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Abstract We prove height estimates concerning compact hypersurfaces with nonzero
constant weighted mean curvature and whose boundary is contained into a slice of
a weighted product space of nonnegative Bakry–Émery–Ricci curvature. As appli-
cations of our estimates, we obtain half-space type results related to complete
noncompact hypersurfaces properly immersed in such an ambient space.
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1 Introduction

In 1969, Heinz [17] showed that a compact graph of positive constant mean curvature
H in the 3-dimensional Euclidean spaceR

3 with boundary on a plane can reach atmost
height 1

H from this plane. A hemisphere in R
3 of radius 1

H shows that this estimate is
optimal. In particular, Heinz’s resultmotivated several authors to approach the problem
of obtaining a priori estimates for the height function of a compact hypersurface whose
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boundary is contained into a slice of a Riemannian product space (see, for instance, [2,
3,8,13,18,23]). More recently, extending the ideas of Alías and Dajczer [4], García-
Martínez, Impera and Rigoli [15] proved sharp height estimates concerning compact
hypersurfaces immersed in certain types of warped product spaces, with some constant
higher order mean curvature and whose boundary is contained into a slice.

Concerning the Lorentzian setting, López [22] obtained a sharp estimate for the
height of compact constantmean curvature spacelike surfaceswith boundary contained
in a spacelike plane of the 3-dimensional Lorentz–Minkowski space L

3. Later on, the
first author [10] established a height estimate for compact spacelike hypersurfaceswith
some positive constant higher order mean curvature and whose boundary is contained
in a spacelike hyperplane of the (n +1)-dimensional Lorentz–Minkowski spaceL

n+1.
As in [22], through the computation of the height of the hyperbolic caps of L

n+1, he
showed that his estimate is sharp. Afterwards, this same author jointly with Colares [9]
generalized the results of [10] to the context of Lorentzian product spaces of the type
−R × P

n , where the fiber P
n is supposed to have nonnegative sectional curvature.

Proceeding with this picture, García-Martínez and Impera [14] extended the results
of [9] to the so-called generalized Robertson–Walker spacetimes.

On the other hand, into the branch of the geometric analysis, many problems lead us
to consider Riemannian manifolds endowed with a measure that has a smooth positive
density with respect to the Riemannian one. This turns out to be compatible with the
metric structure of the manifold and the resulting spaces are the weighted manifolds,
which are also called manifolds with density or smooth metric measure spaces in the
literature.

More precisely, given a complete n-dimensional Riemannianmanifold (Mn, g) and
a smooth function f : Mn → R, the weighted manifold Mn

f associated to Mn and f

is the triple (Mn, g, dμ = e− f d M), where d M denotes the standard volume element
of Mn . Appearing naturally in the study of self-shrinkers, Ricci solitons, harmonic
heat flows and many other objects, weighted manifolds are proved to be important
nontrivial generalizations of Riemannian manifolds and, nowadays, there are several
geometric investigations concerning them. For a brief overview of results in this scope,
we refer to the articles of Morgan [24] and Wei-Wylie [27].

We point out that a theory of Ricci curvature for weighted manifolds goes back to
Lichnerowicz [20,21] and it was later developed by Bakry and Émery in the seminal
work [6], where they introduced the Bakry–Émery–Ricci tensor Ric f of a weighted
manifold Mn

f as being the following extension of the standard Ricci tensor Ric of
Mn :

Ric f = Ric + Hess f. (1.1)

So, it is natural to try to extend results stated in terms of theRicci curvature to analogous
results for the Bakry–Émery–Ricci tensor.

Here, our purpose is to revisit the problem of measure the vertical height of a
compact hypersurface with nonzero constant weighted mean curvature and whose
boundary is supposed, now, to be contained into a slice of a weighted product
space. In this setting, under the assumption that the ambient space has nonnegative
Bakry–Émery–Ricci curvature, we are able to establish optimal height estimates (see

123



Ann Univ Ferrara (2017) 63:323–332 325

Theorems 1 and 3). As application of these estimates, we extend the ideas of [10,14]
and [15] in order to prove half-space type theorems (see Theorems 2 and 4).

2 Preliminaries

In what follows, let us consider an (n + 1)-dimensional product space M
n+1

of the
form I × P

n , where I ⊂ R is an open interval, P
n is an n-dimensional connected

Riemannian manifold and M
n+1

is endowed with the standard product metric

〈, 〉 = επ∗
I (dt2) + π∗

P
(〈, 〉P),

where ε = ±1, πI and πP denote the canonical projections from I × P
n onto each

factor, and 〈, 〉P is the Riemannian metric on P
n . For simplicity, we will just write

M
n+1 = ε I × P

n and 〈, 〉 = εdt2 + 〈, 〉P. In this setting, for a fixed t0 ∈ I , we say

that P
n
t0 = {t0} × P

n is a slice of M
n+1

.
Throughout this paper, we will consider �n a connected hypersurface immersed

into M
n+1

. In the case where M
n+1

is Lorentzian (that is, when ε = −1) we will
assume that �n is a spacelike hypersurface, that is, the metric induced on �n via the
immersion is a Riemannian metric. Since ∂t is a globally defined timelike vector field
on−I ×P

n , it follows that there exists a unique unitary timelike normal field N globally
defined on �n which is in the same time-orientation as ∂t , so that its corresponding
angle function � = 〈N , ∂t 〉 satisfies � ≤ −1. In that case, we will refer to N as the

future-pointing Gauss map of �n . When M
n+1

is a Riemannian product space (that

is, when ε = 1), �n will be assumed to be a two-sided hypersurface in M
n+1

. This
condition means that there is a globally defined unit normal vector field N .

Denoting by ∇, ∇ and ˜∇ the gradients with respect to the metrics of ε I ×ρ P
n , �n

and P, respectively, a simple computation shows that the gradient of πI on M
n+1

is
given by

∇πI = ε〈∇πI , ∂t 〉∂t = ε∂t . (2.1)

So, from (2.1) we conclude that the gradient of the (vertical) height function h =
(πI )|� of �n is given by

∇h = (∇πI )

 = ε∂


t = ε∂t − �N , (2.2)

where ( )
 denotes the tangential component of a vector field in X(M
n+1

) along �n .
Thus, we get the following relation

|∇h|2 = ε(1 − �2), (2.3)

where | | denotes the norm of a vector field on �n .
Now, let ε I × P

n be a semi-Riemannian product space endowed with a weighted
function f . For a Riemannian hypersurface�n immersed in ε I ×P

n , the f -divergence
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operator on �n is defined by

div f (X) = e f div(e− f X),

for all tangent vector field X on �n and, for a smooth function u : �n → R, its
drifting Laplacian is given by

� f u = div f (∇u) = �u − 〈∇u,∇ f 〉. (2.4)

According to Gromov [16], the weighted mean curvature, or simply f -mean cur-
vature, H f of �n is given by

nH f = nH + ε〈∇ f, N 〉 (2.5)

where H denotes its standard mean curvature function of �n with respect to its ori-
entation N .

3 The Riemannian setting

It follows from a splitting theorem due to Fang, Li and Zhang (see [12, Theorem 1.1])
that if a weighted product space I ×P

n with bounded weighted function f is such that
Ric f ≥ 0, then f must be constant along I . So, motivated by this result, along this
section we will consider weighted product spaces I × P

n whose weighted function
f does not depend on the parameter t ∈ I , that is, 〈∇ f, ∂t 〉 = 0 and, for the sake of
simplicity, we will denote them by I × P

n
f .

Now, we present our first height estimate.

Theorem 1 Let I × P
n
f be a weighted Riemannian product space with Ric f ≥ 0 and

let �n be a compact hypersurface with boundary contained into the slice {s} × P
n,

for some s ∈ I , and whose angle function � does not change sign. If �n has nonzero
constant f -mean curvature such that nH2

f ≤ |A|2, where A denotes the Weingarten
operator of �n with respect to its unit normal vector field N, then the height function
h of �n satisfies

|h − s| ≤ 1

|H f | . (3.1)

Proof Initially, we will show that

� f � = −�(˜Ric f (N∗, N∗) + |A|2), (3.2)

where ˜Ric f stands for the Bakry–Émery–Ricci tensor of P
n and N∗ = N − �∂t is

the projection of N onto P
n .

Indeed, from Proposition 6 of [5] (see also Proposition 1 of [1]) we have that

�� = −n∂

t (H) − �(˜Ric(N∗, N∗) + |A|2), (3.3)
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where ∂

t stands for the tangential component of ∂t along �n and ˜Ric is the Ricci

tensor of P
n .

On the other hand, using our assumption that 〈∇ f, ∂t 〉 = 0 and that H f is constant,
from (1.1) and (2.5) we get

∂

t (H) = ∂


t

(

H f − 1

n
〈∇ f, N 〉

)

= −1

n
∂


t 〈∇ f, N 〉

= 1

n
�Hess f (N , N ) + 1

n
〈A(∂


t ),∇ f 〉. (3.4)

Moreover, taking into account once more that 〈∇ f, ∂t 〉 = 0, it is not difficult to
verify that

Hess f (N , N ) = H̃ess f (N∗, N∗), (3.5)

where H̃ess f stands for the Hessian of f on P
n .

Consequently, since

∇� = −A(∂

t ),

from (3.6) and (3.5) we get

n∂

t (H) = �H̃ess f (N∗, N∗) + 〈∇�,∇ f 〉. (3.6)

So, from the Eqs. (3.3) and (3.6) we deduce (3.3).
Moreover, since f is constant along R, from (2.1) we get that

〈∇ f,∇h〉 = −〈∇ f, N 〉�. (3.7)

But, from Proposition 7.35 of [25] we have that

∇X∂t = 0 (3.8)

for every X ∈ X(�). Thus, from (2.2) and (3.8), we get

∇X (∇h) = ∇X (∂

t ) = �AX. (3.9)

Hence, from (3.9) we have
�h = nH�. (3.10)

Therefore, from (2.4), (2.5), (3.7) and (3.10) we obtain

� f h = nH f �. (3.11)
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Now, we define on �n the function

ϕ = H f h + �. (3.12)

From 3.11 and 3.2 we get that

� f ϕ = −�(|A|2 − nH2
f + ˜Ric f (N∗, N∗)). (3.13)

Consequently, since ˜Ric f (N∗, N∗) = Ric f (N , N ) ≥ 0, nH2
f ≤ |A|2 and choosing

N such that −1 ≤ � ≤ 0, from (3.13) we get that � f ϕ ≥ 0. Thus, we conclude from
the maximum principle that ϕ ≤ ϕ|∂� and, hence, from (3.12) we have that

H f h − 1 ≤ H f h + � ≤ H f s. (3.14)

We then consider the two possible cases. In the case that H f > 0, from (3.11) we
have � f h ≤ 0 and, from the maximum principle, h ≥ s on �n . Thus, from (3.14) we
conclude that

h − s ≤ 1

H f
. (3.15)

Finally, in the case that H f < 0, from (3.11) we have � f h ≥ 0 and, again from the
maximum principle, h ≤ s on �n . Thus, from (3.14) we must have

s − h ≤ − 1

H f
. (3.16)

Therefore, estimate (3.1) follows from (3.15) and (3.16). �
Remark 1 Concerning Theorem 1, we note that if �n is locally a graph over P

n , then
its angle function � is either � < 0 or � > 0 along �n . Hence, the assumption
that � does not change sign is generally weaker than that of �n being a local graph.
Moreover, as it was already observed by Espinar and Rosenberg [11] when they made
allusion to immersions into the Euclidean space, the condition that � does not change
sign can also be regarded as the image of the Gauss map of the hypersurface lying in
a closed hemisphere of the Euclidean sphere.

On the other hand, we also observe that the hypothesis nH2
f ≤ |A|2 is automatically

satisfied in the case that the weighted function f is constant. Furthermore, taking into
account Heinz’s estimate [17] previously commented in the introduction, we see that
our estimate (3.1) is optimal.

From Theorem 1, and according to the ideas of [10,14,15], we obtain the following
half-space type result.

Theorem 2 Let R × P
n
f be a weighted Riemannian product space with Ric f ≥ 0

and P
n compact. Let �n be a complete noncompact two-sided hypersurface properly

immersed in R×P
n
f , whose angle function � does not change sign. If �n has nonzero

constant f -mean curvature such that nH2
f ≤ |A|2, then �n cannot lie in a half-space

of R × P. In particular, �n must have at least one top and one bottom end.
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Proof Suppose by contradiction that, for instance, �n ⊂ (−∞, τ ] × P, for some
τ ∈ R. Thus, for each s < τ we define

�+
s = {

(t, x) ∈ �n : t ≥ s
}

.

Since P is compact and �n is properly immersed in R × P
n
f , we have that �+

s is a
compact hypersurface contained in a slab of width τ − s and with boundary in {s}×P.
Thus, we can apply Theorem 1 to get that �+

s is contained in a slab of width 1
|H f | , so

that it must be τ − s ≤ 1
|H f | . Consequently, choosing s sufficiently small we violate

this estimate, reaching a contradiction.
Analogously, if we suppose that �n ⊂ [τ,+∞) × P with τ ∈ R, for each s > τ

we define �−
s by

�−
s = {(t, x) ∈ �; t ≤ s} .

Hence, since �−
s is a compact hypersurface with boundary in {s} × P, we can reason

as in the previous case and obtain another contradiction. �

4 The Lorentzian setting

As a consequence of a splitting theorem due to Case (see [7, Theorem 1.2]), if a
weighted Lorentzian product space −R × P is endowed with a bounded weighted
function f and if Ric f (V, V ) ≥ 0, for all timelike vector field V on −I × P, then f
must be constant along R. Motivated by this result, in what follows we will consider
weighted Lorentzian product spaces −I × P

n whose weighted function f does not
depend on the parameter t ∈ I , that is, 〈∇ f, ∂t 〉 = 0 and we will denote them by
−I × P

n
f .

We proceeding with our second height estimate.

Theorem 3 Let −I × P
n
f be a weighted Lorentzian product space with Ric f ≥ 0

and let �n be a compact spacelike hypersurface with boundary contained into the
slice {s} × P

n, for some s ∈ I . If �n has nonzero constant f -mean curvature such
that nH2

f ≤ |A|2, where A denotes the Weingarten operator of �n with respect to its
future-pointing unit normal vector field N, then the height function h of �n satisfies

|h − s| ≤ max∂� |�| − 1

|H f | . (4.1)

Proof Since from Proposition 1 of [1] gives us

�� = n∂

t (H) + �(˜Ric(N∗, N∗) + |A|2),

in a similar way of the proof of Theorem 1 we get that

� f � = �(˜Ric f (N∗, N∗) + |A|2). (4.2)
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Moreover, also analogously as in the proof of Theorem 1, we have that

� f h = −nH f �. (4.3)

So, we define on �n the function

ϕ = −H f h − �. (4.4)

From 4.3 and 4.2 we get that

� f ϕ = −�(|A|2 − nH2
f + ˜Ric f (N∗, N∗)).

Consequently, since ˜Ric f (N∗, N∗) = Ric f (N , N ) ≥ 0, nH2
f ≤ |A|2 and choosing

N future-pointing (that is, � ≤ −1), we get that � f ϕ ≥ 0. Thus, we conclude from
the maximum principle that ϕ ≤ ϕ|∂� and, hence, from (4.4) we have that

− H f h + 1 ≤ −H f h − � ≤ −H f s + max
∂�

|�|. (4.5)

We then consider the two possible cases. In the case that H f > 0, from (4.3) we
have � f h ≥ 0 and, from the maximum principle, h ≤ s on �n . Thus, from (4.5) we
conclude that

s − h ≤ max∂� |�| − 1

H f
. (4.6)

In the case that H f < 0, from (4.3)we have� f h ≤ 0 and, again from themaximum
principle, h ≥ s on �n . Thus, from (4.5) we must have

h − s ≤ 1 − max∂� |�|
H f

. (4.7)

Therefore, estimate (4.1) follows from (4.6) and (4.7). �
Remark 2 Taking into account the height estimate of [10] mentioned in the introduc-
tion, we see that our estimate (4.1) is also sharp.

Finally, reasoning as in the proof of Theorem 2, from Theorem 3 we get the fol-
lowing

Theorem 4 Let −R × P
n
f be a weighted Lorentzian product space with Ric f ≥ 0

and P
n compact. Let �n be a complete noncompact spacelike hypersurface properly

immersed in −R×P
n
f , with bounded angle function �. If �n has nonzero constant f -

mean curvature such that nH2
f ≤ |A|2, then �n cannot lie in a half-space of −R × P.

In particular, �n must have at least one top and one bottom end.

Remark 3 We recall that an integral curve of the unit timelike vector field ∂t is called
a comoving observer and, for a fixed point p ∈ �n , ∂t (p) is called an instantaneous
comoving observer. In this setting, among the instantaneous observers at p, ∂t (p)
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and N (p) appear naturally. From the orthogonal decomposition N (p) = N∗(p) −
�(p)∂t (p), we have that |�(p)| corresponds to the energy E(p) that ∂t (p) measures
for the normal observer N (p). Furthermore, the speed |υ(p)|of theNewtonian velocity
υ(p) := E−1(p)N∗(p) that ∂t (p)measures for N (p) satisfies the equation |υ(p)|2 =
tanh(cosh−1 |�(p)|). Hence, the boundedness of the angle function� of the spacelike
hypersurface �n means, physically, that the speed of the Newtonian velocity that the
instantaneous comoving observer measures for the normal observer do not approach
the speed of light 1 on �n (cf. [26, Sections 2.1 and 3.1]). In this direction, as it was
already observed by Latorre and Romero [19], the assumption of � be bounded on a
complete spacelike hypersurface is a mild hypothesis to supply the noncompactness
of it.
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