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Abstract The kinetic theory of active particles is used to model the formation and
evolution of opinions in a structured population. The spatial structure is modeled by
a network whose nodes mimic the geographic distribution of individuals, while the
functional subsystems present in each node group together elements sharing a common
orientation. In this paper we introduce a model, based on nonlinear and nonlinearly
additive interactions among individuals, subsystems and nodes, related to the spon-
taneous evolution of opinion concerning given specific issues. Numerical solutions
in a model situation not related with real data show how the mutual interactions are
able to drive the subsystems opinion toward the emergence of collective structures
characterizing this kind of complex systems.

Keywords Mathematical modeling · Kinetic theory of active particles ·
Social systems

Mathematics Subject Classification 93A30 · 91Dxx

1 Introduction

Social sciences, such as sociology, demography, and economics, show paradigmatic
aspects of complex phenomena, in which nonlinear social interaction between human
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individuals or groups play a fundamental role [1–3]. Examples include populations
migrations, emergence of social clashes, market instability in non-equilibrium eco-
nomics and collective opinion formation [4,5]. Opinion formation of individuals is
a typical example that can be examined and investigated by means of suitable math-
ematical models. Generally speaking, this subject is concerned with understanding
social-political phenomena through the use of analytic models which, it is hoped, lend
insight into why outcomes look the way they do and not some other way. Examples
of such phenomena include which parties or candidates are elected at certain times,
and how a structured society orients its opinion with respect to a specific issue.

The literature relating the modeling approaches of the above mentioned issues
is pretty diversified, ranging from application of methods from statistical mechan-
ics [6], nonlinear dynamics [7] and agent-based network modeling [8]. Among other
approaches, modeling based on kinetic theory has proven particularly useful in depict-
ing nonlinear issues related to the complexity of social phenomena [9,10]. In this paper
we introduce a model of formation and evolution of opinions based on the kinetic the-
ory of active particles (KTAP). Such a theory provides a general mathematical structure
enabling the derivation of models of large systems of interacting entities characterized
by their ability to express strategies toward the reaching of specific goals. The KTAP
received a general version relative to linearly additive interactions, along with various
applications, in [11], whereas an extension to non-additive and non local interactions,
modeled by methods of the stochastic game theory, is presented in [12–14]. The KTAP
has revealed useful in the modeling of vehicular traffic, pedestrian crowds, swarms
and flocking and of biological systems, including their evolutive aspects [15–18], as
well as on the modeling of social and political phenomena [19–21]. We refer to [1]
for a comprehensive and updated bibliography.

The aim of this paper is to introduce a model of formation and evolution of opin-
ions based on the KTAP. The paper is organized as follows. In Sect. 2 we introduce
the basic mathematical structure of the KTAP. In Sect. 3 we specialize the previously
introduced structure to the case of opinion formation, writing down a model of struc-
tured populations whose opinions concerning a given issue evolve according nonlinear
interactions among individuals inspired to stochastic game theoretical tools. In Sect.
4 we furnish the outcomes of numerical experiments that, though referred to a purely
model situation not related with real data, are anyhow able to enlighten the response of
the method under controlled specific circumstances. Finally, Sect. 5 contains general
issue concerning in-progress refinements and generalization of the present modeling
approach.

2 Mathematical structure

The KTAP is concerned with modeling of large populations of interacting individu-
als that show aspects characteristic of complexity. Though there is not a universally
accepted definition of complexity, the different existing ones share a number of com-
mon issue [22,23]. Among others, the ability of individuals to express a strategy, the
emergence of collective behaviors, a dynamics presenting large deviations charac-
terized by fluctuations and loss of stability. Such issues are intimately related with
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nonlinear and nonlinearly additive interaction rules, with time-evolving dependence,
and possibly with multiscale (microscopic-macroscopic) aspects.

In the KTAP, the overall state of a system made up by a large number of inter-
acting individuals, called active particles, is described by the distribution function
f (t, x, v, u), where t is the time, x and v are respectively the position and velocity,
and where u is a (possibly vector-valued) variable, termed activity, that summarizes
the non-mechanical state of the individuals (e.g., biological, social, etc.). All together,
the variables {x, v, u} represent the microscopic state of active particles [24]. The
relevance of the mechanical components x and v of the microstate depends upon the
specific issue. Actually, in opinion formation modeling the velocity v of active parti-
cles does not play any significant role, while the spatial variable x can be aggregated in
such a way that the probability distribution assumes the form fi (t, u), where the time
t ∈ [0, T ), T > 0, the activity u ∈ Du and the index i = 1, . . . , n, n > 1, represents
the nodes where we assume the interacting entities are localized.

In order to manage the complexity of the phenomena treated, in the KTAP the
overall system is partitioned into functional subsystems whose elements share one or
more distinctive characters of their attitude (social, biological, etc.). For example, in
the modeling of immune response the cells belonging to the same subsystems might
have the ability to react to the same antigens. In the present approach to modeling
of opinion formation the functional subsystems collect together individuals that col-
lectively share a common general orientation with respect to a specific issue. More
specifically, the activity u is meant as a set u j ∈ [0, 1], j = 1, . . . , m, m ≥ 1, where
the index j labels the mainstream orientation of each functional subsystem while, for
each fixed j , u j describes the fine social attitude of individuals. According to this
scheme, the overall systems will be characterized by a set of distribution functions
fi j (t, u), where fi j (t, u)du is the number of active particles belonging to the i-th node
(spatial property), j-th functional subsystem (collective orientation) in the elementary
microstate volume u, u + du. The active particles are in general allowed to interact
both within the same functional subsystem and with particles of different subsystems.
The interactions are in general nonlocal and nonlinearly additive, and are modeled
according probabilistic transition rules. These rules can evolve in time due to some
learning ability of active particles and to their adaptation to the outer environment.

The evolution of the probability distribution is obtained by a balance of particles
within elementary volumes of the space of microscopic states, the inflow and outflow of
particles being related to the interactions among individuals. Introducing the notation
f = { fi j , i = 1 . . . , n; j = 1, . . . , m}, where fi j is the distribution function relative
to the j-th subsystem of the i-th node, the general framework reads:

∂t fi j (t, u) = J (in)
i j [t, u, f] − J (out)

i j [t, u, f], i = 1, . . . , n; j = 1, . . . , m , (1)

where J (in)
i j and J (out)

i j are the “collisional” operators representing the inflow and
outflow, respectively, of individuals in the j-th functional subsystem of the i-th node.
Such operators depend, in general, also on the functions fi j themselves, so that (1) is a
system of nonlinear differential equations. Interactions involve three types of particles,
named test, candidate, and field particles. More precisely, the test particle, with activity
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u, is a generic representative entity of the functional subsystem under consideration;
candidate particles, with activity u∗, are the particles which can gain the test state u
as consequence of the interactions; field particles, with activity u∗, are the particles
whose presence triggers the interactions of the candidate particles. According to these
considerations, the terms at r.h.s. of (1) read:

J (in)
i j [t, u, f]

=
n∑

h=1

m∑

p,k=1

∫

Du

∫

Du

ηi phk [f](u∗, u∗)Bi j
i phk [f](u∗ → u|u∗, u∗) fip(t, u∗) fhk(t, u∗)du∗du∗,

J (out)
i j [t, u, f] (2)

= fi j (t, u)

n∑

h=1

m∑

k=1

∫

Du

ηi jhk [f](u, u∗) fhk(t, u∗)du∗, i = 1, . . . , n; j = 1, . . . , m.

Here ηi phk represents the encounter rate (frequency of mutual interactions) between
the candidate individual of the i-th node, p-th functional subsystem (an (i, p) parti-
cle) and the field particle of the h-th node, k-th functional subsystem, Bi j

i phk is the
probability density that the (i, p) candidate particle with activity u∗ falls into the
node-subsystem (i, j) with state u after interacting with a (h, k) field particle having
activity u∗.

The mathematical structure (1, 2) is relative to a closed system, where only interac-
tions among individuals belonging to different nodes-subsystems are considered and
in which the total number of active particles is preserved. As a consequence, denoted
by Ni j (t) = ∫

Du
fi j (t, u)du the number of (i, j) individuals at time t , the conser-

vation condition
∑n

i=1
∑m

j=1 Ni j (t) = N (0) holds, where N (0) is the total number
of individuals in the whole system at time t = 0. The previous condition permits to
normalize the distribution function f with respect to the constant quantity N (0), that is,
instead of the previous defined f we can consider the normalized distribution function
f̂ = f/N (0). In this way the distribution function assumes in our case the role of a
probability density, though this is not the general case in the KTAP. To avoid useless
heavy notation, from now on we still denote as f = { fi j , i = 1 . . . , n; j = 1, . . . , m}
the normalized distribution functions. Thus, the conservation condition becomes:

n∑

i=1

m∑

j=1

Ni j (t) = 1. (3)

The system (1, 2) has to be implemented with initial values f(0) = { f (0)i j , i =
1 . . . , n; j = 1, . . . , m} of the distribution functions for each subsystem in each node.
Well-posedness of the initial value problem related to the framework (1) has been
studied both in the case of linear and nonlinear interactions. For this issue we refer to
[25] and therein cited references. As discussed in [21], a solution to (2) is a function f
whose components fi j belong to the space C1

(
0, T ; L1

w(Du)
)
, where L1

w(Du) is the
Banach space of summable functions on Du with respect to a suitable positive weight
w. In that paper the global in time existence and uniqueness has been proven, while
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Fig. 1 Example of initial
distribution function fi j (0, u)
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in [26] the case in which the encounter rate η depends on the constant number density
N has been studied.

3 Modeling opinion formation

The system (1, 2) provides the framework to model large systems of interacting indi-
viduals. The aim of this section is to explain the way in which such a structure is able to
model the complexity features related to the formation and evolution of opinions in a
structured population. Assume we wish to test how the opinion concerning a specified
issue (immigration policy, homosexual marriage, etc.) evolves in time according to
the population “structure”, in the present study limited to its geographic distribution
and its political orientation (in broad sense). The space variable is summarized in
the nodes distribution, each node identifying a geographic area (north, center, south,
for example, when referring to Italy). In each node we have a number of functional
subsystems, each corresponding to the node population subset of people whose initial
leaning is the same. More precisely, for each fixed node i , the subsystem’s label j
is numbered from j = 1, the most conservative, to j = m, the most progressive
sub-population according to their general political orientation. Moreover, the activity
u in the functional subsystem (i, j) is initially distributed from low (close to 0) to high
values (close to 1), corresponding to the individuals ranging from the mostly adverse to
the mostly favourable to the given issue. In other words, while the partition in subsys-
tems (index j) reflects the mainstream sociopolitical collocation of individuals, and is
initially basically independent on the specific issue, the activity distribution inside any
functional subsystem is related to the finer orientation of the corresponding individuals
with respect to the topic under consideration. Assuming that u ∈ Du = [0, 1], Fig.
1 shows an example of an initial distribution fi j (0, u) corresponding to a functional
subsystem in which the individuals are mostly “open minded”.
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3.1 Encounter rate

The function ηi phk[f] describes the encounter rate between an individual belonging
to the j-th subsystem of the i-th node ( a (i, j) active particle) with any other active
particle in the k-th subsystem of the h-th node [(h, k) particle]. It is worth noticing
that encounters between two particles belonging to the same node and/or to the same
subsystem are not excluded. In our model we assume the following expression of the
encounter rate:

ηi jhk[ f ](u∗, u∗)

=η0�i jhk exp
(

− |u∗ − u∗|−|| fi j (t, u∗) − fhk(t, u∗)||−|Si j (t, f )−Shk(t, f )|
)
.

(4)

Here:

(i) η0 is a constant, which has to be estimated;
(ii) �i jhk has the form:

�i jhk = 1 + δih(n − 1)

n(| j − k| + 1)

where δih is the Kronecker delta. If i = h (i.e. interaction between individuals
belonging to subsystems of the same node), then the encounter rate scales as
1/ (| j − k| + 1), that is, it depends only on the relative distance between the two
subsystems. Otherwise, if i �= h, then �i jhk = 1/ (n(| j − k| + 1)) and it takes
into account also the total number of nodes: the more the nodes, the lower the
probability of interaction;

(iii) The hierarchic distance |u∗ − u∗| measures the distance in activity between
the interacting individuals. The choice of the metric to measure the hierarchic
distance (hereafter called hd) has to be made according the modeling needs. Here
we compare the values of u∗ and u∗ with respect to the middle value (1/2) of the
activity as follows:

u∗

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

≥ 1

2

⎧
⎪⎨

⎪⎩

u∗ ≥ 1

2
hd ∼ min(u∗, u∗)

max(u∗, u∗)
|u∗ − u∗|,

u∗ <
1

2
hd ∼ u∗ − u∗,

<
1

2

⎧
⎪⎨

⎪⎩

u∗ ≥ 1

2
hd ∼ u∗ − u∗,

u∗ <
1

2
hd ∼ 1/ (|u∗ − u∗|) .

In the first case (u∗, u∗ ≥ 1/2) both the candidate and the field particles have
high activity; this means they are both opened to exchange ideas and confront
their relative opinions, giving rise to a high encounter rate. On the other hand, if
the candidate has activity lower than the the field’s, then the encounter rate has
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Fig. 2 Influence of skewness on the encounter rate

to be low. Hence, putting this modified hd in the negative exponential model we
are introducing, we have essentially what we have described. In the second case
(u∗ ≥ 1/2, u∗ < 1/2) the encounter rate depends only on the activity difference:
morally, the more the candidate is active and the field is static, the lower the
rate, and converse. The same happens in the third case, exchanging the role of
candidate and field.
In the last case, when both of the particles have activity less than 1/2, meaning
that they are both static, then the encounter rate is expected to be very low.

(iv) || fi j (t, u∗)− fhk(t, u∗)|| measures how much distant the distribution of the par-
ticles are. We say that two subsystems are affine if the have similar distributions
functions. Hence, if two subsystems are affine, they encounter each other more
frequently with respect to subsystems that have totally different distribution func-
tions. As discussed in [27], different possible choices for this norm are possible;
here we make use of the L∞ one.

(v) The quantity:

S(t, f ) =
1∫

0

(u − ū)3 f (t, u)du
/

⎛

⎝
1∫

0

(u − ū)2 f (t, u)du

⎞

⎠
3/2
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is the skewness of the distribution function, where ū(t) = ∫ 1
0 u f (t, u)du is the

mean of f (t, u) and where suitable indexes have to be used. It measures the
asymmetry of the function. To see how it could influence the encounter rate let
us make a practical example. Consider first the distribution functions shown in
Fig. 2 relative to two different subsystems.
The distribution function in Fig. 2a has skewness −1.0739, while the one in Fig.
2b has skewness 1.0061. The corresponding subsystems have distribution con-
centrated on different points (they have different means), so the general opinion
orientation of their components are different, leading to a small encounter rate.
On the other hand, in Fig. 2c we have o distribution with skewness −1.0730 ,
while the one Fig. 2d has skewness −1.0849: the relative difference is small and
the encounter rate is large. In the first example (Fig. 2a, b) we can see also how
the skewness gives account of the “conformism” of the individuals: the function
in (b) is wider around its mean, hence the skewness is larger (in absolute value)
because there are more particles near the mean, which represents the “general”
thinking of the subsystem as a whole.

3.2 Transition probability densities

The function Bq j
iphk[ f ](u∗ → u|u∗, u∗) models the probability that an active particle

(individual) in the subsystem p of the node i with activity u∗ goes to the subsystem
j of the node q with activity u after the interaction with a particle of the subsystem k
with activity u∗ of the h node.

After the interaction, the particles may manifest a different behavior (may change
their opinion) both due to their own characteristics and to the general trend of the
subsystems. Among all the possible types of interaction, we focus on the following
ones:

1. Cooperative: this type of interaction tends to decrease the difference in the states
of interacting particles, due to a sort of dragging effect. A candidate particles either
increases its activity, taking advantage of its interaction with a field particle having
a higher state, or decreases it interacting with a candidate particle with a lower
state.

2. Competitive: the effect of this kind of interaction is to increase the activity dif-
ference between the interacting particles, due to a kind of driving back effect. A
candidate particle either increases its activity when meets a field particle with a
lower state or decreases its activity encountering a field particle with a higher state.

3. Hiding-learning: in this case, the particle with the higher state tries increasing its
activity distance from the other. In the meanwhile, the latter attempts to reduce
such a distance by a learning process.

The output resulting from the interaction between two active particles is not deter-
mined a priori, i.e. the modified behavior is known only in probability. Hence, B is a
stochastic matrix, whose expression takes account of possible irrational components
of the particles’ behavior belonging to the overall system.

In order to have an effective model for the matrix B, we must consider the different
sources of nonlinearities arising from the interactions details. Among others:
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– Threshold: the interaction’s output depends on the a threshold on the distances
between the particles; the nature of this distance could be different, e.g. physical,
ideological, political;

– Domain of influence: the candidate particle can interact only with a certain number
of field particles, within a possible varying domain of interaction. The number of
field particles involved depends on the details (shape, symmetry, sharpness) of the
corresponding distribution functions.

The strong assumption made in this work is that a particle does not change its
node, assumption compatible with the meaning of geographic location of nodes. Con-
sequently, the transition probability is modeled by the function Bi j

iqhk . Moreover, we
assume also that when h �= i (candidate and field individuals belonging to different
nodes), then Bi j

iqhk is a scale factor of 1
n with respect to the corresponding transition

probability with h = i (same node). Taking into account all the possible encounters
between different particles, the following normalization condition for the multidimen-
sional stochastic array B must hold:

n∑

h=1

m∑

j,k,q=1

Bi j
iqhk = 1 . (5)

As we previously wrote, we assume that any term of the type Bi j
iqhk , that is the

transition probability that a (i, q) individual falls into (i, j) after the interaction with
a (h, k) one, is exactly 1/n of the corresponding term Bi j

iqik , corresponding to the
interaction just described but between subsystems belonging to the same node, that
is, Bi j

iqhk = (1/n)Bi j
iqik , whatever the indices. Then, from (5) we get:

m∑

j,k,q=1

⎛

⎜⎜⎝Bi j
iqik +

n∑

h=1
h �=i

Bi j
iqhk

⎞

⎟⎟⎠ =
m∑

j,k,q=1

⎛

⎜⎜⎝Bi j
iqik + 1

n

n∑

h=1
h �=i

Bi j
iqik

⎞

⎟⎟⎠

=
m∑

j,k,q=1

(
Bi j

iqik + n − 1

n
Bi j

iqik

)
= 2n − 1

n

m∑

j,k,q=1

Bi j
iqik = 1. (6)

Now, we count all the possible interactions of a given (i, j) active particle with all
the other particles, both in the same and in different nodes, that is, we enumerate all the
possible terms in the transition probability array B. Thus, we have m!/(m − 1)! = m
terms of the type Bi j

i j i j , corresponding to the interaction between a (i, j) candidate and
a (i, j) field, with output as a (i, j) test particle (permutations with two repetitions),
m!/(m − 2)! = m(m − 1) terms of the type Biq

i j i j (resp. Bi j
i j ik) , corresponding to the

interaction between a (i, j) candidate and a (i, j) (resp. (i, k)) field, with output as a
(i, q) (resp. (i, j)) test particle (permutations with one repetition), and m!/(m −3)! =
m(m − 1)(m − 2) terms of the type Biq

i j ik , corresponding to the interaction between
a (i, j) candidate and a (i, k) field, with output as a (i, q) test particle (permutations
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without repetitions). These considerations hold for interactions of (i, j) individuals
with active particles belonging to all the other n−1 nodes, whatever the indices. Then,
we finally get:

mBi j
i j i j + m(m − 1)Biq

i j i j + m(m − 1)Bi j
i j ik + m(m − 1)(m − 2)Biq

i j ik

+m(n − 1)

n

[
Bi j

i jh j + (m − 1)Biq
i jh j + (m − 1)Bi j

i jhk + (m − 1)(m − 2)Biq
i jhk

]
= 1,

(7)

where the first row of (7) refers to the interactions within the same node, while in the
second row interactions between different nodes are accounted. We assign a probability
P to the first case, and 1 − P to the second one. For example, when P = 1 we are
considering the case in which the interactions happen only on the same node.

Keeping in mind the previous normalization, we are in position to write a first model
for the matrix1 B. As previously stated, since the interacting particles do not change
node, from now on the index i will be suppressed. We have:

Bq
jk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k = j

{
q = j B j

j j = α

q �= j Bq
j j = α̃

k �= j

{
q = j B j

jk = ξ

q �= j Bq
jk = ξ̃

where 0 < α, α̃, ξ, ξ̃ < 1. The parameters α, α̃ model the probability of transitions
when the interacting subsystem are the same, while ξ and ξ̃ model the transition
probability between two different subsystems. Giving a weight P1 to the first case and
P − P1 to the second, from (7) we get:

mα + m(m − 1)α̃ = P1

and, solving for α̃:

α̃ =
( P1

m
− α

) 1

m − 1
(8)

In order to have this probability greater than zero, the parameter α cannot be chosen
freely, rather it has to satisfy the following constraint:

α ≤ P1

m

Performing a similar calculation for the other part we have:

m(m − 1)ξ + m(m − 1)(m − 2)ξ̃ = P − P1

1 Since it depends on more than 2 indexes, it is actually an array rather than a matrix.
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and then:

ξ̃ =
( (P − P1)

m(m − 1)
− ξ

) 1

m − 2
(9)

with the constraint:

ξ ≤ (P − P1)

m(m − 1)

In case of different nodes (i.e. in modeling Biq
i jhk), the model and the calculation

are very similar, except for the presence of a factor n−1
n .

Biq
i jhk =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

k = j

⎧
⎨

⎩
q = j Bi j

i jh j = α

q �= j Biq
i jh j = α̃

k �= j

⎧
⎨

⎩
q = j Bi j

i j ik = ξ

q �= j Biq
i j ik = ξ̃

Assigning probability P2 to the case k = j and consequently 1 − P − P2 to the
case k �= j , we have:

α̃ =
( P2n

(n − 1)m
− α

) 1

m − 1
α ≤ P2n

m(n − 1)

ξ̃ =
( n(1 − P − P2)

m(m − 1)(n − 1)
− ξ

) 1

m − 2
ξ ≤ n(1 − P − P2)

m(m − 1)(n − 1)

In an opinion formation framework, we can try to write the probability transition
densities taking into account some characteristic of the phenomenon considered. The
activity variable u represents the individual political opinion, while fi j represents the
general trend of the subsystem j of the node i regarding a particular issue. Moreover,
if we assume that the interactions occur between particles of the same node, it means
that in the model described before P = 1, hence P2 = 0.

In this framework, the transition probability models the possibility that an individual
changes (or not) its mind after the interaction with another individual. For example,
let’s consider the encounter between two individuals, one pro gay marriage and one
against it: the matrix B models the probability that the first one changes its opinion
concerning this issue after the encounter. In order to model the matrix B in an opinion
formation process, we consider2 the center of mass of the j-th and k-th subsystems:

g[ j, k](t, u∗, u∗) = j fi j (t, u∗) + k fik(t, u∗)
fi j (t, u∗) + fik(t, u∗)

. (10)

2 We recall that in this framework we label the subsystems and the nodes with integers. A possible
alternative in the definition of the center of mass would consist in using the number of individuals
ni j (t) = ∫ 1

0 fi j (t, u)du in place of the distribution functions. In the context of opinion formation seems
more reasonable keeping the definition (10).
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The quantity g[ j, k] is a number3 which has the role to take into account how much
strong the “attraction” towards the interaction state is. In this way, we can consider the
relative distance between the candidate particle’s subsystem and the center of mass
of interacting subsystems. For example, the distance between the p-th subsystem and
the center of mass g[ j, k] is:

dgp = |p − g[ j, k]|.

The strength of interaction that we assume in the model has the form:

ξ = ε

|u∗ − u∗| + 1
,

and

ξ̃ = δ

(dgj + ω)(|u∗ − u∗| + 1)
,

where ω takes into account if j , q or k are “boundary subsystems”, that is, subsystems
with label j = 1 or j = m, and δ and ε are suitable parameters lying in the interval
[0, 1]. For sake of simplicity, let’s represent the subsystems as massive points of
different size on a line; we explain the role of ω when j , q or k are subsystems on the
node’s boundary.

q k jg

As we stated before, Bq
jk represents the probability to go from j-th subsystem to

q-th subsystem after the interaction with the k-th. In this case the center of mass,
simply denoted by g, is close to k, while j and q are distant: going from j to q is
not very reasonable, hence the probability has to decrease with the distance from the
center of mass. Thus, ω = dgq and

Bq
jk = δ

(dgj + dgq)(|u∗ − u∗| + 1)
.

A different situation is depicted in the following picture:

k q jg

3 The center of mass does depend on the values of the functions appearing at the r.h.s. of (10), that is, the
notation f (t, u∗) (say) stays for the value the function f assumes in correspondence of the values t and u∗
of its arguments.
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so that the probability to pass for j to q depends also on the relative distance between
j and q themselves. Consequently ω = d j,q and

Bq
jk = δ

(dgj + d j,q)(|u∗ − u∗| + 1)
.

It could happen that q = k, and we have the following picture’s situation:

In this case ω = 0 and

Bk
jk = δ

d jq(|u∗ − u∗| + 1)
.

Remark 1 Notice that it does not matter if the subsystem is a left or a right boundary
one, the transition probability depends only on the distance from the node’s center
of mass. Moreover, the position of the latter (at right or left of the “more massive”
subsystem) does not affect the transition probability.

Remark 2 In case of j , q or k being “non-boundary” subsystems, we assume that
ω = 0.

Hence, the array B has the following aspect:

Bq
jk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k = j

⎧
⎪⎨

⎪⎩

q = j B j
j j = P1

m
− (m − 1)α̃

q �= j Bq
j j = α̃ ≤ P1

m(m − 1)

k �= j

⎧
⎪⎪⎨

⎪⎪⎩

q = j B j
jk = 1 − P1

m(m − 1)
− δ

(dgj + ω)(|u∗ − u∗| + 1)

q �= j Bq
jk = δ

(dgj + ω)(|u∗ − u∗| + 1)

(11)

with

1 − P1

m(m − 1)
− P1 ≤ δ

(dgj + ω)(|u∗ − u∗| + 1)
≤ 1 − P1

m(m − 1)

The only parameters to be set up are three, namely the weight P1, the probability
α̃ and the constant δ. Observe that they must satisfy the relative constrains.

4 Numerical results

In this section we report the results of numerical experiments performed on the opinion
formation model introduced in Sect. 3. In order to solve the differential equations’
system:
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⎧
⎨

⎩

∂

∂t
f (t, u) = y( f (t, u))

f (0, u) = F(u)
(12)

in the interval [0, T ] we use a forward Euler scheme. Considering the subdivision of
the time interval in the nodes {0 = t0, t1, t2, . . . , tn = T }, where ti+1 − ti = Δt > 0,
we have:

f (tk+1, u) = y( f (tk, u))Δt + f (tk, u); f (t0, u) = F(u)

In our model, the right hand side of the differential equation is represented by sums
of double integrals. Each integral is computed with the composite Simpson formula:

b∫

a

f (x)dx ∼ Δx

3
( f0 + 4 f1 + 2 f2 + · · · + 2 f2m−2 + 4 f2m−1 + f2m)

where fi = f (xi ), with and approximation error of
b − 4

180
(Δx)4 f (4)(η), η ∈

[a, b]. The integration interval is divided in 2m + 1 nodes as [a, b] = {a =
x0, x1, . . . , x2m+1 = b}, Δx = xi+1 − xi . Since the r.h.s. of (12) looks:

∑

i, j

∑

h,k

∫∫

Du2

ηB fi j fhkdu∗du∗

we first compute
∫

Du ηB fi j fhkdu∗ = Fi j,hk(u∗), then evaluate
∫

Du Fi j,hk(u∗)du∗
and sum all over the suitable indexes.

4.1 Numerical experiments

In the first of our experiments, the Italian regional areas are represented by three
nodes: north, center and south. Each node is divided in three subsystems, grouping
the progressive, the moderate and the conservative individuals, respectively. In Fig. 3
we show the experiment’s initial data, in which only one subsystem shows an a priori
opinion (more conservative) different from that of the other ones (mostly progressive).

The values of parameters we set for the numerical computations are the following:

– δ = 10−m (to obtain the right normalization for the B);
– P1 = 1,
– α̃ = 0.1594.

In Fig. 4 and 5 we present the results relative to the f11 and f22 distributions. In
details, Fig. 4 shows the evolution in time of the distribution functions of the most
conservative (i = 1, j = 1) subsystem in the north and of the “moderate” (i = 2,
j = 2) one in the center. The initial very conservative attitude of the (1,1) individuals
smooths down, as is reported in Fig. 5, while the (1,2) individuals shows a trend
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Fig. 3 Initial situation. On the rows there are the geographic nodes, while on the columns the parties are
represented. In this case, we can see that only the first subsystem in the first node has an initial general
orientation pretty different from the others. In each graph, the activity u is on the x axis, while on the y axis
there are the values of the function fi j (0, u) (i, j = 1, 2, 3)

towards a bimodal distribution (see Fig. 4 2), corresponding to an increase of the
moderate fraction in the subsystem’s population.

In the second experiment we test the consistence of the model starting from an initial
situation in which all the distribution functions are uniform. This basically means that
in principle none of the individuals has a particular orientation with respect to the
specific issue, irrespective of their node-subsystem. For example, in Fig. 6 we plot
the time evolution of the function f32. As result of mutual interactions, an opinion
structure emerges, differentiating the orientation of individuals.

5 Conclusions and perspectives

The kinetic theory of active particles has shown its ability to model large living-
social systems that exhibit complex characters. In this paper we use the KTAP to
describe how a collective opinion related to specific issues forms and evolves in time
as consequence of mutual interactions of individuals, located in a network, grouped
in functional subsystems according their common strategy. The network structure has
been introduced here to mimic the geographic distribution of interacting individuals.
In Sect. 3 we show how the number of nodes in the network influences the model, in
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Fig. 4 3D plots of the f11(t, u) and f22(t, u) distribution functions corresponding to initial data as in Fig.
3
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Fig. 5 Evolution of the f11 function at steps t = 10, 30, 40, 50, from left to right and from top to bottom.
We initially notice a slight movement to the right , due to the fact that all the rest of the population has a
strongly different position about this particular issue. Letting the model evolve in time, a more effective
shift is observed

particular the transition probabilities, suggesting that a population with a richer spatial
structure will possibly give rise to a more detailed opinion structure. The evolution
of the subsystems’ distribution functions, obtained as a balance equations over the
microstates, shows how the details of transition probability densities, modeled as sto-
chastic games played among interacting individuals, are able to capture some basic
features of opinion formations, revealing the emergence of structures in the distrib-
ution functions of functional subsystems that correspond to cooperative/competitive
processes as well as learning characters in the individuals exchange of ideas. The aris-
ing of such collective behaviors is strictly related to the strong nonlinearities appearing
in the r.h.s of (2), as discussed in [27]. It is worth to stress that in the present paper
only “spontaneous” mutual interactions govern the evolution of opinions trend and
that no comparison has even been attempted with real data. In a forthcoming paper we
introduce the “pressure” of external agents having the specific goal to bias individuals
opinion toward their proper interests, as in an election campaign or in advertising, and
analyze the results of the KTAP based modeling approach with the existing literature
[28–30].
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Fig. 6 Evolution (t = 0, t = 3, t = 6.5, t = 10) of the distribution f32 when all the initial fi j are uniform
distributions (no individual has any particular orientation with respect to the specific issue). As time goes
on, as a result of mutual interactions a structured trend emerges
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