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Abstract This paper establishes explicit criteria in form of inequalities for all solu-
tions to a class of second order nonlinear differential equations (with and without
delay) to be bounded, ultimately bounded and globally asymptotically stable using
Lyapunov second method. Obtained results are new and they complement existing
results in the literature. Some examples are given to illustrate the main results.
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1 Introduction

It is well known that stability and boundedness properties of solutions are fundamental
in the theory and application of differential equations. The study of qualitative prop-
erties of solution to second order nonlinear differential equations has attracted the
interest of many researchers. As a tool of investigation, the Lyapunov second method
has been one of the most effective tool used and it is still playing a central role in
studying the qualitative behaviour of solution of both linear and nonlinear differential
equations.
Consider the second order nonlinear differential equations of the form

ẍ + a(t) f (x, ẋ) + g(x) = p(t, x, ẋ), (1.1)
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ẍ + a(t) f (x, ẋ) + g(x(t − τ)) = p(t, x, ẋ), (1.2)

where a, f, g and p are continuous functions that depend (at most) only on the argu-
ments displayed explicitly and τ ∈ [0, h] (τ > 0).Here and elsewhere, all the solutions
considered and all the functions which appear are supposed real. The dots indicate
differentiation with respect to t . The continuity of these functions is sufficient for
the existence of the solutions of Eqs. (1.1) and (1.2). Furthermore, it is assumed that
the functions f , g and p satisfy a Lipschitz condition in their respective arguments
which guarantee the uniqueness of solutions of Eqs. (1.1) and (1.2). The derivative
of g also exists and is continuous. The dots denote differentiation with respect to the
independent variable t .
Equations (1.1) and (1.2) are ordinary and delay differential equations with nonlinear
terms respectively. Let us observe that when f (x, ẋ) = ẋ, g(x) = x and τ = 0, Eqs.
(1.1) and (1.2) reduce to

ẍ + a(t)ẋ + x = p(t, x, ẋ), (1.3)

which has remained one of the oldest problems in differential equations for more than
six decades. This equation appears in a number of physical models and it is important
in describing fluid mechanical and nonlinear elastic mechanical phenomena [2]. Some
notable contributions in the dynamical behaviour of this class of equation include but
are not limited to Bilhari [7], Hatvani [12], Karsai [13,14], Napoles [17], Napoles
and Repilado [18], Pucci and Serrin [21,22]. An immense body of relevant literature
has been devoted to stability, boundedness, convergence and periodic solutions to
equations of the form (1.1), we can mention in this regard the work of [25], Tunc and
Ayhan [26], Tunc and Tunc [27] as well as the expositions in [5–24,28] and references
cited therein. With the aid of Lyapunov’s second method, Burton [8], Napoles [17]
and Napoles and Repilado [18] discussed the boundedness of solutions. Burton and
Hatvani [9], Murakami [16], Thurston and Wong [24] are further examples on the
subject matter that employed the second method of Lyapunov to discuss stability
(asymptotic) of solutions to the Eq. (1.1). In Napoles [17], ultimate boundedness of
solutions of the equation (1.1)was considered for the autonomous casewhileOgundare
and Okecha [20] discussed the boundedness, periodicity and stability of solutions to
certain class of the Eq. (1.1). Recently, Ogundare and Afuwape [19], discussed the
boundedness and stability properties of solutions of

ẍ + f (x)ẋ + g(x) = p(t; x, ẋ) (1.4)

via the Lyapunov second method. Also Ademola [1] as well as Alaba and Ogundare
[3,4] discussed boundedness and stability of solutions of non-autonomous equation
of second order from where (1.4) was easily treated.

In [9], the authors considered (1.1) and (1.2) and developed a transformation which
allowed the treatment of the two equations in a unified way using the Lyapunov second
method.

Themotivation for the current paper comes from thework of Burton andHatvani [9]
where the Lyapunov functions employed mainly were incomplete ones. In this work, a

123



Ann Univ Ferrara (2017) 63:333–351 335

suitable completeLyapunov function is used to discuss the stability andboundedness of
(1.2). Conditions on the nonlinear terms that guarantee global asymptotic stability and
boundedness of solutions of theEq. (1.2) are obtained.Our results complement existing
results on qualitative behaviour of solutions of second order nonlinear differential
equations with and without delay.

The paper is organised in this order: basic assumptions are presented in Sect. 2
alongside with the main results. Section 3 is devoted to some preliminary results and
in Sect. 4, the proofs of the main theorems are given while related examples are given
to illustrate the main results in Sect. 5.

2 Formulation of results

An associated system to the Eq. (1.2) of interest to us is

ẋ = y

ẏ = −a(t) f (x, y) − g(x) + N (t)
(2.1)

where N (t) = ∫ 0
−τ

g′(x(t + θ))y(t + θ)dθ + p(t, x, y).
Let a(t) be continuous and non decreasing, in addition let 0 < a0 ≤ a(t) ≤ a1 with

a′ ≤ 1

2
; also let the functions f, g and p be continuous with the following conditions:

(i)

α0 ≤ f (x, y) − f (x, 0)

y
= α ≤ α1, y �= 0;

(ii)

β0 ≤ f (x, y) − f (0, y)

x
= β ≤ β1, x �= 0;

(iii)

γ0 ≤ g(x) − g(0)

x
= γ ≤ γ1, x �= 0;

(iv)
f (x, 0) = f (0, y) = g(0) = 0,

where α, α0, α1, β, β0, β1, γ, γ0 and γ1 are all positive constants belonging to a
closed sub-interval of the Routh-Hurwitz interval I0 = [0, κ], κ = max{α, β, γ }.

Next we state our main results.

Theorem 2.1 Suppose that conditions (i)–(iv) are satisfied with p(t) ≡ 0, then the
trivial solution of the Eq. (1.2) is globally asymptotically stable.

Corollary 2.1 If g(x(t − τ)) = g(x), then the trivial solution of the Eq. (1.1) is
globally asymptotically stable.

Theorem 2.2 In addition to conditions (i)–(iv), suppose that

(v) |p(t, x, y)| ≤ M,
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for all t ≤ 0, then there exists a constant σ, (0 < σ < ∞) depending only on the
constants α, β and γ such that every solution of Eq. (1.2) satisfies

x2(t) + ẋ2(t) ≤ e−σ t
{

A1 + A2

∫ t

t0
|p(s)| e 1

2 σ sds

}2

(2.2)

for all t ≥ t0, where the constant A1 > 0, depends on α, β and γ as well as on
t0, x(t0), ẋ(t0); and the constant A2 > 0 depends on α, β and γ .

Corollary 2.2 If g(x(t − τ)) = g(x), then the inequality (1.2) holds for the Eq. (1.1).

Theorem 2.3 Suppose the conditions of the Theorem 2.2 are satisfied with condition
(iv) replaced with

(vi) |p(t, x, y)| ≤ (|x | + |y|)φ(t),

where φ(t) is a non negative and continuous function of t such that
∫ t
0 φ(s)ds ≤ M <

∞ is satisfied with a positive constant M. Then, there exists a constant K0 which
depends on M, K1, K2 and t0 such that every solution x(t) of the Eqs. (1.1) and (1.2)
satisfies

|x(t)| ≤ K0, |ẋ(t)| ≤ K0

for sufficiently large t.

Corollary 2.3 If g(x(t − τ)) = g(x), then every solution of the Eq. (1.1) satisfies

|x(t)| ≤ K0, |ẋ(t)| ≤ K0

for sufficiently large t.

Remark Wewish to remark here thatwhile theTheorem2.1 is on the global asymptotic
stability of the trivial solution, Theorems 2.2 and 2.3 deal with the boundedness and
ultimate boundedness of the solutions respectively.

Notations Throughout this paper K , K0, K1, . . . K12 denote finite positive constants
whose magnitudes depend only on the functions f , g and p as well as constants
α, β, γ and δ but are independent of solutions of the Eqs. (1.1) and (1.2). K ′

i s are
not necessarily the same for each time they occur, but each Ki , i = 1, 2, . . . retains its
identity throughout. V, V1 and V2 denote Lyapunov functionals and V̇ |(∗) = d

dt V |(∗)

stands for the derivative of V with respect to t along the solution path of a system (∗)

(say).

3 Preliminary results

We shall use as a tool to prove our main results a Lyapunov functional V (t; x, y)
defined by

V (t; x, y) = V1 + V2 (3.1)
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with

2V1 = δ

a

{
(a2 + 2)x2 + 2axy + 2y2

}
,

where α, β and δ are positive real numbers, a is a continuous non-decreasing function
with a′ ≤ 2, and

V2 = 2μ

τ

∫ 0

−τ

{∫ 0

θ1

(x2(t + θ) + y2(t + θ))dθ

}

dθ1.

The following lemmas are needed to prove the Theorems 2.1, 2.2 and 2.3.

Lemma 3.1 Subject to the assumptions of Theorem 2.1 there exist positive constants
Ki = Ki (a , δ), i = 1, 2 such that

K1(x
2 + y2) ≤ V (t; x, y) ≤ K2(x

2 + y2). (3.2)

Proof First, it is clear from the Eq. (3.1) that V (0; 0, 0) ≡ 0.
We can re-arrange V1 in Eq. (3.1) to have

2V1 = 2δ

a

(

x + 1

2
ay

)2

+ δax2 + δ

a
(4 − a2)y2, (3.3)

from which the estimate

2V1 ≥ δ

a

{
a2x2 + (4 − a2)y2

}
. (3.4)

is obtained.
It follows from the above that there exists a constant K1 such that

V ≥ K1(x
2 + y2) (3.5)

where

K1 = δ

a
× min

{
a2, (4 − a2)

}
.

On one hand, it is not difficult to establish that

V (t; x, y) ≥ K1(x
2 + y2) + 2μ

τ

∫ 0

−τ

{∫ 0

θ1

(x2(t + θ) + y2(t + θ))dθ

}

dθ1 (3.6)

since V2 is always positive, while on the other hand, on using the inequality |xy| ≤
1

2
(x2 + y2) in Eq. (3.1),

2V1 ≤ δ

a

{
(a2 + a + 2)x2 + (a + 2)y2

}
. (3.7)
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Consequently, from the inequality (3.7),

V1 ≤ K2(x
2 + y2) (3.8)

where

K2 = δ

a
× max

{
(a2 + a + 2), (a + 2)

}
.

Furthermore,

V (t; x, y) ≤ K2(x
2 + y2) + 2μ

τ

∫ 0

−τ

{∫ 0

θ1

(x2(t + θ) + y2(t + θ))dθ

}

dθ1. (3.9)

At last, combination of inequalities (3.6) and (3.9) give

K1(x2 + y2) + 2μ

τ

∫ 0

−τ

{∫ 0

θ1

(x2(t + θ) + y2(t + θ))dθ

}

dθ1 ≤ V (t; x, y)

≤ K2(x2 + y2) + 2μ

τ

∫ 0

−τ

{∫ 0

θ1

(x2(t + θ) + y2(t + θ))dθ

}

dθ1,

(3.10)
which is equivalent to

K1(x
2 + y2) ≤ V (t; x, y) ≤ K2(x

2 + y2). (3.11)


�
The Lemma 3.1 is established.

Lemma 3.2 In addition to the assumptions of the Theorem 2.1, let condition (v) of the
Theorem 2.2 be satisfied. Then there are positive constants K j = K j (a, α, δ, γ )( j =
4, 5) such that for any solution (x, y) of the system (2.1),

V̇ |(2.1) ≡ d

dt
V |(2.1)(x, y) ≤ −K5(x

2 + y2) + K4(|x | + |y|), (3.12)

where V is as given in Eq. (3.1).

Proof Differentiating the Eq. (3.1) along the solution path of the system (2.1), we
have

V̇ (t; x, y)|(2.1) = V̇1 + V̇2, (3.13)

where

V̇1 = δ

a2(t)
{a(t)[2a(t)a′(t)x2 + 2a′(t)xy] − [(a2(t) + 2)x2 + 2axy + 2y2]a′(t)}

+ δ

a(t)
{2(a2(t) + 2)xy + 2a(t)y2 + 2a2(t)x[−a(t) f (x, y) − g(x) + N (t)]

+ 4y[−a(t) f (x, y) − g(x) + N (t)]}
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and

V̇2 = 2μ

τ

∫ 0

−τ

[x2(t) + y2(t) − x2(t + θ) − y2(t + θ)]dθ

Next is to obtain an upper bound on V̇1. This shall be done using the hypotheses on
the functions f and g. Thus we have

V̇1 = δ

a(t)

{
(2a2(t)a′(t) − a2(t) − 2)x2 − 2a′(t)y2

}
+ δ

a(t)

{
−2a2(t)(γ + β)

−(4a(t)α)y2 − 4βxy + 2(a2(t) + 2)xy + (2a2(t)x + 4y)N (t)
}

.

Further simplification yields

V̇1 = − δ

a2(t)

{[2a3(t)(β + γ ) + a2(t) + 2 − 2a2(t)a′(t)]x2 + [4a2(t)α + 2a′(t)]y2

+ a(t)[4β − 2(a2(t) + 2)]xy − [2a2(t)x + 4y]N (t)
}
. (3.14)

On choosing β = 1
2 (a

2(t) + 2), Eq. (3.14) becomes

V̇1 = − δ

a2(t)

{
[a3(t)(2γ + a2(t) + 2) + a2(t) + 2 − 2a2(t)a′(t)]x2

+ 2[2a2(t)α + a′(t)]y2 − [2a3(t)x + 4a(t)y]N (t)
}

.

It is obvious that

V̇1 ≤ − δ

a21

{
[a31(2γ1 + a21 + 2) + a21 + 2 − 2a21a

′
1]x2 + 2[2a21α1 + a′

1]y2

−[2a31x + 4a1y]N (t)
}

. (3.15)

From the inequality (3.15), it follows that

V̇1 ≤ −K3(x
2 + y2) + K4(|x | + |y|)N (t), (3.16)

where K3 = δ

a21
× max

{
a31(2γ1 + a21 + 2) + a21 + 2 − 2a21a

′
1, 2[2a21α1 + a′

1]
}

and K4 = δ

a21
× max

{
2a31, 4a1

}
.

Similarly, on simplifying V̇2, we have

V̇2 = −2μ(x2 + y2) − 2μ

τ

∫ 0

−τ

[x2(t + θ) + y2(t + θ)]dθ (3.17)

V̇2 ≤ −2μ(x2 + y2). (3.18)

Combining estimates (3.16) and (3.18), yield

V̇ ≤ −K5(x
2 + y2) + K4(|x | + |y|)N (t), (3.19)
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where K5 = K3 + 2μ.
For the case when p(t) ≡ 0,

V̇ ≤ −K3(x
2 + y2)

Hence the proof of Lemma 3.2. 
�

4 Proof of main results

We shall now give the proofs of the main results.

Proof of Theorem 2.1 The proof of the Theorem 2.1 follows from Lemmas 3.1 and
3.2 where it has been established that the trivial solution of the Eq. (1.1) is globally
asymptotically stable. i.e every solution (x(t), ẋ(t))of the system (2.1) satisfies x2(t)+
ẋ2(t) −→ 0 as t −→ ∞. 
�
Proof of Theorem 2.2 Indeed, by using the inequality (3.19), it follows that

dV

dt
≤ −K5(x

2 + y2) + K4(x
2 + y2)

1
2 |p| .

Again, it also follows from the inequality (3.8) that

(x2 + y2)
1
2 ≤

(
V

K1

) 1
2

.

Thus, the inequality (3.19) becomes

V̇ ≤ −K6V + K7V
1
2 |p| . (4.1)

It is noted that K3(x2 + y2) = K3 · V
K1

and

dV

dt
≤ −K6V + K7V

1
2 |p| ,

where K6 = K5
K1

and K7 = K4

K
1
2
2

.

Furthermore, from the above inequality we have

V̇ ≤ −2K8V + K7V
1
2 |p| ,

where K8 = 1
2K6.

Therefore
V̇ + K8V ≤ −K8V + K7V

1
2 |p| .

On choosing a constant K9 such that K9 = K8
K7

gives

V̇ + K8V ≤ K7V
1
2

{
|p| − K9V

1
2

}
. (4.2)
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Thus the inequality (4.2) becomes

V̇ + K8V ≤ K7V
1
2 V ∗

where

V ∗ = |p| − K9V
1
2

≤ V
1
2 |p|

≤ |p| .

When |p| ≤ K9V
1
2 , then

V ∗ ≤ 0,

and when |p| ≥ K9V
1
2 , we have

V ∗ ≤ |p| · 1

K9
. (4.3)

On substituting the inequality (4.3) into the inequality (4.2), we have

V̇ + K8V ≤ K10V
1
2 |p| ,

where

K10 = K7

K9
.

This implies that

V− 1
2 V̇ + K8V

1
2 ≤ K10 |p| . (4.4)

Multiplying both sides of the inequality (4.4) by e
1
2 K8t , gives

e
1
2 K8t

{
V− 1

2 V̇ + K8V
1
2

}
≤ e

1
2 K10t K12 |p| ,

i.e

2
d

dt

{
V

1
2 e

1
2 K8t

}
≤ e

1
2 K8t K12 |p| . (4.5)

Integrating both sides of inequality (4.5) from t0 to t gives

{
V

1
2 e

1
2 K8γ

}t

t0
≤

∫ t

t0

1

2
e
1
2 K8s K10 |p(s)ds| .

Further simplifications give

{
V

1
2 (t)

}
e
1
2 K8t ≤ V

1
2 (t0)e

1
2 K8t0 + 1

2
K10

∫ t

t0
|p(s)| e 1

2 K8sds,
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or

V
1
2 (t) ≤ e− 1

2 K8t
{

V
1
2 (t0)e

1
2 K8t0 + 1

2
K10

∫ t

t0
|p(s)| e 1

2 K8sds

}

.

On utilizing inequalities (3.8) and (3.11), we have

K1(x
2(t) + ẋ2(t)) ≤ e−K8t

{
(K2(x

2(t0) + ẋ2(t0)))
1
2 e

1
2 K8t0

+1

2
K10

∫ t

t0
|p(s)| e 1

2 K8sds

}2

, (4.6)

for all t ≥ t0.
Thus,

x2(t) + ẋ2(t) ≤ 1

K1

{
e−K8t

{
(K2(x

2(t0) + ẋ2(t0)))
1
2 e

1
2 K8t0

+1

2
K10

∫ t

t0
|p(s)| e 1

2 K8sds

}2
}

≤
{

e−K8t
{

A1 + A2

∫ t

t0
|p(s)| e 1

2 K8sds

}2
}

, (4.7)

where A1 and A2 are constants depending on {K1, K2, . . . K10 and (x2(t0) + ẋ2(t0)).
On substituting K8 = σ in the inequality (4.7), we have

x2(t) + ẋ2(t) ≤
{

e−σ t
{

A1 + A2

∫ t

t0
|p(s)| e 1

2 σ sds

}2
}

.

This completes the proof. 
�
Proof of Theorem 2.3 From the definition of function V and the conditions of the
Theorem 2.3, the conclusion of Lemma 3.1 can be obtained as

V ≥ K1

(
x2 + y2

)
, (4.8)

and since p �= 0 we can revise the conclusion of the Lemma 3.2, i.e,

V̇ ≤ −K5(x
2 + y2) + K4(|x | + |y|) |p| ,

to obtain
V̇ ≤ K4(|x | + |y|)2θ(t) (4.9)

by using the condition (v) as stated in the Theorem 2.3. On employing the inequality

|xy| ≤ 1

2
(x2 + y2) on inequality (4.9), we have

V̇ ≤ K11(x
2 + y2)θ(t), (4.10)
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where K11 = 2K4.

From inequalities (4.8) and (4.10) we have,

V̇ ≤ K11V θ(t). (4.11)

Integrating inequality (4.11) from 0 to t gives

V (t) − V (0) ≤ K12

∫ t

0
V (s)θ(s)ds, (4.12)

where K12 = K11
K1

= 2K4
K1

. Thus,

V (t) ≤ V (0) + K12

∫ t

0
V (s)θ(s)ds. (4.13)

At last on applying the Gronwall-Reid-Bellman theorem on the inequality (4.13), we
have

V (t) ≤ V (0)exp

(

K12

∫ t

0
θ(s)ds

)

. (4.14)

Hence the proof of Theorem 2.3. 
�
Remark The proofs of Corollaries 2.1, 2.2 and 2.3 follow respectively from the proofs
of Theorems 2.1, 2.2 and 2.3 with appropriate modifications.

5 Examples

Example 5.1 We shall consider a second order delay differential equation given as

ẍ + ẋ2 sin t sin x

2(1 + t2)(1 + x2)
+ 2x(t − τ)

[

1 + 1

(1 + x2(t − τ))

]

= 0, (5.1)

and its equivalent system of first order delay differential equations

ẋ = y

ẏ = − y2 sin t sin x

2(1+2)(1 + x2)
− 2x

(

1 + 1

1 + x2

)

+
∫ 0

−τ

[

2 − 2[x2(t + θ) − 1]
[x2(t + θ) + 1]2

]

dθ.

(5.2)
Comparing the system (2.1) with system (5.2) when p(t, x, y) = 0, we note that

(i) a(t) := sin t

2(1 + t2)
. Furthermore,

− 3

10
<

sin t

2(1 + t2)
<

3

10
, ∀ t ≥ 0.
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Fig. 1 Functions a(t) and a′(t)

It then follows that

0 = a0 ≤ a(t) ≤ a1 = 3

10
, ∀ t ≥ 0,

and

a′(t) := 2(1 + t2) cos t − 4t sin t

4(1 + t2)2
≤ 1

2
, ∀ t ≥ 0.

The behaviour of a(t) and a′(t) are shown in Fig. 1.

(ii) f (x, y) := y2 sin x
1+x2

. Clearly f (x, 0) = 0. Let

F11(x, y) := f (x, y) − f (x, 0)

y
= y sin x

1 + x2
, ∀x, y �= 0.

It follows that

0 = α0 ≤ F11(x, y) = α ≤ α1 = 4

4 + π2 , ∀ x, y �= 0.

(iii) Similarly

0 = β0 ≤ F12(x, y) := f (x, y) − f (0, y)

x
=β ≤ β1 = 8

π(π + 4)2
, ∀ y, x �= 0.

The behaviour of the functions F11(x, y) and F12(x, y) are shown respectively
in Fig. 2.

(iv) The function g(x) = 2x + 2x
1+x2

, from where we have g(0) = 0 for all x . Let

G1(x) := g(x) − g(0)

x
= 2 + 2

x2 + 5
, ∀ x �= 0.
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Fig. 2 The behaviour of the functions F11(x, y) and F12(x, y) respectively

Then

0 ≤ 2

x2 + 5
≤ 1 ∀ x .

It follows that

2 = γ0 ≤ G1(x) = γ ≤ γ1 = 3 ∀ x �= 0,

this is depicted by Fig. 3.
(v) From (ii), (iii) and (iv) we have the assumption that

f (x, 0) = f (0, y) = g(0) = 0, ∀ x, y.

Furthermore, since α, β and γ are non negative constants, it follows that I0 =
[0, 2]. We can see that hypotheses (i)–(v), of the Theorem 2.1 hold. Hence by the
Theorem 2.1, the trivial solution of the Eq. (5.1) [or the system (5.2)] is globally
asymptotically stable.

Example 5.2 Consider the second order delay differential equation

ẍ

(

1 + t + 2

et + 1

)

sin(x ẋ) +
[

x(t − τ) + x(t − τ)

1 + x2(t − τ)

]

= p(t, x, y) (5.3)

where

p(t, x, y) = (2t cos t + (t2 + 1) sin t − 2t)(sin x + cos ẋ)

(1 + t2)2
.

The Eq. (5.3) is equivalent to system of first order delay differential equation

ẋ = y

ẏ = −
[

1 + t + 2

et + 1

]

sin xy −
[

1 + 1

1 + x2

]

x +
∫ 0

−τ

[

1 − x2(t + θ) − 1

(x2(t + θ) + 1)2

]

dθ
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Fig. 3 The inequalities 2 = γ0 ≤ G1(x) = γ ≤ γ1 = 3

+ (2t cos t + (t2 + 1) sin t − 2t)(sin x + cos y)

(1 + t2)2
. (5.4)

It is easy to see, from the system of Eqs. (2.1) and (5.4), that

(i) a(t) := 1 + t+2
(1+et )2

from where we obtain

0 < 1 = a0 ≤ a(t) ≤ a1 = 3

2
,

for all t ≥ 0 and

a′(t) = 1 − (2t + 3)et

(1 + et )3
≤ 3

10
<

1

2
,

for all t ≥ 0. The bounds on the functions a(t) and a′(t) are shown in Fig. 4.
(ii) f (x, y) := sin(xy), with f (x, 0) = 0. If we define

F21(x, y) := f (x, y) − f (x, 0)

y
= sin(xy)

y
, ∀ x, y �= 0.

It is not difficult to show that

0 = α0 ≤ F21(x, y) = α ≤ α1 = 1,

for all x, y �= 0.
(iii) f (x, y) := sin(xy), with f (0, y) = 0 for all x, y. If we define

F22(x, y) := f (x, y) − f (0, y)

x
= sin(xy)

x
, ∀ y, x �= 0.
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Fig. 4 Boundedness of the functions a(t) and a′(t)

Fig. 5 The behaviour of the functions F21(x, y) and F22(x, y) respectively

We see that

0 = β0 ≤ F22(x, y) = β ≤ β1 = 1,

for all y, x �= 0. Figure 5 shows the behaviour of functions F21(x, y) and
F22(x, y).

(iv) Let g(x) := x + x

1 + x2
, so that g(0) = 0 and define

G2(x) := g(x) − g(0)

x
= 1 + 1

1 + x2
, ∀ x �= 0.

123



348 Ann Univ Ferrara (2017) 63:333–351

Fig. 6 Boundedness of the functions a(t) and a′(t)

It follows that

1 = γ0 ≤ G2(x) = γ ≤ γ1 = 2,

for all x �= 0. The upper and lower bounds of the function G2 are shown in
Fig. 6.

(v) From (ii), (iii) and (iv) we note that

f (x, 0) = f (0, y) = g(0) = 0, ∀ x, y.

Also I0 = [0, 2]. For the case p(t, x, y) = 0, all assumptions of the Theorem 2.1
hold. By Theorem 2.1 the trivial solution of the system (5.4) [or the Eq. (5.3)] is
globally asymptotically stable.

(vi) If p(t, x, y) in the system (2.1) is replaced by

p(t) := 2t

3 + 5t2
, ∀ t ≥ 0,

then, since

0 ≤ 2t

3 + 5t2
<

3

10
,

for all t ≥ 0, it follows that

|p(t)| < 1 = M < ∞.

The behaviour of p(t) is described by Fig. 7.
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Fig. 7 The functions p(t) for all t ≥ 0

Fig. 8 The function �(t) for all t ≥ 0.

At this point, assumptions (i)–(vi) of Theorem 2.2 hold and the conclusion is
immediate.

(vii) Finally, we shall consider the forcing term defined as

p(t, x, y) := (2t cos t + (t2 + 1) sin t − 2t)(sin x + cos ẋ)

(1 + t2)2
.

This implies that

|p(t, x, y)| ≤ (| sin x | + | cos y|)φ(t)
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for all x, y and t ≥ 0, where

φ(t) := 2t cos t + (1 + t2) sin t − 2t

(t2 + 1)2
.

Let

�(t) =
∫ t

0
φ(μ)dμ = 1 − cos t

t2 + 1
<

3

10
< M, ∀ t ≥ 0.

The bounds on �(t) are shown in Fig. 8.

All hypotheses of Theorem 2.3 are satisfied and the conclusion followed.
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