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Abstract We study the regularity of Gevrey vectors for Hörmander operators

P =
m∑

j=1

X2
j + X0 + c

where the X j are real vector fields and c(x) is a smooth function, all in Gevrey class
Gs . The principal hypothesis is that P satisfies the subelliptic estimate: for some
ε > 0, ∃C such that

‖v‖2ε ≤ C
(
|(Pv, v)| + ‖v‖20

)
∀v ∈ C∞

0 .

We prove directly (without the now familiar use of adding a variable t and proving
suitable hypoellipticity for Q = −D2

t − P and then, using the hypothesis on the
iterates of P on u, constructing a homogeneous solution U for Q whose trace on
t = 0 is just u) that for s ≥ 1,Gs(P,�0) ⊂ Gs/ε(�0); that is,

∀K � �0, ∃CK : ‖P ju‖L2(K ) ≤ C j+1
K (2 j)!s, ∀ j


⇒ ∀K ′ � �0, ∃C̃K ′ : ‖D�u‖L2(K ′) ≤ C̃�+1
K ′ �!s/ε, ∀�.

In other words, Gevrey growth of derivatives of u as measured by iterates of P yields
Gevrey regularity for u in a larger Gevrey class. When ε = 1, P is elliptic and so
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we recover the original Kotake–Narasimhan theorem (Kotake and Narasimhan in Bull
Soc Math Fr 90(12):449–471, 1962), which has been studied in many other classes,
including ultradifferentiable functions (Boiti and Journet in J Pseudo-Differ OperAppl
8(2):297–317, 2017). We are indebted to M. Derridj for multiple conversations over
the years.

Keywords Partial differential equations · Subelliptic · Hypoelliptic · Gevrey ·
Gevrey vector

Mathematics Subject Classification 35H10 · 35H20

1 Background

In 1972, Derridj and Zuily [4] proved Gs hypoellipticity (Pu ∈ Gs 
⇒ u ∈ Gs)
for

P =
m∑

j=1

X2
j + X0 + c

satisfying

‖v‖2ε ≤ C
(
|(Pv, v)| + ‖v‖20

)
∀v ∈ C∞

0 (1.1)

whenever s > 1/ε = q/p with p, q ∈ N
+ and very recently, for P with Gk

coeffients, k ∈ N
+, by studyingGevrey vectors for such operators (see below), Derridj

was able to sharpen this result to include s = 1/ε = q/p, but still with rational ε and
Gk coefficients, k ∈ N

+ (announced in [3] and proven in [2]).
Consider a linear partial differential operator P of order 2 with real analytic coef-

ficients. An analytic vector for P is a distribution u such that u behaves analytically
when differentiated by powers of P alone: locally, ‖P ju‖ ≤ C j (2 j)! that is, not all
derivatives of u are assumed to behave as though u were analytic, only those sums
occurring together precisely as in P.

Similarly a Gevrey-s vector u for P (with P only assumed to have Gevrey-s coef-
ficients now) satisfies (locally) ‖P ju‖ ≤ C j (2 j)!s, or more precisely,

∀K � �0, ∃CK : ‖P ju‖L2(K ) ≤ C j+1
K (2 j)!s, ∀ j.

Derridj proved that Gevrey-s vectors for P under (1.1) belong to Gs/ε (for s > 1/ε
if ε is rational) and, to accomplish this, followed the classical method of adding a
variable and showing (local) Gevrey hypoellipticity in G1,s/ε

t,x for the operator

Q = −D2
t − P. (1.2)

This yields the result since the (convergent) homogeneous solution

U (t, x) =
∑

�≥0

(−1)�
t2�

(2�)! P
�u(x)
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for Q is just equal to u(x) when t = 0.
Slightly earlier, Rodrigues et al. [7] had obtained a (global) result on a torus for a

restricted subclass of such operators P.

The methods we use also apply to prove the anisotropic hypoellipticity for (1.2)
even for non-rational ε.

Note that Gs functions are always Gevrey-s vectors for any P.

2 General considerations

There are twomain results of this paper. First, the subellipticity index ε need no longer
be rational and secondly, we are able to let s equal 1/ε. From a technical point of view,
the proof is no harder for Gevrey-k coefficients than for analytic coefficients, so we
take the vector fields to have analytic coefficients.

And from a more personal point of view, in reading Derridj’s preprint [3] we could
not find a reason why the result should not follow from the direct lines we have
established over many decades and which in fact avoid the need to add a variable
and deal with (1.2), despite the historical significance of that approach which in some
sense deals with iterates of P in a less obvious way.

In the elliptic case (ε = 1 in (2.1) just below), we recover the celebrated Kotake-
Narasimhan theorem [6].

The only hypothesis, aside from Gevrey smoothness of the coefficients of P near
�0, is that for some real 0 < ε < 1,

‖v‖2ε
(

+
n∑

1

‖X jv‖2L2

)
≤ C{|(Pv, v)L2 | + ‖v‖2L2}, ∀v ∈ C∞

0 (�0) (2.1)

3 Smoothness

From the basic a priori estimate (2.1) and those that will follow from it, we have
u ∈ C∞: from Pu ∈ L2

loc it will follow from (2.1) that u ∈ H ε
loc. From our estimate

(4.2) below (for ‖u‖22ε), it will follow that Pu ∈ H ε
loc, (since P2u ∈ L2

loc) and hence
that u ∈ H2ε

loc, and similarly from Pnu ∈ L2
loc, that P

n−1u ∈ H ε
loc, …, and finally

that u ∈ H (n+1)ε
loc (for all n, and hence u ∈ C∞).

We will henceforth assume that u is smooth.
And furthermore, there is no difference in the proof if one assumes that the coeffi-

cients of P are real analytic functions and not merely Gevrey functions; thus we will
not mention the smoothness of the coefficients again.

4 Estimates

Unless otherwise specified, norms and inner products are in L2. We have used a
fractional power �μ, of the Laplacian defined by

�̂μw(ξ) = (1 + |ξ |2)μ/2ŵ(ξ).
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In order to obtain estimates at higher and higher levels, we want to replace v by
ϕ(x)�εv above, with ϕ ∈ C∞

0 (K 0), ϕ ≡ 1 on K ′ so that we are inserting suitably sup-
ported functions into the norm, and we denote by ‘(AB)’ both terms with AB and with
BA (i.e., the order of A and B is unspecified), so ‖(X jϕ�ε)v‖2

L2(= ‖(X j (ϕ�ε))v‖2
L2)

is shorthand for ‖X jϕ�εv‖2
L2 + ‖ϕ�εX jv‖2

L2 . We also will not need to distinguish
the various {X j } or explicitly sum over them:

‖ϕ�εv‖2ε + ‖(Xϕ�ε)v‖2L2 ≤ C0{|(Pϕ�εv, ϕ�εv)L2 | + ‖[X, ϕ�ε]v‖2L2}. (4.1)

Finally, a right hand side with C0 in front will be taken to mean that there may be
a uniformly ‘junk’ term on the right, in this case ‖ϕ�εv‖2

L2 from (2.1). The constant
C0 may take various, but finitely many, values, independent of ε.

Thus, keeping both norms and inner products for the moment,

‖ϕ�εv‖2ε + ‖(Xϕ�ε)v‖2L2

≤ C0{|(ϕ�εPv, ϕ�εv)| + |([P, ϕ�ε]v, ϕ�εv)| + ‖[X, ϕ�ε]v‖2L2}. (4.2)

To expand the brackets, we denote, generically,

[P, ϕ�ε] = [X2, ϕ�ε] = X [X, ϕ�ε] + [X, ϕ�ε]X
= X [X, ϕ�ε] + ϕ′�εX + ϕ[X,�ε]X

and

ϕ[X,�ε]X = Xϕ[X,�ε] − ϕ′[X,�ε] + ϕ[[X,�ε], X ]

so that expanding the second term on the right in (4.2), integrating by parts and
interchanging ϕ and ϕ′,

([P, ϕ�ε]v, ϕ�εv) ∼ −([X, ϕ�ε]v, Xϕ�εv) + (ϕ�εXv, ϕ′�εv)

−(ϕ[X,�ε]v, Xϕ�εv) + (ϕ[X,�ε]v, ϕ′�εv) + (ϕ[[X,�ε], X ]v, ϕ�εv)

and so, after the usual weighted Schwarz inequalities, (4.2) reads

‖ϕ�εv‖2ε + ‖(Xϕ�ε)v‖2L2 ≤ C0{|(ϕ�εPv, ϕ�εv)|
(+‖[X, ϕ�ε]v‖2L2) + ‖ϕ′�εv‖2L2 + ‖ϕ�ε

1v‖2L2} + ‖ϕ�ε
2v‖2−ε} (4.3)

where �ε
1 stands for [X,�ε] and �ε

2 for [[X,�ε], X ] pseudodifferential opera-
tors of order ε. We have suppressed the term ‖ϕ[X,�ε]‖2

L2 , since ϕ[X,�ε] =
[X, ϕ�ε] − X (ϕ)�ε both of which already appear above, and now we could omit
the term ‖[X, ϕ�ε]v‖2

L2 since the last two terms contain this, though we will preserve
it for now because it is suggestive and helps make sense of the second term on the left.

Everything at this point iswell defined. Things become somewhatmore complicated
aswe seek to obtain estimates for higher derivatives. In the endwe shall notwrite every-
thing down explicitly, but for a while it will be important to keep the reader grounded.
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Some features of (4.3) are that a gain of ε results in at most one derivative on ϕ,

and clearly this will be important. It is for this reason that we have retained the inner
product with P since when an extra derivative threatens, we are able to exchange the
two ϕ’s on the two sides of the inner product and avoid a second derivative on ϕ when
we have gained only one ε power of �. And while v is a test function of compact
support, our ‘solution’ u will not have compact support. We will introduce a ‘largest’
localizing function, denoted �, which will reside beside u everywhere but in the end
be removable modulo infinitely smoothing brackets with precise bounds since there
will be other functions of smaller support, such as ϕ, to render � unnecessary.

5 Personal heuristics

This paper has an unusual formulation.
It has become my conviction over the years that a mathematical paper that contains

every symbol, and every derivative of a localizing function explicitly notated becomes
unreadable. I personally requiremore guidance in reading a technical paper to aidme in
following the formulas. Perhaps, to paraphrase Frege in [5], anyone who understands
the flow of the argument and the justification of the flow well enough probably does
not actually need all the detailed calculations.

I would not go that far. But the challenge of following every bracket and every
derivative and writing it down would challenge the stomach of the strongest physique
and I prefer to omit that much detail and ask the reader to honor the author’s honesty
and track record and precision and to let the flow suffice in many places.

I took this approach in my previous paper, Analytic Hypoellipticity for a NewClass
of Sums of Squares of Vector Fields in R3 [9] and in fact the referee wrote that ”I
guess the author is trying to explain the ideas in his technical calculations by describing
them in words with a minimum of symbols, but the words pile on to the point where
one needs to be almost as familiar with the calculations as the author himself for
them to make sense. A reader might wonder if the author is trying to pull a fast one
by substituting a lot of hand-waving for honest computation if it werent for some of
the subsequent pages where the symbols swamp the words. Can’t one strike a better
balance?” But I have tried for many years to find a better balance and concluded that
in this material, and for this author, the answer is ”Sadly, no.”

6 Derivatives in terms of powers of P

The algorithm we will use to achieve estimates in terms of pure powers of P on u is
as follows: as above, although now of order β, modulo uniform, lower order errors,
with ‖(Xϕ�β)v‖2

L2 ≡
def

‖Xϕ�βv‖2
L2 + ‖ϕ�βXv‖2

L2 ,

(1) First estimate, for general β (and v ∈ C∞
0 (�)),

‖ϕ�βv‖2ε + ‖(Xϕ�β)v‖2L2

≤ C |(Pϕ�βv, ϕ�βv)L2 | (+ ‖[X, ϕ�β ]v‖2L2)
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(2) Then commute P past ϕ�β until it lands beside v, to obtain (ϕ�β Pv, ϕ�βv)L2 ,

thus requiring treatment of the bracket ([P, ϕ�β ]v, ϕ�βv)L2 .

(3) Next, expand the second inner product of item (2) by writing P = X2 generically,
so with ϕ′ = ±[X, ϕ]

[P, ϕ�β ] = {ϕ′X + X ◦ ϕ′}�β + 2ϕX [X,�β ] + ϕ[[X,�β ], X ]

and thus, integrating X by parts and/or switching ϕ and ϕ′, and using a weighted
Schwarz inequality, uniformly in β, and modulo a small constant times the LHS
in (1),

|([P, ϕ�β ]v, ϕ�βv)| ∼ ‖ϕ′�βv‖2L2 + ‖ϕ�
β
1 v‖2L2 + ‖ϕ�

β
2 v‖2−ε

where we recall the notation

�
β
1 = [X,�β ] and �

β
2 = [[X,�β ], X ],

both of which are of order β.
(4) We gather these steps and freely move ϕ past powers of �, since any bracket

(whether applied to v or Pv) will introduce one or more derivatives on ϕ but also
decrease the power of � by at least the same number (not just by that number
times ε << 1), a trade that will be acceptable (together with the corresponding
remainders) and that we will not write explicitly:

‖ϕ�β+εv‖2L2 + ‖(Xϕ�β)v‖2L2 ∼ ‖ϕ�βv‖2ε + ‖(Xϕ�β)v‖2L2

≤ C‖ϕ�β−εPv‖2L2 + ‖ϕ′�βv‖2L2 + ‖ϕ�
β
1 v‖2L2 + ‖ϕ�

β
2 v‖2−ε.

(5) These last two terms are of order β and will be expanded below in the section
Expanding the Brackets below. Looking ahead to (7.2) below, however, for the
moment with μ = β and any r,

ϕ�
β
1 v = ϕ

r−1∑

�=1

1

�!a
(�)(�β)

(�)
Dv + 1Rrv

so that (with Lemma 7.1, for X j with analytic coefficients)

‖ϕ�
β
1 v‖L2 ≤

r−1∑

�=1

‖ϕ a(�)

�! (�β)(�)Dv‖L2 + ‖1Rrv‖L2

≤
β−1∑

�=1

C�
a β�‖ϕ(�β−�)Dv‖L2 + ‖1Rrv‖L2
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and the similar but slightly more complicated expression for

�−εϕ�
β
2 v = �−εϕ[[aD,�β ], aD]v = �−εϕ[[a,�β ]D, aD]v

= �−εϕ([a,�β ]a′D + [[a,�β ], aD]D)v

= �−εϕ([a,�β ]a′D + [[a,�β ], a]D2 + a[a′,�β ]D)v

∼ �−εϕ([[a,�β ], a]D2 + 2a[a′,�β ]D)v

∼ �−εϕ

r−1∑

�=1

r ′−1∑

�′=1

1

�! �′!a
(�)a(�′)(�β)

(�+�′)
D2v

+�−εϕ

r−1∑

�=1

1

�!a
(�+1)a(�β)

(�)
Dv

so that, and bringing the coefficients out of the norm at the expense of additional
brackets, as though it were the L2 norm,

‖�−εϕ�
β
2 v‖L2 ≤

r−1∑

�̃=2

C �̃
aβ

�̃‖ϕ �β−�̃D2v‖−ε +
r−1∑

�=1

C�
aβ

�‖ϕ �β−�Dv‖−ε

or

‖�−εϕ�
β
2 v‖L2 ≤

r−1∑

�=0

C�
aβ

�‖ϕ �β−�v‖−ε.

As always with pseudodifferential operators, there will be a sum of terms of lower
and lower order as dictated by Leibniz formula for brackets, and remainders.

(6) We repeat the above steps by applying the estimate in (4) to the terms on the right
in (4) producing ϕ�β−3εP2v, ϕ′�β−2εPv and ϕ′′�β−εv, etc. On the right hand
side each of the four terms will lead to a ‘spray’ of additional more terms, about
four times as many at each next step. The resulting paradigm may be simplified
to read

‖ϕ�β+εv‖2L2 � ‖ϕ�β−εPv‖2L2 + ‖ϕ′�βv‖2L2

� ‖ϕ�β−3εP2v‖2L2 + ‖ϕ′�β−2εPv‖2L2 + ‖ϕ′′�β−εv‖2L2 ,

and in general, after k iterations, there will be Ck terms of the form

‖ϕ(k1)�β+ε−(k1+2k2)εPk2v‖2L2

with k = k1 + k2.
(7) Continue each iteration until we get to β+ε−(k1+2k2)ε ≤ 0, but at the previous

step, β + ε − (k1 + 2k2)ε ≥ 0, i.e., k1 + 2k2 = �β+ε
ε

�, so that

‖ϕ�β+εv‖2L2 ≤ Ck‖ϕ(k1)�β+ε−(k1+2k2)εPk2v‖2L2

where the power of � in each term is non-positive.
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(8) It remains to apply all of this to our ‘solution’ u, which is subject to the growth of
Pku, not functions like v which are ‘test’ functions and have compact support:

‖P ju‖L2(K ) ≤ C2 j+1
K (2 j)!s, ∀ j for suitable CK .

But we are free to replace v in this estimate by �u where � ≡ 1 near the support
of ϕ, since any error committed in then bringing � out of the norm will be of
order −∞. Modulo this error, then,

‖ϕ�β+ε�u‖2L2 ≤ Ck‖ϕ(k1)�β+ε−(k1+2k2)εPk2u‖2L2(K )

Our conclusion is that for any K ′ � �0, ∃CK ′ : ‖Dmu‖L2(K ′) ≤
C̃m+1m!s/ε, ∀m. Taking β + ε = m, we have

‖Dmu‖L2(K ′) ≤ C̃m+1 sup
k1+2k2=�m

ε
�
‖ϕ(k1)‖∞‖Pk2u‖L2(K ),

in particular, with ϕ ∈ Gs,

‖Dmu‖L2(K ′) ≤ C̃m+1 sup
k1+2k2=�m

ε
�
k1!s‖Pk2u‖L2(K )

≤ C̃m+1�m
ε

�!s ≤ Cm(
m

ε
+ 1)!s ≤ Cm/ε

1 (
m

ε
)!s

7 Expanding the brackets

In order to write out the above brackets of the previous section concretely, we use
a Taylor expansion of the symbol λμ(ξ) of �μ: ∀μ, r, and write, with f = a (a
coefficient of one of the X ’s, which will always be accompanied by ϕ) or by f = ϕ(x)
itself,

([ f,�μ]v)∧(ξ) =
∫

f̂ (ξ − η)

r−1∑

�=1

(ξ − η)�λμ(�)(η)

�! v̂(η)dη + ̂f R rv(ξ)

=
r−1∑

�=1

∫
f̂ (�)(ξ − η)

�! λμ(�)
(η)v̂(η)dη + ̂f R rv(ξ)

where

̂f R rv(ξ) =
∫

f̂ (r)(ξ − η)

r !
∫ 1

0
dp · · ·

∫ 1

0
dt

︸ ︷︷ ︸
r

λμ(r)
(η + t · · · p(ξ − η))v̂(η)dη
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so that (if we write (�μ)(�) for the operator with symbol (λμ)(�)), with f = ϕ :

‖[ϕ(x),�μ]v‖L2 ≤
r−1∑

�=1

1

�! ‖ϕ
(�)(�μ)

(�)
v‖L2 + ‖ϕRrv‖L2 (7.1)

and, recalling that we write X = aD, with f = a (localized):

‖ϕ[a,�μ]Dv‖L2 ≤
r−1∑

�=1

1

�! ‖ϕa
(�)(�μ)

(�)Dv‖L2 + ‖ϕ a R rv‖L2 . (7.2)

And for the last term in (4) above, ‖ϕ�
β
2 v‖2−ε, we write

�−εϕ�
μ
2 v = �−εϕ[[a,�μ]D, aD]v

= �−εϕ([a,�μ]a′D + [[a,�μ], aD]D)v

= �−εϕ([a,�μ]a′D + [[a,�μ], a]D2 + a[a′,�μ]D)v

∼ �−εϕ([[a,�μ], a]D2 + 2a[a′,�μ]D)v

∼ �−εϕ

r−1∑

�=1

1

�!
r ′−1∑

�′=1

1

�′!a
(�)a(�′)(�μ)

(�+�′)D2v

+�−εϕ

r−1∑

�=1

1

�!a
(�+1)a(�μ)

(�)Dv

Lemma 7.1 For any μ ≥ 0 and any σ,

(λμ)
(k)

(ρ) =
∑

j

(3μ)k
{

λμ−k−2 j (ρ), 0 ≤ j ≤ k
2 , k even

ρ λμ−k−1−2 j (ρ), 0 ≤ j ≤ k−1
2 , k odd

where underlining the coefficient before the brace indicates the number of terms of
the form which follow that are present.

Proof The simplest proof we have found of this result is to denote by L the expression
(1+ ρ2)1/2 since the pleasant fact that L ′(ρ) = ρL−1(ρ) seems to make the calcula-
tions suggestive and transparent. We omit the details but the precise dependence on μ

and r above are important.
To treat the remainders, we divide up the region of integration as we did in [8] into

two parts, the first where |ξ − ρ| ≤ 1
10 |ρ|, and hence the action of Rr is bounded by

the L1 norm of derivatives of the coefficients of total order r times ‖�μ−rv‖L2 and
the region where |ξ | (and hence |η|) are bounded by a multiple of |ξ − η| and so that
|λμ(ξ) − λμ(η)| ≤ Cμ|ξ − η|μ whence for any M,
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|([�μ, a(x)]v)∧(ξ)| = |((λμâ) ∗ v̂)(ξ) − (â ∗ (λμv̂))(ξ)|
= |λμ(ξ)

∫
â(ξ − η)v̂(η)dη −

∫
â(ξ − η)λμ(η)v̂(η) dη|

= |
∫

â(ξ − η)[λμ(ξ) − λμ(η)]v̂(η)dη|

≤ CM |
∫

â(M+μ)(ξ − η)(1 + |η|2)−M/2v̂(η)dη|.

��

8 Adding a variable

Previous proofs concerning Gevrey vectors have often, as in Derridj’s paper, proved
and then used the Gevrey hypoellipticity of the operator

Q = − ∂2

∂t2
− P

The proof that a homogeneous solution for Q satisfiesU ∈ G1,s
t,x locally for s ≥ 1/ε

follows using the above techniques and the evident a priori inequality

‖W (t, x)‖2L2(t),ε(x) +
∑

‖X jW (t, x)‖2L2(t,x) + ‖W (t, x)‖21(t),L2(x)

≤ C{|(QW,W ))|L2 + ‖W (t, x)‖2L2(t,x)}

for W of small support and smooth since the variables are completely separated.
Then observing that under our hypothesis on the iterates of P on u, the homoge-

neous convergent series

U (t, x) =
∑

�≥0

(−1)�
t2�

(2�)! P
�u(x)

satisfies the above equation in some interval about t = 0, and hence, restricted to
t = 0 where it is equal to u, will have the desired regularity in Gevrey class.

Finally, since the variables t and x are totally separated in the problem, localizing
functions may be taken as products ϕ1(t)ϕ2(x) with ϕ1 of Ehrenpreis type or using
nested open sets in t while in x Gevrey localization is familiar (and the fact that
coefficients now depend on t as well as x presents no new obstacles, even in brackets
with Dt or �

β
2 ).
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