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Abstract We survey some parts of the vast literature on holomorphic vector bundles
on compact complex manifolds, focusing on the rank-two case vector bundles on non-
Kähler elliptic fibrations. It is by no means intended to be a complete overview of this
wide topic, but we rather focus on results obtained by the author and his collaborators.
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1 Introduction

The study of vector bundles over elliptic fibrations has been a very active area of
research in bothmathematics and physics over the past 35years; in fact, there is by now
awell understood theory for projective elliptic fibrations (seeDonagi [35,36], Donagi–
Pantev [37], Friedman [41], Friedman et al. [42], Bridgeland [12,13], Bridgeland–
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Maciocia [14], Bartocci et al. [6,7], Hernandez Ruiperez and Muñoz Porras [45],
Căldăraru et al. [30,31]).

Not very much is known for non-Kähler elliptic fibrations of complex dimension
greater than two. One of the motivations for the study of vector bundles on non-
Kähler elliptic threefolds comes from recent developments in superstring theory,where
six-(real)dimensional non-Kähler manifolds occur in string compactifications with
non-vanishing background H -field (see, for example [8,33,44]).

The “space”of our universe is considered to be of the form R
4 × X , where R4 is

the Minkowski space and X is a complex 3-dimensional manifold of Calabi–Yau type
(i.e. ωX ∼= OX ), not neccessarily Kähler. Thus, the study of moduli spaces of vector
bundles over a non-Kähler Calabi–Yau type threefold is interesting also for physicists.

The purpose of this paper is to survey someparts of the theory of holomorphic vector
bundles on non-Kähler elliptic fibrations, with emphasis on personal contributions.

The outline of the paper is as follows. In Sect. 2, we recall first examples and
some general results about holomorphic vector bundles over non-algebraic surfaces.
Section 3 is devoted to results concerning moduli spaces of rank-two vector bundles
on non-Kähler elliptic surfaces. In Sect. 4, we discuss the moduli spaces of vector
bundles on non-Kähler elliptic Calabi–Yau type threefolds and more generally, on
elliptic fibrations which are principal elliptic bundles.

2 First examples and first results

Let X be a compact complex manifold. Unless otherwise stated, all manifolds are
assumed to be compact. For definitions and the proofs of some of the results see [15].
A holomorphic vector bundle V of rank r over the complex manifold X is called
filtrable if there exists a filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fr = V,

where Fk is a coherent subsheaf of rank k. A holomorphic vector bundle V of rank r
over a complex manifold X is called reducible if it admits a coherent analytic subsheaf
F such that

0 < rank(F) < r,

and irreducible otherwise. Clearly, for rank 2 non-filtrable is equivalent to irreducible.

Remark 1 Of course, every holomorphic (algebraic) vector bundle V over a projective
manifold X is filtrable (since H0(X, V ⊗ Hn) is non-zero for big n, we obtain a rank
one subsheaf of V , and so on; here H denotes an ample line bundle on X ), but on non-
algebraic manifolds there exist holomorphic vector bundles which are non-filtrable.

The first paper on holomorphic vector bundles in the non-algebraic case was by
Elencwajg–Forster (see [40]). In 1982, they constructed in this paper irreducible vector
bundles of rank 2 on a complex 2-torus X without divisors (curves); i.e. with Neron-
Severi group NS(X) = 0. This was done by comparing the versal deformation of
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a filtrable rank 2 vector bundle with the space parametrising extensions producing
filtrable rank 2 vector bundles. They proved that, in general, the versal deformation
has a bigger dimension, hence it contains also non-filtrable vector bundles.

The next example is due to Schuster, see [58].

Example 1 Let X be a K3-surface with Picard group Pic(X) = 0. Then the tangent
bundle TX is irreducible.

Since H0(X, TX ) = 0 it follows easily that the rank 2 vector bundle TX has no
coherent analytic subsheaves (see, for example [40] or [15], p. 92).

The next example is due to Coandă, see [15], p. 104.

Example 2 Let X be a K3-surface with Picard group Pic(X) = 0. We have an exact
sequence of holomorphic vector bundles over X

0 → OX → TX ⊗ TX → S2TX → 0.

Then, S2TX is an irreducible holomorphic vector bundle of rank 3.

It is worth to mention here the following results, where holomorphic vector bundles
play a key role.

In 1982, Schuster proved in [58] that for any compact complex surface X , every
coherent sheafF on X has global resolutionswith locally free sheaves (vector bundles).
One of the main steps in the proof was to use rank 2 holomorphic vector bundles from
the versal deformation of TX .

A long standing problem for compact complex manifolds was to decide if every
coherent sheaf has global resolutions with locally free sheaves (i.e. with vector bun-
dles). A negative answer came only after 20 years. In 2002, C. Voisin proved that this
is false for some Kähler compact complex manifolds of dimension ≥ 3, see [62]. In
2012, Vuletescu gave some new examples of non-Kähler compact complex manifolds
of dimension 3 and coherent sheaves F on X having no global resolution by vector
bundles, see [66]. The proof that these sheaves do not admit a locally free resolution is
very different fromVoisin’s argument. Themanifold X is a Calabi–Eckmannmanifold
i.e. a principal elliptic bundle over the base P1(C) × P1(C), which is diffeomorphic
to the product of two real spheres of dimension 3.

Another paper on holomorphic vector bundles over non-algebraic complex surfaces
was by Brînzănescu–Flondor in 1985; see [20]. Let X be a non-algebraic surface, let
V be a rank 2 holomorphic vector bundle on X and, let c1(V ), c2(V ) be the Chern
classes of the vector bundle V . We have the following result:

Proposition 1 Let X be a non-algebraic surface and let a ∈ NS(X) be fixed. Then,
for every holomorphic rank 2 vector bundle V over X with c1(V ) = a, we have

c2(V ) ≥ min{a2/4, 2χ(OX ) + (c1(X).a + a2)/2}.

In the same paper, [20], one defined a bound for a holomorphic rank 2 vector bundle
on a non-algebraic surface with fixed Chern class a ∈ NS(X) to be filtrable. In another
paper, see [21], one gives the range of Chern classes c1, c2 of simple filtrable rank
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two holomorphic vector bundles over complex surfaces X without divisors. These
results were extended later by Toma [60] to the case of complex surfaces of algebraic
dimension zero.

The results of the paper [20] were extended by Bănică– Le Potier [4], to the case
of holomorphic vector bundles of any rank over a non-algebraic surface.

We need some notation. The Chern classes and the rank can be defined for any
analytic coherent sheaf F over X (see, for example [15], p. 12 and p. 17). If F is
locally free, then we have c1(F) = c1(det(F)) ∈ NS(X). Generally, by the quoted
result of Schuster, see [58], any analytic coherent sheaf F over a complex surface has
a resolution

0 → V2 → V1 → F → 0,

with Vi locally free sheaves. Then

c1(F) = c1(V1) − c1(V2) ∈ NS(X).

Now, let F be an analytic coherent sheaf over a surface X of rank r > 0, with
Chern classes c1(F) and c2(F). The discriminant Δ(F) is defined by

Δ(F) := 1

r

(
c2(F) − r − 1

2r
c21(F)

)
.

The extension of Proposition 1 is given by the following result in [4]:

Theorem 1 Let X be a non-algebraic surface and F a torsion-free coherent sheaf
over X of rank r , with Chern classes c1(F) and c2(F). Then Δ(F) ≥ 0.

Other simpler proofs were given later by Brînzănescu [19] and by Vuletescu [65]
(or [15], p. 95).

Remark 2 In the case X is a primary Kodaira surface there is a kind of converse of
this theorem, namely one shows that a topological complex vector bundle V of any
rank has a holomorphic complex structure if and only if it satisfies the conditions

c1(V ) ∈ NS(X) and Δ(V ) ≥ 0;

see the paper by Aprodu et al. [1].

For a non-algebraic surface X , a ∈ NS(X) and r a positive integer we can define
the following rational positive number

m(r, a) := − 1

2r
max{Σr

1 (a/r − μi )
2, μi ∈ NS(X) wi th Σr

1μi = a}.

Remark 3 When X is a 2-torus and r = 2 an explicit description of the invariants
m(2, a) is given in [20].
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The extension of the results for filtrable bundles in [20] is the following result of
Bănică and Le Potier [4]:

Theorem 2 A rank r, r ≥ 2 topological complex vector bundle V over a non-
algebraic surface X admits a filtrable holomorphic structure if and only if

c1(V ) ∈ NS(X) and Δ(V ) ≥ m(r, c1(V )),

except when X is a K3-surface with a(X) = 0, c1(V ) ∈ r N S(X) and Δ(V ) = 1
r . In

this excepted case V admits no holomorphic structures.

Other relevant papers on the topic of holomorphic vector bundles over non-algebraic
surfaces are authored by Braam and Hurtubise [11], Teleman [59], Vuletescu [64,65,
67].

3 Vector bundles on non-Kähler elliptic surfaces

Let X
π→ B be a minimal non-Kähler elliptic surface with B a smooth curve of genus

g. It is well-known that X
π→ B is a quasi-bundle over the base B, that is, all the

smooth fibres are isomorphic to a fixed elliptic curve E and the singular fibres (in a
finite number) are multiples of elliptic curves.

Remark 4 For g = 0, X is a Hopf surface, for g = 1, X is a Kodaira surface and, for
g ≥ 2, X is called a properly elliptic surface.

Let E∗ denote the dual of E (we fix a non-canonical identification E∗ = Pic0(E)

by fixing an origin on E). The Jacobian surface associated to X
π→ B is

J (X) = B × E∗ p1→ B,

and X is obtained from the relative Jacobian J (X) by a finite number of logarithmic
transformations [51]. We have the following result (see [16–18]):

Theorem 3 For any minimal non-Kähler elliptic surface we have the isomorphism:

N S(X)/Tors(NS(X)) ∼= Hom(JB, Pic0(E)),

where N S(X) is the Neron–Severi group of the surface and JB denotes the Jacobian
variety of the curve B.

This result was extended byBrînzănescu–Ueno for torus quasi-bundles over curves,
see [25].

Remark 5 In the case of elliptic surfaces, from the above theorem we get:
For any Chern class c = c1(L), with L ∈ Pic(X) a line bundle, the class c ∈

NS(X)/Tors(NS(X)), if it is non-zero, defines a covering map c : B → Pic0(E),
which gives us a section of the Jacobian J (X). This is exactly the spectral curve
associated to the line bundle L , defined by Hitchin (see [46]).
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LetV be aholomorphic rank-2vector bundle on X ,withfixed c1(V ) = c1 ∈ NS(X)

and c2(V ) = c2 ∈ Z. Now, we fix also the determinant line bundle of V , denoted by
δ = det (V ). It defines an involution on the relative Jacobian J (X) = B × E∗ of X :

iδ : J (X) → J (X), (b, λ) → (b, δb ⊗ λ−1),

where δb denotes the restriction of δ to the fibre Eb = π−1(b), which has degree zero
(see Lemma 2.2 in [22]). Taking the quotient of J (X) by this involution, each fibre of
p1 becomes E∗/ iδ ∼= P

1 and the quotient J (X)/ iδ is isomorphic to a ruled surface
Fδ over B. Let η : J (X) → Fδ be the canonical map.

The main existence result of holomorphic rank-2 vector bundles over non-Kähler
elliptic surfaces is the following (see [22]):

Theorem 4 Let X be a minimal non-Kähler elliptic surface over a smooth curve B of
genus g and fix a pair (c1, c2) in N S(X) × Z. Set mc1 := m(2, c1) and denote c1 the
class of c1 in N S(X) modulo 2NS(X); moreover, let ec1 be the invariant of the ruled
surface Fc1 determined by c1. Then, there exists a holomorphic rank-2 vector bundle
on X with Chern classes c1 and c2 if and only if

Δ(2, c1, c2) ≥ (mc1 − dc1/2),

where dc1 := (ec1 + 4mc1)/2. Note that both dc1 and (mc1 − dc1/2) are non-negative
numbers. Furthermore, if

(mc1 − dc1/2) ≤ Δ(2, c1, c2) < mc1,

then the corresponding vector bundles are non-filtrable.

Let us suppose for themoment that theminimal non-Kähler elliptic surface X
π→ B

(which is a quasi-bundle) has no multiple fibres, i.e. it is a principal elliptic bundle.
The set of all holomorphic line bundles on X with trivial Chern class is given by the
zero component Pic0(X) of the Picard group Pic(X). By Proposition 1.6 in [59], one
has

Pic0(X) ∼= Pic0(B) × C
∗,

and any fibre of X
π→ B is E ∼= C

∗/ < τ >, where < τ > is the multiplicative cyclic
group generated by a fixed complex number τ , with |τ | > 1. In particular, there exists
a universal Poincaré line bundle U on X × Pic0(X), whose restriction to

X × C
∗ := X × {0} × C

∗ ⊂ X × Pic0(X)

is constructed in terms of constant automorphy factors (for details, see [22,53]).
The main tool to study vector bundles on any elliptic surface X is by taking restric-

tions to the smooth fibres. Note that if X is non-Kähler, then the restriction of any
line bundle on X to a smooth fibre of π always has degree zero; see [22]. For a rank
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two vector bundle V over X , its restriction to a generic fibre of π is semistable; more
precisely, its restriction to a fibre π−1(b) is unstable on at most an isolated set of points
b ∈ B and, these isolated points are called the jumps of the bundle. Furthermore, there
exists a divisor SV in the relative Jacobian J (X) = B × E∗ of X , called the spectral
curve or cover of the bundle, that encodes the isomorphism class of the bundle over
each fibre of π . The spectral curve can be constructed as follows. If the surface X
does not have multiple fibres, then there exists a universal bundle U on X × Pic0(X),
whose restriction to X×C

∗ is also denotedU ; we associate to the rank-2 vector bundle
V the sheaf on B × C

∗ defined by

L̃ := R1π∗(s∗V ⊗ U),

where s : X × C
∗ → X is the projection onto the first factor, id is the identity map,

and π also denotes the projection π := π × id : X × C
∗ → B × C

∗. This sheaf is
supported on a divisor S̃V , defined with multiplicity, that descends to a divisor SV in
J (X) of the form

SV := Σk
1 ({xi } × E∗) + C,

where C is a bisection of J (X) and x1, x2, . . . , xk are points in B that correspond
to the jumps of V . The spectral curve of V is defined to be the divisor SV . The line
bundle L̃ also descends to a line bundle L on J (X) (see [22,23]).

If the fibration π has multiple fibres, then one can associate to X a principal E-
bundle π ′ : X ′ → B ′ over a m-cyclic covering ε : B ′ → B, where the integer m
depends on themultiplicities of the singular fibres. Themap ε induces naturalm-cyclic
coverings J (X ′) → J (X) and ψ : X ′ → X . By replacing X with X ′ (which does not
have multiple fibres) in the above construction, we obtain the spectral cover Sψ∗V of
the vector bundle π∗V as a divisor in J (X ′). Then, we define the spectral cover SV of
V to be the projection of Sψ∗V in J (X). This construction led to a natural definition
of a twisted Fourier–Mukai transform Φ for locally free sheaves on X , in particular,
Φ(V ) = L. For more details, see [23], Sect. 3 and Theorem 3.1.

Recall that the determinant line bundle δ = det (V ) defines the following involution
on J (X):

iδ : B × E∗ → B × E∗, iδ(b, λ) = (b, δb ⊗ λ−1),

where δb denotes the restriction of δ to the fibre Eb = π−1(b). The spectral curve SV
of V is invariant with respect to this involution. The quotient of J (X) = B × E∗ by
the involution is a ruled surface Fδ := J (X)/ iδ over B. Let η : J (X) → Fδ be the
canonical map. By construction, the spectral curve SV of the bundle V descends to
the quotient Fδ; in fact, it is a pullback via η of a divisor on Fδ of the form

GV := Σk
1 fi + A,

where fi is the fibre of the ruled surface over the point xi and A is a section of the
ruling such that η∗A = C . The divisor GV is called the graph of V.
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The degree of a vector bundle can be defined on any compact complex manifold
M of dimension d. A theorem of Gauduchon’s [43] states that any hermitian metric
on M is conformally equivalent to a metric (called now a Gauduchon metric), whose
associated (1, 1)-form ω satisfies ∂∂ωd−1 = 0. Suppose that M is endowed with such
a metric and let L be a holomorphic line bundle on M . The degree of L with respect
to ω is defined (see [28]), up to a constant factor, by

deg(L) :=
∫
M
F ∧ ωd−1,

where F is the curvature of a hermitian connection on L , compatible with ∂L . Any
two such forms differ by an exact ∂∂- exact form. Since ∂∂ωd−1 = 0, the degree is
independent of the choice of connection and is therefore well-defined. This degree is
an extension of that in the Kähler case, where we get the usual topological degree. In
general, this degree is not a topological invariant, for it can take values in a continuum.

Having defined the degree of holomorphic line bundles, we define the degree of a
torsion-free coherent sheafV by deg(V) := deg(det V), where det V is the determinant
line bundle of V , and the slope of V by

μ(V) := deg(V)/rank(V).

Now, we define the notion of stability: A torsion-free coherent sheaf V on M is stable
if and only if for every coherent subsheaf S ⊂ V with 0 < rk(S) < rk(V), we have
μ(S) < μ(V).

Fix a rank-2 vector bundle V on a minimal non-Kähler elliptic surface X and let δ
be its determinant line bundle; there exists a sufficient condition on the spectral cover
of V that ensures its stability (see [24]):

Proposition 2 Suppose that the spectral cover of V includes an irreducible bisection
C of J (X). Then V is irreducible, and hence it is also stable with respect to any
Gauduchon metric.

Let X be a minimal non-Kähler elliptic surface and consider a pair (c1, c2) in
NS(X) × Z. We fix a Gauduchon metric on X . For a fixed line bundle δ on X with
c1(δ) = c1, letMδ,c2 be the moduli space of stable (with respect to the fixed Gaudu-
chon metric) holomorphic rank-2 vector bundles with invariants det(V ) = δ and
c2(V ) = c2. Note that, for any c1 ∈ NS(X), one can choose a line bundle δ on X such
that

c1(δ) ∈ c1 + 2NS(X) and m(2, c1) = −1

2
(c1(δ)/2)

2;

moreover, if there exist line bundles a and δ′ such that δ = a2δ′, then there is a natural
isomorphism between the moduli spacesMδ,c2 andMδ′,c2 , defined by V → a ⊗ V .

This moduli space can be identified, via the Kobayashi–Hitchin correspondence,
with themoduli space of gauge-equivalence classes ofHermitian–Einstein connections
in thefixeddifferentiable rank-2 vector bundle determinedby δ and c2 (see, for example
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[28,52]). In particular, if the determinant δ is the trivial line bundle OX , then there
is a one-to-one correspondence between MOX ,c2 and the moduli space of SU (2)-
instantons, that is, anti-selfdual connections. We can define the map

G : Mδ,c2 → Div(Fδ)

that associates to each stable vector bundle its graph in Div(Fδ), called the graphmap.
In [11,53], the stability properties of vector bundles on Hopf surfaces were studied by
analysing the image and the fibres of this map. In particular, it was shown [53] that
the moduli space admits a natural Poisson structure with respect to which the graph
map is a Lagrangian fibration whose generic fibre is an abelian variety, i.e. the map G
admits an algebraically completely integrable system structure. For the general case,
the moduli spaces Mδ,c2 are studied by Brînzănescu and Moraru [24].

We have the following results (see [24]):

Theorem 5 Let X
π→ B be a non-Kähler elliptic surface and letMδ,c2 be defined as

above. Then:

(i) There are necessary and sufficient conditions such that Mδ,c2 is nonempty (see
Theorem 4).

(ii) If c2 − c21/2 > g − 1 (g is the genus of B), the moduli space Mδ,c2 is smooth
on the open dense subset of regular bundles (a regular bundle is a vector bundle
for which its restriction to any fibre has its automorphism group of the smallest
dimension).

(iii) If g ≤ 1, the moduli space Mδ,c2 is smooth of dimension 8Δ(2, c1, c2) and
G : Mδ,c2 → Div(Fδ) is an algebraically completely integrable Hamiltonian
system.

(iv) The generic fibre of the graph map G : Mδ,c2 → Div(Fδ) is a Prym variety (for
Prym varieties, see [55]).

(v) Let Pδ,c2 be the set of divisors in Fδ of the form Σk
1 fi + A, where A is a section

of the ruling and the fi ’s are fibres of the ruled surface, that are numerically
equivalent to η∗(B0) + c2 f . For c2 ≥ 2, the graph map is surjective on Pδ,c2 .
For c2 < 2, see [24].

(vi) Explicit descriptions of the the singular fibres of G are given, see [24].

Special results on the moduli spaceMδ,c2 in the case of primary Kodaira surfaces
are given in [2].

4 Vector bundles on higher-dimensional non-Kähler elliptic fibrations

Let M be an n-dimensional compact complex manifold, T = V/Λ an m-dimensional
complex torus and X

π−→ M a principal bundle with fiber T . The theory of principal
torus bundles is developed in great detail in [47]; see also [25]. It is well known that
such bundles are described by elements of H1(M,OM (T )), where OM (T ) denotes
the sheaf of local holomorphic maps from M to T . Considering the exact sequence of
groups
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0 → Λ → V → T → 0

and taking local sections we obtain the following exact sequence

0 → Λ → OM ⊗ V → OM (T ) → 0.

Passing to the cohomology we have the long exact sequence

· · · → H1(M,Λ) → H0,1
M ⊗ V → H1(M,OM (T ))

cZ−→
cZ−→ H2(M,Λ) → H0,2

M ⊗ V → · · ·

By taking the image of the co-cycle defining the bundle via the map cZ we obtain a
characteristic class cZ(X) ∈ H2(M,Λ) = H2(M,Z) ⊗ Λ and also a characteristic
class c(X) ∈ H2(M,C) ⊗ V .

Concerning some important sheaves on X we have the identifications (see [47]):

KX = π∗KM , Riπ∗OX = OM ⊗C H0,i (T ) (1)

and the exact sequence

0 → �1
M → π∗�1

X → OM ⊗C H1,0(T ) → 0. (2)

All the information concerning the topology of the bundle X → M is given by the
following invariants

(a) The exact sequence (2) gives rise to an element γ ∈ Ext1(OM ⊗H1,0(T ),�1
M ) =

H1(�1
M ) ⊗ H1,0(T )∗. Thus γ is a map H1,0(T ) → H1,1(M).

(b) The first non-trivial d2- differential in the Leray spectral sequence (d2 : E0,1
2 →

E2,0
2 ) of the sheaf CX . We obtain in this way a map δ : H1(T,C) → H2(M,C).

In the same way we may define the maps δZ : H1(T,Z) → H2(M,Z).

(c) The first non-trivial d2-differential in the Leray spectral sequence of OX , where
d2 : H0(R1π∗OX ) → H2(π∗OX ). Via the identifications (1) we get a map
ε : H0,1(T ) → H0,2(M).

(d) The characteristic classes cZ(X) and c(X) defined above.

These invariants are related by the following theorem of Höfer (see [47]):

Theorem 6 Let X
π−→ M be a holomorphic principal T -bundle. Then:

1. The Borel spectral sequence ([10]) p,q Es,t
2 = ∑

Hi,s−i (M) ⊗ H p−i,t−p+i (T )

degenerates on E3- level and the d2-differential is given by ε and γ .
2. The Leray spectral sequence Es,t

2 = Hs(M,C) ⊗ Ht (T,C) degenerates on E3-
level and the d2- differential is given by δ.

3. Via the identification H1(T,Z) = Hom(Λ,Z) the characteristic class cZ and the
map δZ coincide.

4. δ is determined by δZ via scalar extension.
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5. If H2(M) has Hodge decomposition then δ determines ε and γ and conversely.

Firstly, in this section, we shall be concerned with the study of the (coarse) relative
moduli space of fibrewise degree-zero line bundles over a principal elliptic bundle
X → S, where S is a compact complex manifold, with fiber E := Eτ := C/Λ

(Λ = Z ⊕ τZ). Also we make the assumption that δ = 0. In particular, X → S does
not have the topology of a product. We should note here that if S is Kähler, then X is
non-Kähler if and only if δ = 0, see [47].

We shall need in the sequel the following result of Deligne, [34], in the formulation
of [47], Proposition 5.2.

Theorem 7 Let X → S be a principal elliptic bundle. Then the following statements
are equivalent:

(a) The Leray spectral sequence for CX degenerates at the E2-level;
(b) δ : H1(E,C) → H2(X,C) is the zero map;
(c) The restriction map H2(X,C) → H2(E,C) takes a non-zero value in H1,1

E .

In our case the preceding theorem has a very important consequence

Corollary 1 Let X → S be a principal elliptic bundle with S a compact complex
manifold and δ = 0. Then for any vector bundle F over X and any s ∈ S the bundle
F |Xs has degree 0.

Let X
π−→ S be an elliptic principal bundle with typical fibre an elliptic curve Eτ

and base S a smooth manifold. Let F : (An/S)op → (Sets) be the functor from the
category of analytic spaces over S to the category of sets, given, for any commutative
diagram

XT

π

��

�� X

π

��
T �� S,

(3)

where XT := X ×S T , by

F(T ) := {L invertible on XT | deg(L|XT,t ) = 0, for all t ∈ T }/ ∼},

where L1 ∼ L2 if there is a line bundle L on T such that L1 � L2 ⊗ π∗L .
A variety J over S will be called the relative Jacobian of X if

(i) it corepresents the functor F , see [49] Definition 2.2.1, i.e. there is a natural
transformation F

σ−→ HomS(−, J ) and for any other variety N/S with a natural

transformation F
σ ′−→ HomS(−, N ) there is a unique S-morphism J

ν−→ N such
that ν∗ ◦ σ = σ ′.

(ii) for any point s ∈ S the map F({s}) → HomS({s}, J ) � Js is bijective. Then
each fibre Js is the Jacobian of the fibre Xs � E .
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If X is projective, the existence of the relative Jacobian is well known, because it
can be identified with the coarse relative moduli space of stable locally free sheaves
of rank 1 and degree 0 on the fibres of X , see [30,49]. The relative Jacobian exists
also in our non-Kähler case. It is just the product S× E∗ and has the following special
properties (see [26]):

Theorem 8 (i) The functor F is corepresented by J := S × E∗.
(ii) For any point s ∈ S the map F({s}) → HomS({s}, J ) � Js � E∗ is bijective.
(iii) The map σ(T ) is injective for any complex space T .
(iv) The functor F is locally representable by J = S×E∗, i.e. ifU ⊂ S is a trivializing

open subset, σ(U ) is bijective.

It will follow fromTheorem 9 that the relative Jacobian J = S×E∗ is only a coarse
moduli space under our assumption on X . However, by property (iv) of the theorem
one can find a system of local universal sheaves which will form a twisted sheaf as in
[30], Chapter 4.

In the following we replace the relative Jacobian J by S × E via the canonical

isomorphism between E and E∗. Then the local trivializations Xi
θi−→ Si × E are

at the same time isomorphisms between Xi and Ji := Si × E . The local universal
sheaves Ui on Xi J = J ×S Xi = Ji ×Si Xi are then given as pull backs of the universal
sheafOE×E (Δ)⊗ p∗

2OE (−p0) for the classical Jacobian of the elliptic curve E , after
fixing an origin p0 ∈ E and where Δ is the diagonal.

Denoting by ρi the composition of maps

Xi J
id×θi−−−→ J ×S (Si × E) � Si × E × E → E × E,

and by pX the projection from Xi J to Xi , the local universal sheaf becomes

Ui = ρ∗
i (OE×E (Δ) ⊗ p∗

2OE (−p0)) � OXi J (�i ) ⊗ p∗
XOXi (−si ),

where �i is the inverse of the diagonal (or the graph of the map θi ) and si is the section
of Xi corresponding to the reference point p0 under the isomorphism θi , see [30],
Proposition 4.2.3.

To measure the failure of these bundles to glue to a global universal one let us
consider the line bundles Mi j := Ui ⊗ U−1

j over J ×S Xi j . Then the restriction of

Mi j to a fibre Xs of the projection J ×s Xi
qi−→ J is trivial because both U j and

Ui restrict to isomorphic sheaves. It follows that there are invertible sheaves Fi j on
Ji j = Si j × E such that Mi j = q∗

i Fi j .
This collection of line bundles satisfies the following properties:

1. Fi i = OJi ;
2. F j i = F−1

i j ;
3. Fi j ⊗ F jk ⊗ Fki =: Fi jk is trivial, with trivialization induced by the canonical

one of Mi j ⊗ M jk ⊗ Mki ;
4. Fi jk ⊗ F−1

jkl ⊗ Fkli ⊗ F−1
li j is canonically trivial.
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These conditions tell us that the collection {Fi j } represents a gerb (see [37]) and
gives rise to an element α ∈ H2(J,O∗

J ). More explicitly, α is defined as follows. We
may assume that the sheavesFi j are already trivial with trivializations ai j : OJ � Fi j

over Ji j .
If ci jk : OJ � Fi jk is the isomorphism which is induced by the canonical trivial-

ization of Mi j ⊗ M jk ⊗ Mki , then

ai j ⊗ a jk ⊗ aki = αi jkci jk (4)

with scalar functions αi jk which then define a cocycle for the sheafO∗
J , thus defining

the class α ∈ H2(J,O∗
J ), see [30], Section 4.3. It is straightforward to prove:

Lemma 1 The sheaves Ui can be glued to a global universal sheaf if and only if the
class α = 0.

The element α is related to the element ξ ∈ H1(S,OS(E)) which is defined by the
cocycle of the elliptic bundle X → S, using the Ogg–Shafarevich group XS(J ) of
J , see [30], Section 4.4. There is an exact sequence

0 → Br(S) → Br(J )
π−→ XS(J ) → 0,

where Br(S) � H2(J,O∗
J ) is the analytic Brauer group of S andXS(J ) is isomorphic

to H1(S,OS(E)) in our setting.Wehave the following result (see [30], Theorem4.4.1):

Theorem 9 ξ = π(α).

Because ξ = 0 in our case, α = 0, and thus the local universal sheaves cannot
be glued to a global universal sheaf by preserving the bundle structure on the elliptic
fibres.

The collection of local universal sheaves above can be considered as an α-twisted
sheaf with which one can define a Fourier–Mukai transform. Recall the definition
of an α-twisted sheaf on a complex space or on an appropriate scheme X . Let α ∈
C2(U,O∗

X ) be a Čech 2-cocycle, given by an open cover U = {Ui }i∈I and sections
αi jk ∈ �(Ui ∩ Uj ∩ Uk,O∗

X ). An α-twisted sheaf on X will be a pair of families
({Fi }i∈I , {ϕi j }i, j,∈I ) with Fi a sheaf of OX -modules on Ui and ϕi j : F j |Ui∩Uj →
Fi |Ui∩Uj isomorphisms such that

– ϕi i is the identity for all i ∈ I .
– ϕi j = ϕ−1

j i , for all i, j ∈ I .
– ϕi j ◦ ϕ jk ◦ ϕkl is multiplication by αi jk on Fi |Ui∩Uj∩Uk for all i, j, k ∈ I .

It is easy to see that the coherent α-twisted sheaves on X make up an abelian category
and thus give rise to a derived category D�(X, α). For further properties of α-twisted
sheaves, see [30].

With the notation above, the family (Ui ) becomes a twisted sheaf U w.r.t. the
cocycle p∗

Jα of the sheaf O∗
J×S X

as follows. The trivializations ai j of the Fi j induce
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isomorphisms φi j : U j � Ui which satisfy the definition of a twisted sheaf because of
identity 4. We also need the dual V of U on J ×S X which locally over Si is given by

Vi = ρ∗
i (OE×E (−Δ) ⊗ p∗

2OE (p0)) � OXi J (−�i ) ⊗ p∗
XOXi (si ).

It follows that Vi is α−1-twisted. We let V0 and U0 denote the extensions of V and U
to J × X by zero.

The following theorem (see [26]) supplies us with the main tool for the treatment
of the moduli spaces MX (n, 0) of relatively semistable vector bundles on X of rank n
and degree 0 on the fibres Xs (for vector bundles on elliptic curves see [3,61]). It is
an analogue of the Theorem 6.5.4 [30] (see also [31]):

Theorem 10 Let X
π−→ S be an elliptic principal fiber bundle, where S has trivial

canonical bundle. Let α ∈ Br(J ) be the obstruction to the existence of the universal
sheaf on J ×S X and let U be the associated p∗

J (α)-twisted universal sheaf on J ×S X
with its dual V as above.

Then the twisted Fourier–Mukai transform � : D�(J, α) → D�(X), given by
�(F) := RpX∗(V0 ⊗L L pJ ∗F) is an equivalence of categories, where pJ and pX
are the product projections

J J × X
pJ�� pX �� X (5)

Note here that V0 ⊗L L pJ ∗F) is a complex in the category of untwisted sheaves on
J × X .

Remark 6 Similar results were obtained in different settings by Ben-Bassat [9] and
Burban–Kreussler [29]. Related results were obtained in [32].

In the sequel we shall work with the adjoint transform Φ(−) = RpJ∗(U0 ⊗L

Lp∗
X (−)) of � with kernel U0. It is the reverse equivalence, see [14], 8.4, [6,48,56]

for the untwisted situation.
Now, we shall apply the twisted Fourier–Mukai transform to the moduli problem

for rank-n relatively semi-stable vector bundles on the principal elliptic bundle X . By
Deligne’s theorem (Theorem 7), the degree of the restriction Fs of any vector bundle
F on X is 0 for any s ∈ S. Therefore we consider the set MSX (n, 0) of rank-n vector
bundles on X which are fibrewise semistable (see [3,42]) and of degree zero, together
with its quotient

MX (n, 0) := MSX (n, 0)/ ∼

of equivalence classes, where two bundles are defined to be equivalent if they are
fibrewise S-equivalent (for S-equivalence see [49]).

We denote by Φ i (F) the i-th term of the complex Φ(F). We say that the sheaf F
is Φ-WITi (the weak index theorem holds) if Φ i (F) = 0 and Φ j (F) = 0 for any
j = i . Moreover ifF is WITi and Φ i (F) is locally free we say thatF is ITi , see [54].
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Let F be a WIT1 sheaf on X . The spectral cover C(F) of F is the 0-th Fitting
subscheme (see [39,54]) of J given by the Fitting ideal sheaf Fitt0(Φ1(F)) ofΦ1(F).
For details see [26].

In this way we obtain a map from MX (n, 0) to S × Symn E , where Symn E :=
En/Sn is the n-th symmetric power of E as the quotient of En by the symmetric
groupSn . Then S×Symn E is a complex manifold of dimension n+dim(S) and can
be thought of as the relative space of cycles of degree n in E . We will show that this
map is part of a transformation of functors with target HomS(−, S × Symn E) and
that S × Symn E corepresents the moduli functorMX (n, 0) for MX (n, 0) defined as
follows.

For any complex space T over S let the setMX (n, 0)(T ) be defined by

MX (n, 0)(T ) := MSX (n, 0)(T )/ ∼,

whereMSX (n, 0)(T ) is the set of vector bundles on XT of rank n and fibre degree 0,
andwhere the equivalence relationF ∼ G is defined by S-equivalence of the restricted
sheavesFt andGt on the fibres XTt . The functor property is then defined via pull backs.

We are going to describe the spectral cover as a functor below. For that let T → S
be a complex space over S and let ΦT be the Fourier–Mukai transform for the product
JT × XT with the pull back UT of U as kernel. By [7], Proposion 2.7 and Corollary
2.12, any bundleFT inMSX (n, 0)(T ) is alsoΦT −W IT1 and admits a spectral cover
C(FT ) ⊂ T × E defined by the Fitting ideal Fitt0Φ1

T (FT ) (see also [45]).

Lemma 2 If T is reduced, then C(FT ) is flat over T .

For the proof, one uses the Douady’s flatness criterion [38]; see [26].

Lemma 3 The spectral cover is compatible with base change: For any morphism
h : T ′ → T over S and any bundle FT inMSX (n, 0)(T ),

h∗C(FT ) � C(h∗FT )

For the proof, see [26].
The spectral covers C(FT ) lead us to consider the relative Douady functors

Dn : (An/S)op → (Sets),

where (An/S) denotes the category of complex analytic spaces over S and where a set
Dn(T ) for a morphism T → S is defined as the set of analytic subspaces Z ⊂ T × E
which are flat over T and have 0-dimensional fibres of constant length n. The Douady
functorDn is represented by a complex space Dn(S×E/S) over S, see [57]. For a point
s ∈ S,Dn({s}) is the set of 0-dimensional subspaces of length n and can be identified
with the symmetric product Symn(E) because it is well known that the Hilbert–Chow
morphism, in our case the Douady–Barlet morphism,Dn({s}) → {s}×Symn(E) is an
isomorphism for the smooth curve E , see [5] Ch.V. It is then easy to show that also the
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relative Douady–Barlet morphism Dn(S×E/S) → S×Symn(E) is an isomorphism.
This implies that for any complex space T over S there is a bijection

Dn(T )
∼−→ HomS(T, S × Symn(E)). (6)

One should note here that the behavior of families of cycles is more difficult to
describe than of those for the Douady space.

Let now Dn
r resp. MX (n, 0)r be the restriction of the functors Dn and MX (n, 0)

to the category (Anr/S) of reduced complex analytic spaces. By the Lemmas 2 and 3
the spectral covers give rise to a transformation of functors

MX (n, 0)r
γ−→ Dn

r � HomS(−, S × Symn(E)), (7)

where for a reduced space T over S and for a class [FT ] in MX (n, 0)(T ) we have
γ (T )(FT ) = C(FT ).Note that by flatness and compatibility with restriction to fibres,
C(FT ) depends only on the equivalence class of FT . We are now able to present the
theorem which generalises Theorem 8, see [26].

Theorem 11 The spectral cover induces a transformation of functors γ : MX (n, 0)r
→ HomS(−, S × Symn(E)) with the following properties.

(i) The functorMX (n, 0)r is corepresented by S×Symn(E) via the transformation
γ ,

(ii) For any point s ∈ S the induced map MXs (n, 0) → Symn(E) is bijective.
(iii) The map γ (T ) is injective for any reduced complex space T over S.
(iv) MX (n, 0)r is locally representable by S×Symn(E), i.e. ifU ⊂ S is a trivializing

open subset for X and T is a complex space over U, then γ (T ) is bijective.

The proof of the next result is based also on the spectral cover; see [27].

Theorem 12 Consider an elliptic principal bundle X
π−→ S over a surface S, with at

least one non-zero characteristic (Chern) class and with invariant ε = 0. If S has no
curves, then, up to a twist by a line bundle, every rank-2 irreducible vector bundle V
on X is a pull-back from S.

When S is a projective manifold, a similar result was obtained by Verbitsky; see
[63].
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15. Brînzănescu, V.: Holomorphic Vector Bundles Over Compact Complex Surfaces. Lecture Notes in

Mathematics, vol. 1624. Springer, Berlin (1996)
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