionally stable, when feasible.
From (9) and the first condition of (11), there is a transcritical bifurcation link-

ing P [p_ep]
7 with P [p_ep]

5 and, from (10) and the second condition of (11) there is a

transcritical bifurcation linking P [p_ep]
7 with P [p_ep]

6 .
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All the details of the local stability analysis of Sects. 2.2 and 2.3 are presented in
“Appendix A”.

3 Global stability for the equilibria of models (1) and (2)

The coexisting equilibrium point P [p_hp]
4 of the model (1) cannot undergo any Hopf-

bifurcation, recall Remark 1 in Sect. 2.2. Here we prove that the feasibility of P [p_hp]
4

implies that it is globally asymptotically stable. For this purpose we consider the
following Lyapunov function,

V [p_hp]
4 (X (t), Z(t)) =

(
X − X [p_hp]

4 − X [p_hp]
4 ln

X

X [p_hp]
4

)

+α1

(
Z − Z [p_hp]

4 − Z [p_hp]
4 ln

Z

Z [p_hp]
4

)
,

whereα1 is a positive constant, yet to be determined.Differentiating the above function
with respect to t along the solution trajectories of system (1), we find

dV [p_hp]
4

dt
= − r

K

(
X − X [p_hp]

4

)2 − α1
u

L

(
Z − Z [p_hp]

4

)2

+ a(α1e − 1)
(

X − X [p_hp]
4

) (
Z − Z [p_hp]

4

)
.

If we choose α1 = 1
e > 0, then the above derivative is negative definite except at

the equilibrium point P [p_hp]
4 . Hence P [p_hp]

4 is a globally stable equilibrium point
whenever it is feasible.

For the equilibrium P [p_hp]
3 we instead choose

V [p_hp]
3 (X (t), Z(t)) = α2X + α1

(
Z − Z [p_hp]

3 − Z [p_hp]
3 ln

Z

Z [p_hp]
3

)
,

and differentiation along the system trajectories leads to

dV [p_hp]
3

dt
=−α2

r

K
X2 − α1

u

L

(
Z − Z [p_hp]

3

)2 + [aZ(α2e − α1) + α1r − α2eaL]X

so that choosing α2e = α1 and using the feasibility condition (7), the derivative of
V [p_hp]
3 becomes negative definite. Hence, when feasible, also P [p_hp]

3 is globally
asymptotically stable.
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Similarly, by choosing the following Lyapunov function,

W [p_ep]
7 (X (t), Y (t), Z(t)) =

(
X − X [p_ep]

7 − X [p_ep]
7 ln

X

X [p_ep]
7

)

+
(

Y − Y [p_ep]
7 − Y [p_ep]

7 ln
Y

Y [p_ep]
7

)

+β1

(
Z − Z [p_ep]

7 − Z [p_ep]
7 ln

Z

Z [p_ep]
7

)
,

β1 is a positive constant required to be determined. Differentiang the function W [p_ep]
7

and along the solution trajectories of the system (2) we find, after some algebraic
manipulation,

dW [p_ep]
7

dt
= − r

K

(
X − X [p_ep]

7

)2 − s

H

(
Y − Y [p_ep]

7

)2 − mβ1

(
Z − Z [p_ep]

7

)2

+
[
a(1 − eβ1)

(
X − X [p_ep]

7

)
+ b(1 − eβ1)

(
Y − Y [p_ep]

7

)] (
Z − Z [p_ep]

7

)
.

Choosing β1 = 1
e we find that the derivative of W [p_ep]

7 is negative definite except at

P [p_ep]
7 . Hence P [p_ep]

7 is a global attractor whenever it is feasible.
For the other equilibria, again when locally asymptotically stable, they are also

globally asymptotically stable. Indeed we consider instead, e.g. for P [p_ep]
5 , the func-

tion

W [p_ep]
5 (X (t), Y (t), Z(t)) = α2X + α3

(
Y − Y [p_ep]

5 − Y [p_ep]
5 ln

Y

Y [p_ep]
5

)

+α1

(
Z − Z [p_ep]

5 − Z [p_ep]
5 ln

Z

Z [p_ep]
5

)
.

Once more, differentiation along the trajectories gives

dW [p_ep]
5

dt
= −α2

r

K

(
X −X [p_ep]

5

)2−α3
s

H

(
Y − Y [p_ep]

5

)2−α1m
(

Z − Z [p_ep]
5

)2

+[a(1 − eα1)
(

X −X [p_ep]
5

)
+X

[
α2r − α3aZ [p_ep]

5 − aZ(α3 − α2)
]

and choosing α2 = α3 = eα1 and using the local stability condition (9) the above
derivative of W [p_ep]

5 is negative definite. Hence the global stability for P [p_ep]
5 . For

P [p_ep]
6 the result is obtained in the same way, using (10).
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4 Transcritical bifurcation of model (1)

Here we verify the analytical transversality conditions required for the transcritical
bifurcation between the equilibrium points P [p_hp]

3 and P [p_hp]
4 . For convenience we

consider r as the bifurcation parameter. The axial equilibrium point P [p_hp]
3 coincides

with the coexistence equilibrium P [p_hp]
4 at the parametric threshold rT C = aL .

The Jacobian matrix of the system (1) evaluated at P [p_hp]
3 and at the parametric

threshold r = aL , we find

J [p_hp]
P3

(rT C ) =
(

0 0
eaL −u

)
,

and its right and left eigenvectors, corresponding to the zero eigenvalue, are given by
V1 = ϕ1(1, er

u )T and Q1 = ω1(1, 0)T , where ϕ1 and ω1 are arbitrary nonzero real
numbers. Differentiating partially the right hand sides of the Eq. (1) with respect to r
and calculating its Jacobian matrix, we respectively find

fr =
(

X [p_hp]
3 (1 − X [p_hp]

3
K )

0

)
, D fr =

(
1 − 2X [p_hp]

3
K 0

0 0

)
.

Here we use the same notations of [16] to verify the Sotomayor’s conditions for the
existence of a transcritical bifurcation. Let D2 f ((X, Z); r)(V1, V1) be defined by

⎛
⎝

∂2 f1
∂ X2 ξ21 + 2 ∂2 f1

∂ X∂ Z ξ1ξ2 + ∂2 f1
∂ Z2 ξ22

∂2 f2
∂ X2 ξ21 + 2 ∂2 f2

∂ X∂ Z ξ1ξ2 + ∂2 f2
∂ Z2 ξ22

⎞
⎠ ,

where f1 = r X
(
1 − X K −1

) − aZ X , f2 = u Z
(
1 − Z L−1

) + aeZ X are the right
hand sides of (1) and ξ1, ξ2 are the components of the eigenvector V1.

After calculating D2 f we can easily verify the following three conditions

QT
1 fr ((0, L); rT C ) = 0, QT

1 D fr ((0, L); rT C )V1 = 1 �= 0,

QT
1 D2 f ((0, L); rT C )(V1, V1) = −2aL

(
1

K
+ ae

u

)
�= 0.

Hence all the conditions for transcritical bifurcation are satisfied. In the above expres-
sion, D fr ((0, L); rT C ) denotes the Jacobian of the matrix fr evaluated at (0, L) for
r = rT C .

Figure 1 illustrates the simulation explicitly showing the transcritical bifurcation
between P [p_hp]

3 and P [p_hp]
4 for the chosen parameters values (see the caption of Fig.

1) when the parameter r crosses the critical value rT C

rT C = aL = 1 (12)
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Fig. 1 Transcritical bifurcation

between P[p_hp]
3 and P[p_hp]

4
for the parameter values:
K = a = u = L = e = 1. Initial
conditions X0 = Z0 = 0.01.

The equilibrium P[p_hp]
3 is

stable from 0.1 to 1 and P[p_hp]
4

is stable past 1; the vertical line
corresponds at the transcritical
bifurcation threshold between
the equilibria
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5 Numerical simulation results of model (2)

Similar towhatwas done in Sect. 4we also verify the transversality conditions required
for the transcritical bifurcations between the coexistence equilibrium P [p_ep]

7 and

first the equilibrium point P [p_ep]
5 , and secondly with the equilibrium point P [p_ep]

6 .
Considering a and b for convenience as the bifurcation parameters in the two cases,
these bifurcations occur respectively at the parametric thresholds

aT C = mrs + b2er H

bes H
, bT C = mrs + a2esK

aer K
.

The Jacobian matrix of the system (2) evaluated at P [p_ep]
7 and at the parametric

threshold aT C becomes

J [p_ep]
P7

(aT C ) =

⎛
⎜⎜⎝

0 0 0

0 − ms2

b2eH+ms
− bms H

b2eH+ms

er b2e2s H
b2eH+ms

− bems H
b2eH+ms

⎞
⎟⎟⎠ ,

and its right and left eigenvectors, corresponding to the zero eigenvalue, are given by

V2 = ϕ2

(
1,−r

s
,

r

bH

)T
, Q2 = ω2(1, 0, 0)

T ,

where ϕ2 and ω2 represent arbitrary nonzero real numbers. Differentiating partially
the right hand sides of (2) with respect to a, we find

fa =
⎛
⎝−X [p_ep]

7 Z [p_ep]
7

0
eX [p_ep]

7 Z [p_ep]
7

⎞
⎠ ,
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and calculating its Jacobian matrix, we get

D fa =
⎛
⎝−Z [p_ep]

7 0 −X [p_ep]
7

0 0 0
eZ [p_ep]

7 0 eX [p_ep]
7

⎞
⎠ .

After calculating D2 f we can then verify the following three conditions

QT
2 fa

(
P [p_ep]
7 ; aT C

)
= 0, (13)

QT
2 D fa

(
P [p_ep]
7 ; aT C

)
V2 = −ϕ2ω2

bes H

b2eH + ms
�= 0 (14)

and

QT
2 D2 f

(
P [p_ep]
7 ; aT C

)
(V2, V2) = −ϕ2

2ω2

(
2r

K
+ 2r2

s H
+ 2mr2

b2eH2

)
�= 0. (15)

Now, considering the parametric threshold, bT C , the Jacobian matrix of the system
(2) evaluated at P [p_ep]

7 and at bT C is

J [p_ep]
P7

(bT C ) =

⎛
⎜⎜⎝

− mr2

a2eK+mr
0 − amr K

a2eK+mr

0 0 0
a2e2r K

a2eK+mr
es − aemr K

a2eK+mr

⎞
⎟⎟⎠ ,

and its right and left eigenvectors, corresponding to the zero eigenvalue, are given by

V3 = ϕ3

(
1,−r

s
,

r

aK

)T
, Q3 = ω3(0, 1, 0)

T ,

where ϕ3 andω3 are any nonzero real numbers. Differentiating partially the right hand
sides of the Eq. (2) with respect to b, we find

fb =
⎛
⎜⎝

0
−Y [p_ep]

7 Z [p_ep]
7

eY [p_ep]
7 Z [p_ep]

7

⎞
⎟⎠ ,

and calculating its Jacobian matrix, we get

D fb =
⎛
⎜⎝
0 0 0
0 −Z [p_ep]

7 −Y [p_ep]
7

0 eZ [p_ep]
7 Y [p_ep]

7

⎞
⎟⎠ .
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After calculating D2 f we can once more easily verify the following three conditions

QT
3 fb

(
P [p_ep]
7 ; bT C

)
= 0, (16)

QT
3 D fb

(
P [p_ep]
7 ; bT C

)
V3 = −ϕ3ω3

a2er2K 2 + a2ers H K + mr2s H

a3esK 2 + ab2er H K + amrsK
�= 0 (17)

and

QT
3 D2 f

(
P [p_ep]
7 ; bT C

)
(V3, V3) = −ϕ3

2ω3

(
2r

K
+ 2r2

s H
+ 2mr2

b2eH2

)
�= 0. (18)

Hence all the conditions for transcritical bifurcation are satisfied. Note that
D fa(P [p_ep]

7 ; aT C ) and D fb(P [p_ep]
7 ; bT C ) in the above expressions (14) and (17)

denote the Jacobian of the matrix fa and fb evaluated at P [p_ep]
7 for a = aT C and

b = bT C , respectively. Finally, (15) and (18) are obtained from

D2 f ((X, Y, Z);ψ)(V, V )

=

⎛
⎜⎜⎜⎝

∂2 f1
∂ X2 ξ21 + 2 ∂2 f1

∂ X∂U ξ1ξ2 + 2 ∂2 f1
∂ X∂ Z ξ1ξ3 + 2 ∂2 f1

∂U∂ Z ξ2ξ3 + ∂2 f1
∂U2 ξ22 + ∂2 f1

∂ Z2 ξ23

∂2 f2
∂ X2 ξ21 + 2 ∂2 f2

∂ X∂U ξ1ξ2 + 2 ∂2 f2
∂ X∂ Z ξ1ξ3 + 2 ∂2 f2

∂U∂ Z ξ2ξ3 + ∂2 f2
∂U2 ξ23 + ∂2 f2

∂ Z2 ξ23

∂2 f3
∂ X2 ξ21 + 2 ∂2 f3

∂ X∂U ξ1ξ2 + 2 ∂2 f3
∂ X∂ Z ξ1ξ3 + 2 ∂2 f3

∂U∂ Z ξ2ξ3 + ∂2 f3
∂U2 ξ23 + ∂2 f3

∂ Z2 ξ23

⎞
⎟⎟⎟⎠ ,

(19)

where

f1 = r X

(
1 − X

K

)
− aZ X, f2 = sY

(
1 − Y

H

)
− bZY,

f3 = −m Z2 + e(aZ X + bZY )

are the right hand sides of (2), ψ is the bifurcation parameter and ξ1, ξ2, ξ3 are the
components of the eigenvector V .

We now consider a numerical example to understand the dynamics of the model
(2). We fix the parameter values r = 3, K = 100, s = 4, H = 120, m = 0.2 and
e = 0.5. The other two parameters, a and b are considered as bifurcation parameters.
We verify that the trivial equilibrium P [p_ep]

1 , two axial equilibria P [p_ep]
2 and P [p_ep]

3

and boundary equilibrium P [p_ep]
4 are always unstable irrespective of the parameter

values fora andb. P [p_ep]
5 is stable for 300b > 3(250b2+1) and is unstable otherwise.

Similary P [p_ep]
6 is stable for 250a > 4(250a2 + 1). The coexistence equilibrium

point P [p_ep]
7 is feasible when the parametric restrictions 300b < 3(250b2 + 1) and

250a < 4(250a2 + 1) are satisfied simultaneously. The coexisting equilibrium point
is stable whenever it is feasible.
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Analytically we have discovered that the coexisting equilibrium point for the model
(1) is stable whenever it is feasible. Now we can demonstrate how the stability of this
coexisting equilibrium point is altered by explicitly considering the alternative prey
population in the system. We fix the parameter values r = 3, K = 100 and e = 0.5.
The existence and hence the stability of the coexistence equilibrium is determined by
the grazing rate a and the carrying capacity L of the generalist predator. For a = 0.1,
P [p_hp]
4 is feasible and stable for L < 30 but for a = 0.3 we find P [p_hp]

4 is feasible
and stable only for L < 10. Here, the intrinsic growth rate of the generalist predator
has no role in determining the stability of P [p_hp]

4 ; rather, stable coexistence depends
just on L . Now we consider the model (2) with two fixed parameter values of a, that
is a = 0.1 and a = 0.3, respectively.

The components of P [p_ep]
1 , P [p_ep]

2 = (0, H, 0), P [p_ep]
3 = (K , 0, 0), P [p_ep]

4 =
(K , H, 0) and P [p_ep]

6 = (54.54545455, 0, 13.63636364) are independent of b how-
ever

P [p_ep]
5 =

(
0,

12

1 + 75b2
,

300b

1 + 75b2

)
,

P [p_ep]
7 =

(
45,000b2 − 6000b + 600

11 + 450b2
,
1320 − 4500b

11 + 450b2
,
1800b + 150

11 + 450b2

)
.

depend on b. The coexistence equilibrium is feasible and stable for b < 0.29333333.
For b > 0.29333333, instead the coexistence point does not exists, the substitute prey
species goes to extinction and P [p_ep]

6 is stable.
Next, we consider a = 0.3. In this case we discover an interesting situation: coex-

istence is feasible and stable for b < 0.03670068382 and 0.3632993162 < b <

0.4533333333, while the primary prey resource becomes extinct and P [p_ep]
5 is stable

for 0.03670068382 < b < 0.3632993162 and finally, the substitute prey population
vanishes and P [p_ep]

6 is stable for b > 0.4533333333. Increasing grazing pressure on
substitute prey leads to its extinction when the predation on the primary resource does
not vary. On the other hand, extinction of the main prey is observed if the hunting on
it increases while the grazing pressure on the second population remains fixed. These
numerical results, obtained by our own MATLAB code, are in agreement with the
bifurcation diagram shown in Fig. 2.

6 Comparing analytical findings for the models (1) and (2)

Both models are capable to represent the extinction of prey X (t) and the survival of
the predators Z(t). In model (1) this situation corresponds to the equilibrium point
P [p_hp]
3 = (0, L) while the analogue situation in model (2) is represented by point

P [p_ep]
5 = (0, Y [p_ep]

5 , Z [p_ep]
5 ). Note that in model (1) predator survival is due to the

existence of a hidden resource, i.e., there is one population able to sustain the predator.
This situation is represented by the equilibrium point P [p_ep]

5 in (2), where here the

resource is explicitly exhibited at the non-vanishing level Z [p_ep]
5 . If we now use these
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Fig. 2 Bifurcation diagram in the a−b parameter space. The two transcritical bifurcation curves divide the

parameter space into the three regions. In R1 the coexistence equilibrium P[p_ep]
7 is stable; in R2 instead

the primary-prey-free (X [p_ep]
5 = 0) equilibrium P[p_ep]

5 is stable; in R3 we find the substitute-prey-free

(Y [p_ep]
6 = 0) equilibrium P[p_ep]

6 to be stable

correspondences between the points and compare the coordinates X and Z of models
(1) and (2) we obtain

L = Z [p_ep]
5 = eb

m
Y [p_ep]
5 , (20)

which is consistent with the result obtained earlier, compare indeed the second con-
dition in (3). In view of the first above equality, (20), stability of the two equilibria
is completely analogous, compare indeed (7) and (9), while both are unconditionally
feasible. Note also that the results on global stability of these corresponding equilibria
is again analogous, whenever viable, they are also globally asymptotically stable. In
summary, P [p_hp]

3 and P [p_ep]
5 are completely equivalent.

Using a similar reasoning for the coexistence situation in both models we obtain the
correspondence between the equilibrium points P [p_hp]

4 and P [p_ep]
7 . Indeed in both

these equilibria, the main prey and the predators coexist. In this case, both are uncon-
ditionally locally and globally asymptotically stable. Note that substituting X [p_hp]

4

into Z [p_hp]
4 we find X [p_hp]

4 = K (1 − ar−1Z [p_hp]
4 ), which corresponds to the for-

mula for X [p_ep]
7 . For feasibility we find a correspondence between the conditions (8)

and the first one of (11), but in the latter case another additional condition is needed.
Therefore acting on this second feasibility condition, essentially on the parameter s,
P [p_ep]
7 could be made unfeasible while P [p_hp]

4 in principle retains its feasibility.

Note also that equilibrium P [p_ep]
6 = (X [p_ep]

6 , 0, Z [p_ep]
6 ) does not have any cor-

respondent point in the model (1), since this system assumes that the alternative prey
is always available, because we cannot set L = 0 in it.
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7 An application

In this section we provide a numerical example based on a realistic ecosystem. We
consider as predator the pine marten Z , Martes martes L., that feeds possibly on
the grey squirrel X , Sciurus carolinensis, taken here as the primary prey, and on
the European hare Y , Lepus Europaeus, considered as the alternative resource. This
example has practical relevance since both the European hare and the grey squirrel are
nowadays established invasive species in Piemonte, NW Italy [5,12]. Some indications
on the parameter values are given in the available literature, first line of (21); for the
parameters forwhich an estimate does not exist instead,we choose hypothetical values,
second line of (21), and numerically explore the possible ecosystem behavior as they
are varied. From [18], the pine marten net reproductive rate ranges in the interval
0.9–1.2; also, for the Swiss and Italian Alps, its density is about 0.1–0.8 individual
per km2 [14]. For the hare, the net reproductive rate is about 1.96, while the density
in the Alps ranges between 2 and 5 individuals to a maximum value of 10 individuals
per km2 [12]. The grey squirrel has a net reproductive rate of 1.28 and density of 20
individuals per km2 [2]. The time unit is taken as the year.

Based on the above information, the parameter reference values that we use for the
simulations are:

r = 1.28, K = 20, s = 1.96, H = 5, u = 1.2, L = 0.1;
e = 0.8, a = 1, m = 12, b = 1. (21)

We have assumed that in the absence of food a pine marten dies in about a month,
thereby setting the value for m. Note that with this choice the last condition in (3) is
satisfied.

In Fig. 3we plot the equilibriumvalues of the three population densities as functions
of the hunting parameters a and b. In agreement with the findings of the previous
section, the squirrels, the main prey X , vanishes in the left portion of the parameter
space, while the alternative prey thrives there and vanishes in the opposite portion of
the space. The predator Z thrives instead in the whole parameter space by feeding on
each surviving prey in the two different portions of the space. Both prey densities are
depressed for larger values of both hunting rates. Somewhat counterintuitively, the
predator density in such conditions drops also. This can be explained by the fact that
in such case both prey are removed faster and therefore there are less resources for the
pine marten, so that a large predator population cannot be sustained.

We investigate then the behavior of the model (2) in the a−m parameter space
for the subsequent comparison with the system with the generalist predator, i.e. with
model (1), Fig. 4. Note that in the left part of the parameter space, the main prey X
vanishes, while in the remaining part of the plane the ecosystem attains coexistence.
Here again the predator population density drops as both its mortality and the hunting
rate increase independently of each other. The prey experience a gain from higher
predator mortalities. The main prey is also depressed by a higher hunting rate, while
the alternative prey has a relief: indeed in this case the predation rate a concerns only
the primary resource, so that if it is exploited more, the secondary prey suffers less.
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Fig. 3 The coexistence equilibrium value in the a−b parameter space for the model (2). Left to right the
squirrels X , hares Y and pine marten Z population densities. The remaining fixed parameters values are
given in (21)
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Fig. 4 The coexistence equilibrium value in the a−m parameter space for the model (2). Left to right the
squirrels X , hares Y and pine marten Z population densities. The remaining fixed parameters values are
given in (21)

Finally in Fig. 5 we consider model (1). In the a−u parameter space, we let u
vary in a domain that is comparable with the range used for m in Fig. 4. Clearly, here
the squirrels density behavior mimicks the one found in Fig. 2. Instead, the predators
behave in the same way as for the mortality rate m in Fig. 4, when the reproduction
rate u is concerned, but their density drops with increasing hunting rate, at least for
low values of u, while in Fig. 4 it remains essentially constant.

8 Discussion

This paper is devoted to investigate the differences in the dynamics between two
predator–prey models with a generalist predator. The alternative food source for the
predator is implicit in the first model, but in the second model we have considered
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Fig. 5 The coexistence equilibrium value in the a−u parameter space for the model (1). Left to right the
squirrels X , hares Y and pine marten Z population densities. The remaining fixed parameters values are
given in (21)

it explicitly. The most significant difference between the two models lies in the fact
that the grazing pressure on the preferred prey and carrying capacity of the predator
determine the stable coexistence of prey and predator when the alternative resource is
implicit. It is interesting to note that for predator–prey models with specialist predator
and logistic growth for the prey population, we cannot find any prey species extinction
scenario due to overexploitation. However, if the predators have an alternative resource
other than their favorite prey, higher rate of consumption of one prey species can drive
them towards extinction. Due to the presence of the alternative food source for the
generalist predator, no predators’ extinction scenario can be observed as the prey-only
equilibrium point (K , 0) is always unstable. Although the predators have an alternative
food source, they still survive on their most favorite food. As a result the ecosystem
extinction and the predator-free equilibrium point (K , 0) are always non-achievable
by the system trajectories, as they are unstable. The generalist predator grazing rate
on the primary prey a determines which one of the equilibria is stable, the favorite
prey-free point P [p_hp]

3 or the coexistence P [p_hp]
4 .

To ensure the coexistence of both the prey populations and the generalist predator
some balance between the respective grazing pressures exerted on them needs to be
maintained. Higher grazing pressure only on one species always leads to its extinction,
but we never find total system collapse, where extinction of both the prey populations
is responsible for the extinction of the predator as well. For both types of models,
the feasibility and local asymptotic stability of the equilibria imply also their global
asymptotic stability.

Note finally thatwhenwe consider the ecosystemwith both prey populations explic-
itly modeled, there is no equilibrium point of the form (0, 0, Z). In such case thus the
survival of the predator population alone is not possible. This result is quite reasonable,
because then the predator is left with no food available and thus starves to death. The
model with implicit prey however cannot show the same behaviour, as the alternative
food source is constant and thus remains unaltered and therefore predicts something
different.
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The numerical simulations performed on a concrete ecosystem show that there
could be a difference in the model behavior whether or not the alternative resource is
explicitly built into the system. The predator density drops with decreasing hunting
rate for low values of the reproduction rate when the secondary prey is hidden and
the predators are treated as generalist, while if they are specialist on both species their
steady state level remains about constant. So at least in this case, apparently the hiding
of the secondary prey as a generic alternative resource plays a significant role, in that
it changes a bit the behavior of the predators steady state outcomes.
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A Details of local stability analysis

In this appendix we present all details of local stability analysis of Sects. 2.2 and 2.3.

Details of Sect. 2.2

Proposition 1 The trivial equilibria P [p_hp]
1 = (0, 0) and P [p_hp]

2 = (K , 0) exist,
are always feasible and unstable.

Proof For X = Z = 0 in the system (1) we obtain that the origin P [p_hp]
1 exists and

is feasible. The Jacobian matrix (4) evaluated at P [p_hp]
1 is given by r,−μ, u.

J [p_hp]
P1

=
(

r 0
0 u

)

which provides the eigenvalues r, u. As both eigenvalues are positive, the equilibrium
P [p_hp]
1 is unstable.
For Z = 0, we obtain that the system (1) becomes,

r X

(
1 − X

K

)
= 0

Solving the equation with respect to X we find X = K and then, we obtain that the
equilibrium point P [p_hp]

2 exists and it is feasible. The Jacobian matrix (4) evaluated

at the P [p_hp]
2 is given by

J [p_hp]
P2

=
(−r −aK

0 u + aeK

)

which provides the eigenvalues −r, u + aeK . As one eigenvalue is positive, the equi-
librium P [p_hp]

2 is unstable. ��
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Proposition 2 The equilibrium point P [p_hp]
3 = (0, L) exists and it is always feasible.

Furthermore, it is conditionally stable if the following condition holds

r < aL .

Proof For X = 0 in the systemwe get that P [p_hp]
3 always exists. The Jacobian matrix

evaluated at P [p_hp]
3 is

J [p_hp]
P3

=
(

r − aL 0
aeL −u

)

for which the eigenvalues are given by r − aL and −u. Thus, P [p_hp]
3 is stable if

r < aL .

��
Proposition 3 The equilibrium point P [p_hp]

4 =
(

uK r−aL
ur+a2eK L

, r
a

(
1 − u r−aL

ur+a2eK L

))
,

exists and it is feasible if K ≥ X [p_hp]
4 ≥ 0, i.e. r ≥ aL. P [p_hp]

4 , whenever feasible,
is stable, because the Routh–Hurwitz conditions are satisfied:

−tr
(

J [p_hp]
P4

)
> 0, det

(
J [p_hp]

P4

)
> 0.

Proof To show that the coexistence exists, we consider X �= 0 and Z �= 0 and, the
system (1) becomes,

r X

(
1 − X

K

)
− aX Z = 0

u Z

(
1 − Z

L

)
+ aeX Z = 0

Solving this system with respect to X and Z we find

X [p_hp]
4 = uK

r − aL

ur + a2eK L
, Z [p_hp]

4 = r

a

(
1 − u

r − aL

ur + a2eK L

)
. (22)

For the feasibility of P [p_hp]
4 we need to ask the positivity of X [p_hp]

4 and Z [p_hp]
4 .

Thus the condition r ≥ aL must hold. The Jacobian matrix evaluated at P [p_hp]
4 is

J [p_hp]
P4

=
⎛
⎝ aruL−ur2

a2eK L+ur
a2uK L−aur K

a2eK L+ur

a2e2r K L+aeruL
a2eK L+ur

−u2r−aeruK
a2eK L+ur

⎞
⎠
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Thus, X [p_hp]
4 whenever feasible, is unconditionally stable, because the Routh–

Hurwitz conditions are satisfied:

−tr(J [p_hp]
P4

) = r K −1X [p_hp]
4 + uL−1Z [p_hp]

4 > 0,

det(J [p_hp]
P4

) = (r K −1uL−1 + a2e)X [p_hp]
4 Z [p_hp]

4 > 0.

��

Details of Sect. 2.3

To find the equilibrium points of the model (2), we need to solve the equilibrium
equations:

r X

(
1 − X

K

)
− aZ X = 0,

sY

(
1 − Y

H

)
− bZY = 0,

−m Z2 + e(aZ X + bZY ) = 0. (23)

Proposition 4 The trivial equilibrium point P [p_ep]
1 = (0, 0, 0), P [p_ep]

2 = (0, H, 0),

P [p_ep]
3 = (K , 0, 0) and P [p_ep]

4 = (K , H, 0) are always feasible and unstable.

Proof In the same way that we made before, we can solve the system (23) for X =
Y = Z = 0, X = Z = 0 and Y �= 0, X �= 0 and Y = Z = 0, Z = 0 and X �= 0,
Y �= 0 to obtain the coordinates of equilibria P [p_ep]

1 = (0, 0, 0), P [p_ep]
2 = (0, H, 0),

P [p_ep]
3 = (K , 0, 0) and P [p_ep]

4 = (K , H, 0), respectively. The Jacobian matrix of
these equilibria are

J [p_ep]
P1

=
⎛
⎝ r 0 0
0 s 0
0 0 0

⎞
⎠ , J [p_ep]

P2
=

⎛
⎝ r 0 0
0 −s −bH
0 0 ebH

⎞
⎠ ,

J [p_ep]
P3

=
⎛
⎝−r 0 −aK

0 s 0
0 0 aeK

⎞
⎠ , J [p_ep]

P4
=

⎛
⎝−r 0 aK

0 −s −bH
0 0 e(aK + bH)

⎞
⎠ ,

and their eigenvalues are r , s, 0 for P [p_ep]
1 , ebH for P [p_ep]

2 , −r , s, eaK for P [p_ep]
3

and−r ,−s, aeK +beH for P [p_ep]
4 = (K , H, 0). Finally, these equilibria are always

feasible and unstable because at least one eigenvalue of each one is positive. ��

Proposition 5 The equilibrium point P [p_ep]
5 = (0, Y [p_ep]

5 , Z [p_ep]
5 )where Y [p_ep]

5 =
ms H

b2eH+ms
, Z [p_ep]

5 = ebs H
b2eH+ms

exists and it is always feasible. Furthermore, it is stable
if the condition
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aZ [p_ep]
5 = abes H

b2eH + ms
> r

holds and if the Routh–Hurwitz conditions are satisfied:

−tr
(

J
[p_ep]
P5

)
> 0, det

(
J

[p_ep]
P5

)
> 0.

Proof The coordinates of P [p_ep]
5 are obtained solving the system (23) for X = 0,

Y �= 0 and Z �= 0 and the equilibrium is always feasible. The Jacobian matrix (5)
evaluated at P [p_ep]

5 is given by

J [p_ep]
P5

=

⎛
⎜⎜⎜⎝

r − aZ [p_ep]
5 0 0

0 − s
H Y [p_ep]

5 −bY [p_ep]
5

aeZ [p_ep]
5 ebZ [p_ep]

5 −m Z [p_ep]
5

⎞
⎟⎟⎟⎠ .

that provides one explicity eigenvalue r − aZ [p_ep]
5 . The equilibrium P [p_ep]

5 is stable
if

aZ [p_ep]
5 = abes H

b2eH + ms
> r

holds and if theRouth–Hurwitz conditions for the remainingminor are always satisfied,
i.e.

s

H
Y [p_ep]
5 + m Z [p_ep]

5 > 0,
(ms

H
+ b2e

)
Y [p_ep]
5 Z [p_ep]

5 > 0,

with

J
[p_ep]
P5 =

⎛
⎝− s

H Y [p_ep]
5 −bY [p_ep]

5

beZ [p_ep]
5 −m Z [p_ep]

5

⎞
⎠ .

��
Proposition 6 The equilibrium point P [p_ep]

6 = (X [p_ep]
6 , 0, Z [p_ep]

6 )where X [p_ep]
6 =

mr K
a2eK+mr

, Z [p_ep]
6 = aer K

a2eK+mr
. exists and it is always feasible. Furthermore, it is sta-

ble if the condition

bZ [p_ep]
6 = aber K

a2eK + mr
> s,

holds and if the Routh–Hurwitz conditions are satisfied:

−tr
(

J
[p_ep]
P6

)
> 0, det

(
J

[p_ep]
P6

)
> 0.
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Proof The coordinates of P [p_ep]
6 are obtained solving the system (23) for X �= 0,

Y = 0 and Z �= 0 and the equilibrium is always feasible. The Jacobian matrix (5)
evaluated at P [p_ep]

6 is given by

J [p_ep]
P6

=

⎛
⎜⎜⎝

− r
K X [p_ep]

6 0 −aX [p_ep]
6

0 s − bZ [p_ep]
6 0

aeZ [p_ep]
6 ebZ [p_ep]

6 −m Z [p_ep]
6

⎞
⎟⎟⎠ .

that provides one explicity eigenvalue s − bZ [p_ep]
6 . The equilibrium P [p_ep]

6 is stable
if

bZ [p_ep]
6 = aber K

a2eK + mr
> s,

holds and if the Routh–Hurwitz conditions for the remaining minors are always satis-
fied, i.e. r

K X [p_ep]
6 + m Z [p_ep]

6 > 0,
(mr

K + a2e
)

X [p_ep]
6 Z [p_ep]

6 > 0, with

J
[p_ep]
P6 =

⎛
⎝− r

K X [p_ep]
6 −aX [p_ep]

6

aeZ [p_ep]
6 −m Z [p_ep]

6

⎞
⎠ .

��

Proposition 7 The coexistence P [p_ep]
7 = (K − aKr−1Z [p_ep]

7 , H − bHs−1Z [p_ep]
7 ,

Z [p_ep]
7 ), with Z [p_ep]

7 = ers(bH+aK )

s(a2eK+mr)+b2er H
> 0 is feasible if X [p_ep]

7 ≥ 0 and

Z [p_ep]
7 ≥ 0. Furthermore, it is stable if the Routh–Hurwitz conditions are satisfied.

Proof The coordinates of P [p_ep]
7 are obtained solving the system (23) for X �= 0,

Y �= 0 and Z �= 0 and the feasibility requirements for X [p_ep]
7 ≥ 0 and for Y [p_ep]

7 ≥ 0
are given, respectively, by

r ≥ aZ [p_ep]
7 = abes H

b2eH + ms
, s ≥ bZ [p_ep]

7 = aber K

a2eK + mr
.

For stability of the latter, the Jacobian evaluated at P [p_ep]
7 is

J [p_ep]
P7 =

⎛
⎜⎜⎜⎝

−r K −1X [p_ep]
7 0 −aX [p_ep]

7

0 −s H−1Y [p_ep]
7 , −bY [p_ep]

7

aeZ [p_ep]
7 ebZ [p_ep]

7 −m Z [p_ep]
7

⎞
⎟⎟⎟⎠ .
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and we have that

−tr
(

J [p_ep]
P7

)
= r

K
X [p_ep]
7 + s

H
Y [p_ep]
7 + m Z [p_ep]

7 > 0,

− det
(

J [p_ep]
P7

)
= X [p_ep]

7 Y [p_ep]
7 Z [p_ep]

7

H K

(
a2esK + b2er H + mrs

)
> 0.

Finally, the remaining Routh–Hurwitz conditions are satisfied, i.e.

r2s

K 2H

(
X [p_ep]
7

)2
Y [p_ep]
7 +

(
ra2e

K
+ r2m

) (
X [p_ep]
7

)2
Z [p_ep]
7

+
(
3rms

K H
+ rb2e

K
+ sa2e

H

)
X [p_ep]
7 Y [p_ep]

7 Z [p_ep]
7

+
(

sm2

H
+ mb2e

) (
Y [p_ep]
7

)2
Z [p_ep]
7

+
(

s2m

H2 + sb2e

H

) (
Y [p_ep]
7

)2
Z [p_ep]
7 +

(
m2r

K
+ ea2m

)
X [p_ep]
7

(
Z [p_ep]
7

)2

+ s2r

K H2 X [p_ep]
7

(
Y [p_ep]
7

)2

+
(

b2er H + a2esK + rms

K H

)
X [p_ep]
7 Y [p_ep]

7 Z [p_ep]
7 > 0

is clearly satisfied as well. Thus the coexistence equilibrium P [p_ep]
7 of (2) is uncon-

ditionally stable, when feasible.
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