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Abstract We consider the Navier—Stokes equations in three spatial dimensions and
present a new proof of the Caffarelli-Kohn—Nirenberg theorem, based on a generalized
notion of a local suitable weak solution, involving the local pressure. By estimating
the integrals involving the pressure in terms of velocity, the pressure term is cancelled
in the local decay estimates. In particular, our proof shows that the Caffarelli-Kohn—
Nirenberg theorem holds for any open set €2 without any restriction on the size and the
regularity of the boundary. In addition, the method forms a basis for proving partial
regularity results to other fluid models such as non-Newtonian models or models with
heat conduction.
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1 Introduction

Let Q C R3 be any domain and let 0 < T < 4o00. Set Q = Q x (0, T'). We consider
the following generalized Navier—Stokes equations (g-NSE)

divu =0 in Q,

(g-NSE) qu+ (u-Vyu—divS +Vp = —divf in O,
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where

2

u= (ul, u’, u3) = unknown velocity of the fluid,

p = unknown pressure,
—div f = external force,

S = deviatoric stress tensor.

The system (g-NSE) will be completed with the following boundary and initial con-
ditions

u =0 on 9Q x (0, 7), (1.1)
u=ugon £ x {0}, (1.2)

where u is a given initial velocity distribution.

1.1 Models for the constitutive law S

Due to friction the deviatoric stress S depends on D (u), where
1 ; i
Djj(u) = 5(31'MJ +ou') (G, j=12,3).

In addition, in case of heat conducting fluids S can depend also on the temperature
6 of the fluid which is due to heat transfer. We present various models which are
well-known models of fluid motions.

(1) Newtonian fluid with constant viscosity: Here S is proportional to D (u), i.e. there
exists a constant v > 0 which is called the viscosity of the fluid such that

S =2vD(u). (1.3)

Owing to divu = 0 we have divS = 2vdivD(u) = vAu. Thus, (g-NSE) turns
into the usual NSE

divu =0 in Q,
(NSE) [alu+(u.V)u—pAu+Vp = —divf in Q.

(i) Newtonian fluid with non-constant viscosity: There exists a bounded measurable
function v : Q@ — R, such that

S =vD(u), 0<vy <v(x,t) <v) <+4oo fora.e.(x,t) € Q. (1.4)
where v, v = const > 0.

(iii) Non-Newtonian fluids with shear dependent viscosity: There exists a positive
function u : Ry — Ry such that
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S = u(Dw))D(u). (1.5)

In the engineering practice one often makes use of the so called power law model,
where 4
u)=10+sH7 or k) =572 1<gq < oo. (1.6)

Here we distinguish between the following three cases

Firstcase: 1 <qg <2 shear thinning,
Second case : g =2 Newtonian,
Third case : 2 < g < 400 shear thickening.

(iv) Heat conducting fluids: Due to heat conduction, the viscosity may depend on the
temperature 6, such that
S =v(O)D(u). 1.7

and the generalized NSE being coupled by the equation of heat transport,
360 +u - VO — div(k Vo) = v(6)|Dm)|?, (1.8)

where k > 0 denotes the heat capacity due to Fourier’s law. The Eq. (1.8) will
be completed by appropriate initial and boundary conditions.

For further details on fluid mechanical background see [2,13].

1.2 Notion of a weak solution

First, let us introduce the function spaces which will be used in what follows. By
wk: (), Wg’ Q) (keN; 1< g < +00) we denote the usual Sobolev spaces (see,
e. g. [1]). Spaces of vector valued functions will be denoted by bold letters, i.e. instead
of Wk 7(Q; R™), L1(2; R™), etc. we write shorter wk: (), L1(R2), etc.

Let CS?J(Q) denote the space of solenoidal smooth functions having compact
support in 2. We define

LZ(Q) := closure of C(?U(Q) w.r.t. the norm in LY ($2),

W(l):g (R2) := closure of CS?G (R2) w.r.t. the norm in W(l)’ 9Q).
In particular, we set
V=W, H:=LXQ).

Let X be a Banach space with norm || - ||x. Then, by LY (a, b; X) we denote the
space of Bochner measurable functions, such that
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b
1 sy = [ 1FOdr < oo it 12 < +oo,
a

I f 1l oo a,b;x) = €8S Supre(a py I f(D)Ilx < 400

(for details see [18]).
Now, we introduce the notion of a weak solution. For the sake of simplicity we only
consider the case of NSE withv = 1 and f = 0.

Definition 1.1 Let ug € H. A function u : Q — R3 is called a weak solution to the
NSE if

() we L®0,T; HYNL%>0,T; V).

(ii) For every ¢ € C'([0, T); C,(Q)):

/—u -9 —u@u:Vo +2Du: Dodxdt = / uop(-,0)dx. (1.9)
Q Q

(iii) In addition, u is called a Leray—Hopf solution if the following energy inequality
is fulfilled:
t

||u(t)||%,+2//|w|2dxdsg||uo||%, forae. 1€ (0,7). (1.10)
0 Q

The existence of a Leray—Hopf solution is well-known and can be found in Leray
[14] for the case Q = R3 and in Hopf [11] for general bounded domains. However,
the notion of a Leray—Hopf solution is not sufficient for the study of local regularity
properties, since in general there is no control of the local energy. For this reason, first
Scheffer [17] introduced the notion of a suitable weak solution and then he proves
the partial regularity for such solutions. Later, this notion has been also used in the
celebrated paper by Caffarelli-Kohn—Nirenberg [4] to obtain the partial regularity,
proving that the 1-dimensional parabolic Hausdorff measure of the singular set is
zero. For more simplified proofs of this result see [12,15]. Recently a new proof of
the Caffarelli-Kohn—Nirenberg theorem has been given by Vasseur in [21].

Let us now recall the notion of a suitable weak solution due to Scheffer. A pair
(u, p) is called suitable weak solution to (NSE) if u is a weak solution to (NSE),
pE L> (Q) and the following local energy inequality is fulfilled for all nonnegative
¢ € C3°(Q) and for almost all ¢ € (0, T'):

t

/ ()2 (r)dx +2 / / \VuPodxds
Q 0 Q

t

E//|u|2(3t¢+A¢)+(|u|2+2p)u-Vd)dxds. (1.11)
Q

0

@ Springer



Ann Univ Ferrara (2015) 61:149-171 153

Clearly, in order to establish such suitable weak solutions to (NSE) one has to define
a pressure function p, which is only available if Q2 is a uniform C 2 domain (cf. [5]).
Therefore, we cannot expect to obtain such solutions for general domains. The same
difficulties occur if one considers other models like heat conducting fluids or non-
Newtonian fluids. The purpose of this paper is to provide a new method in constructing
suitable weak solutions for general domains and general models. As we will see below,
we may introduce a notion of a local suitable weak solution to the NSE instead defining
a global pressure, we introduce a local pressure decomposition p = 9;p, + po.
However, this notion requires some study on the steady Stokes equation, which will
be the subject of Sect. 2.

2 Local estimate of the pressure
2.1 The definition of the spatial pressure

The aim of this section is the construction of a special operator which maps every
F € W—1-4(Q) into a class [p] € L{’OC(Q)/R. To begin with, we recall a well-known
result due to Galdi et al. [7] (for a similar result on Lipschitz domains see [3]), which
is the following

Lemma 2.1 (Galdi-Simader—Sohr) Ler G C R" be a bounded domain with 3G € C'.
Then, for every F € W1 4(G) (1 < q < 00) there exists exactly one pair (v, p) €
Wy 9(G) x LL(G)" such that

divv=0 in G, —Av+Vp=F in w46, 2.1
v=0 on 0G. 2.2)

In addition, there holds

IVvllLa@) + IPlLe@) = CollF lly-1.9)- (2.3)
As an immediate consequence of Lemma 2.1 we have the

Lemma 2.2 For every 1 < g < 0o there holds

LaG), 2.4)

Wl(G) = Wi (G) @ W o

where

Wiy 1(G) = (—Av|v e Wy l(G)), Wo'(G) =1{Vplp e Li(G)}

Lemma 2.2 enables us to define the surjective bounded operator &, g
W=14(G) — L¥(G) by setting #; GF = p, where F —Vp € ngi’q(c). Clearly,

! Here Lg(G) means the space of all f € L9(G) with fG fdx =0.
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PycVp = pforall p Lg(G). Consequently, V&, ¢ defines a projection of

— -1,
W=14(G) onto W, 17 (G).

Notice, due to uniqueness of the weak solution we have &, g F = & g F for all
FeWb49G) nW=b5G) (1 <s,q < +00). Thus, in what follows & stands
for #, ¢ forsome 1 < g < +00.

By means of elliptic regularity we have the following regularity property of &g:

Lemma 2.3 Let G C R” be a bounded C? domain. Let f € L1(G) — W~14(G).
Then P f € WY 4(G) and there holds the estimate

IVZ6 fliLac) <cllfliLee). (2.5)

where ¢ = const > 0 depending on q, n and the geometry of G only.

2.2 The time dependent case
Next, let F € L%(a,b, W—1-9(G)). With help of Pettis’ theorem (e.g. see [24];
Chap. V.4.) we may define Zg : L*(a, b, wW-L4(G)) — L*(a, b, Lg(G)) according
to
(PcF)(t) = Ps(F(t)) fora.e.t € (a,b).
Furthermore, for every F € L’(a, b, w-la (G)) we define

P F = 0, 2cF in the sense of distributions.

Using the above definition of the projections &, ¢ we have the following

Lemma 2.4 Letu € L*(0,T: V)N L®(0, T: H) be a weak solution to the (NSE)
with f = 0. Then for every bounded subdomain G C Q2 with 3G € C? there holds

T T
- //(u + Vpnc) - orpdxdt — //(u ®u+ pi1.gl): Vedxdt
0 G 0 G

T
+ / / (Vu — prgI) : Vodxdt =0 (2.6)
0 G

forall ¢ € CF(G x (0, T)), where?

PhG = =P Gu,
DP1,G = —@%’Gdlv(u Qu),

P26 = P cAu.

2 Here I stands for the identity matrix in R3%3,
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In addition, we have the estimates,

IVorc®llm) < clu@®lpmg (1 <m <6), 2.7
P16 D32y = cllu@®) @ ud)ll 32, (2.8)
1P2,6(DNl 26y = cllVu® 26 (2.9)

for almost allt € (0, T). Here ¢ = const > 0 depends on the geometry of G and in
(2.7) on m only. In particular, if G is the ball Bg(xo) then c in (2.7) depends only on
m, while in (2.8) and (2.9) c is an absolute constant.

Proof According to Lemma 2.1 there exists v, vy € L0, T; W(l):UZ(G)), v €

3
L3(0, T; Wy 2 (G)) such that

— Avy, +Vpp = —u, (2.10)
—Avy + Vpy = Au, (2.11)
—Av +Vp = —diviu Q u). (2.12)

Since u is a weak solution to (NSE) we see that
T
// —Vv, : Vo, + (Vv + V) : Vedxdt =0
0 G

for all ¢ € Cé O, T; CSfJ(G)). Introducing the Steklov mean of f € L'(Q) by
1+

f)\(x,l):z%/f(x,r)dt, x,)eGx(0,T—-2x), 0<i<T,
t

the above identity leads to

—A
/(Va,(vh)HV(vl)ﬁV(vz)k) :Vodxdt =0 Ve € CH0, T—2; CT, (G))
G

o

(2.13)
forall0 < A < T.
Let 0 < A < T be arbitrarily chosen. Fix n € C(% (0, T — X) and define

T—A

w@ = [ (%00 + @D D + @00 )n0dr, x € G,

o
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Inserting @ (x, t) = ¥ (x)n(t) fory € C - (G)into (2.13) and using Fubini’s theorem,
it follows that

/Vw VYdx =0 Yy € CZ(G).
G

By the definition of v, v; and v, we see that w € W 3 5 (G). Clearly, w solves the
Stokes system (2.1), (2.2) with F = 0. Thus, thanks to Lemma2 1 we have w = 0.
Recalling the definition of w this shows that

(@nx + @D + @2),) - gdxdt =0 Vg e CF(G x (0,T ).
Gx(0,T—1)

Whence, 0;(vy)y + (v1)y + (v2)y =0a.e.in G x (0, T — A). Now, observing

T—xi
[ [ (Vo + V@i + V1) Vodxd =0 v e CFG x 0.7 - 3)
0 G

applying integration by parts and passing to the limit A — 0 we arrive at

T
// —Vv, : Vo, + Vv, : Vo + Vuy : Vedxdt =0 Ve € CF(G x (0,T)).
0

(2.14)
Whence, the assertion follows from (2.10)—(2.12) using (2.14).

In order to verify (2.7) we may chose N C (0, T') with Lebesgue measure zero such
that u(r) € L%(G) forall € (0, T) \ N. Then (2.7) is an immediate consequence of
(2.5) (cf. Lemma 2.3). Similarly, (2.8) and (2.9) follows by using (2.3) (cf. Lemma
2.1). O

Remark 2.5 1. Owing to divu = 0 we see that both p, ¢(¢) and p> ¢ (¢) defined
above are harmonic for a.e. t € (0, T).
2. As it is readily seen the statement of Lemma 2.4 remains true if one replaces the

convective term dive ® u by divH for a general matrix H € L% (G x (0,T)) and
replacing p1 ¢ by —FcdivH.

3 Local suitable weak solutions to the Navier—Stokes equations

Based on the local projections introduced in Sect. 2 we are in a position to introduce
a notion of local suitable weak solutions, which reads as follows

Definition 3.1 A weak solution u to (NSE) is called a local suitable weak solution,
if for every ball B CC <2 there holds
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t
/ 0502 (1)dx +2 / / Vo Ppdxds
0 B

B

t
s//|v3|2(at¢+A¢>+(|u|2+2po,3)v3-V¢dxds
0 B

t
+//2uiuj8i(8jph¢)— \u|®V py.p - Vodxds, (3.1)
0 B

for all nonnegative ¢ € C3°(B x (0, T)) and for almost all # € (0, T), where v =
u + Vpy g and

PhB = —Z Bu,
po.p = P2 pAu — @%’Bdiv(u Qu).
For the definition of the operator &, p see Sect. 2.
Now, we obtain the following result on the existence of a local suitable weak solution
Theorem 3.2 For every ug € H there exists a local suitable weak solution to (NSE).

Proof Let n € C*°(R) withn = 1 on (—o0, 1) and n = 0 in (2, +00). Set n.(r) =
n(et) (t € R; ¢ > 0). Clearly, there exists a unique weak solutionu, € L%(0,T; V)N
L*°(0, T; H) to the approximate system
divu, = 0 in Q,
(NSE), Oue + diV(ne(|us|2)ue ®us) —Aug +Vp. =0 in 0,
u.(0) =ug in Q.

Integration by parts gives

luellFoo 0.7y + 2 / IVuel|*dxdt < 2|luol%;. (3.2)
0o

Furthermore, by using Holder’s inequality and Sobolev’s embedding theorem we infer
that

. 2 3 3
el oo rnrmy < cluolln Ve f e 2400 with —+2 =35 (33

Thus, by means of reflexivity and Banach—Alaoglu’s theorem? one finds a sequence
(ex) with & — 0 and a function u € L2(0, T; V) N L°(0, T; H) such that

3 Note, L0, T; H) can be identified with (L1 (0, T; H))*.
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u, =~ u in L*0,T;V), (3.4)
we, —u in L0, T:H) as k — +oo. (3.5)

In addition, we have fora.e.t € (0, T)
ug (1) ~u() in H as k— +oo. 3.6)
Next, fix a ball B CC 2. Define

k
DPhp = — 9 BlUgy,
k
Pip = PrBAug,
k : 2
Py = _@%,Bdlv(ﬂsﬂueﬂ )uak ® usk)-

Owing to (2.5) and (3.2) we have

k 1
IPn sz, 7:028)) = cllug 20, 7.0y < T2 lluolla,

k
IV 0k sl 207228y < NVue 20,0 < clluoll.

Thus, eventually passing to a subsequence there exists p;, € L>(0, T; W' 2(B)) such
that

Phg—pn in L*O0,T:W"%(B)) as k — +oo.

Observing (3.4) by virtue of the boundedness of 27, p there holds p, = pp.p =
& pu. In addition, thanks to (3.6) we find

Py ) = punp(t) in L*(B) as k — +00 (3.7)

for almost all + € (0,T). Lett € (0, T) such that (3.7) is true. Let x € B and
B,(x) C B. Since p’g’ (1) and pj p(t) are harmonic functions by using the mean
value property we have

1 1

k k
Phppx, 1) = —— / Py, DHdy — / ph(y, 1)dy = pp p(x,1)
hB B (x) hB B, (x)
By (x) By (x)
as k — +oo.
This shows that
p];;’B — prp a.e.inB x(0,T) as k — +oo. (3.8)

@ Springer



Ann Univ Ferrara (2015) 61:149-171 159

On the other hand, by (3.2) for every 0 < 7 < 1 and every multi-index « € Ng we
have

ID% ply pll(px .1y < (e, Dlluollm Yk € N.
Then, by virtue of (3.8) taking into account that pﬁy p are harmonic, we deduce that
pﬁyB — pp,p in L300, T: W>3(zB)) as k — +oo. 3.9

Define, v’l‘g = ug + VpZ’B a.e.in B x (0, T). By Lemma2.4 we see that vg €
L>®(0, T; L>(B)) N L*(0, T; W'2(B)) solving the equation

vl = Avly — div(ng, (g, |Due, @ ug) — Vpi 5 —Vph g in Bx(0,7)

in the sense of distributions. According to (3.2) and the boundedness of 9% g We
infer that

| Al = divone, (ue, Pyug @ ue) = Vpk 5, = Vik

L3/2(0,T;W’l'3/2(3))
< (1 + fluolg)-

Hence, the sequence (v’fg) is relatively compactin L' (B x (0, T')). Taking into account
(3.2), (3.3), (3.5) and (3.9) we deduce that

v’fg —vp=u+Vpyp in L3(B x (0,T)) as k— +oo.
Once more appealing to (3.9) we get
u, - u in LB x(0,T)) as k — +oo. (3.10)
Consequently, there holds
ug, ® nek(|u8k|2)u8k —u®u in L%(B x (0,T)) as k — +oo. (3.11)

This shows that u is a weak solution to (NSE). In addition, recalling the definition of
pY 5 and p4 ; from (3.5) and (3.11) we deduce that

pX g = pip in L*(B x (0,T)), (.12)
Py — pop in L¥2(Bx(0,T) as k— +oo. (3.13)

Now, it only remains to verify the validity of the local energy inequality (3.1).
To this aim we fix r € (0, T) such that (3.6) and (3.7) are fulfilled. Then, let ¢ €
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C(‘)’O(B x (0, T)) be a nonnegative function. In (NSE),, testing with v%qb and using
integration by parts we are led to*

t
/Iv’;(t)|2¢>(t)dx+2//|Vv’;|2¢dxds
B 0 B

t

= / / W51 (0¢ + Ap) — Hi(lue, |Due, - Vo + 2p} 5 + 205 p)vhy - Vodxds
0 B

t
- / / 201 (e e, @ ey 2 V(Vph 5¢) + 26 (e, [ e, Pue, - Vodxds,
0 B

(3.14)

where

£
Hi(§) = / Ne (T)dz, & > 0.
0
tll}%g/t means of (3.4), (3.5), (3.7) and (3.9) using Banach—Steinhaus’ theorem we see
t

/IvB(t)|2¢(t)dx+2//|VvB|2q>dxds
B 0 B

t

< liminf /|v’,§(r)|2¢(t)dx+2//|Vv’,;|2¢dxds ) (3.15)
—00
B 0 B

On the other hand, with the help of (3.9), (3.10), (3.11), (3.12) and (3.13) we verify

t
Jim [ [P0 + A0 — Hulus Py - V6 + @ty + 208 )0l - Vs
0 B

t
+ lim / / 20 (It Py, @ ey : V(Vpjy ) + 21y (e )ty Pt - Vepelxds
0 B

t

=//|v3|2(al¢+A¢>>—|u|2u-V¢+<2p1,B+2pz,B>vB~V¢dxds
0 B

t
+//2u Qu:V(Vpupd) +2ul*u - Vodxds. (3.16)
0 B

4 Here we argue as in the proof of Lemma 2.4 replacing u @ u by ¢ (|ug;, |2)u9k ®ug, (cf.alsoRemark 2.5,
2.).

@ Springer



Ann Univ Ferrara (2015) 61:149-171 161

Thus, from (3.14), (3.15) and (3.16) it follows that

t
/ 0s(0) 2P (1)dx +2 / / Vo Podxds
0 B

B

t
< / / s P06 + A) + (ul® +2p1p + 2p2.5)v5 - Vexds
0 B

t
+//2u ®u:V(Vpypop) — |u|2Vph,3 -Vodxds.
0 B

This completes the proof of (3.1). O

Remark 3.3 1. Besides the local energy inequality (3.1) we may write an alternative
one. In fact, the last integral on the right of (3.1) can be rewritten as follows. Using
integration by parts together with the identity 2(x - V)u = 2curlu x u + V|u|?
we get

t
/Zu Qu:V(Vpupd) — ul>Vpup - Vodxds
B

(=}

t

= —2//(curlu x u) - Vpy ppdxdt. (3.17)
0 B

2. Observing that

27, p(eurlu(t) x u(t)) =22, pdiv(u(t) @ u(t)) — 94,3V|u(t)|2
= —2p1 () — lu@®* + (u@®)*)p Y1 <gq <3,

using Lemma2.3 and Sobolev’s embedding theorem we obtain the estimate

20150 + O = (u)Ps |, < cllewu) xuol

3q

3+ (B)
forae.r € (0,7), V% <q <3.

(3.18)

4 Caccioppoli-type inequalities in terms of u only
In this section we will derive two Caccioppoli-type inequalities, which play the main

role in the proof of the partial regularity. First let us introduce the notations which
will be used below. For xg € R3 and 0 < R < +00 we denote by Br = Bgr(xp) the
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usual ball with center xo and radius R. In addition, for Xo = (xo, fo) € R3 x R we
introduce the parabolic cylinder

Or = Qr(Xo) := Br(x0) x (to — R*, 10).

For the proof of partial regularity of suitable weak solutions it will be important to

obtain decay estimates for quantities like R™*||u| za(p,) Which are invariant under

the natural scaling of the Navier—Stokes equations. The main quantities we are going
to work with are the following,

— e =1y 112

A(R) = A(R, Xp) =R ”u”L3(t07R2,t();L18/5(BR))’

B(R) = B(R, Xo) := R™'|[Vul 2, .

B(R) = B(R. Xo) := R™ |l curlu|[}> .

D(R) = D(R, Xp) := R_2”u“i3(tofR2,t0;L9/4(BR))’
_4
E(R) = E(R, Xo) :==R"3 ||“”2L3(QR)'

Lemma 4.1 Letu L2(0, T;V)YNL®(0, T; H) be alocal suitable weak solution to
(NSE). Then for every Qar = Q2r(Xo) C Q we have the following two Caccioppoli-
type inequalities

A(R) + B(R) + E(R) < c(D(zR) T [E(2R)]3/2), @.1)

A(R) + B(R) + E(R) < c(D(zR) + E(zR)E(zR)), (4.2)

where ¢ > 0 denotes an absolute constant.

Proof 1° Proof of (4.1). Let R < r < p < 2R be arbitrarily chosen. Set o := #.
Let¢p € C°(Q) suchthat0 < ¢ < 1in Q,¢ =0in Q \ B, x (to — 02,19 + 02),
¢ = 1on Q, and |3;¢| + |A¢| + |V$|* < c(p — r)~% in Q. Then, from (3.1) with
B = B, replacing ¢ by ¢? therein we get

t
/IvB(t)|2¢2(t)dx+2 / /|VvB|2¢>2dxds

By 10—p? Bp
' '

< / / 5P (8,67 + AgD)dxds +2 / / (P + 2po.5)vs - HVdxds

1n—p> Bp to—p? Bp
t
+ / /2uiufai(a,-ph¢2) +2\u|*Vpp.p - Vdxds, 4.3)
10—p* By
=hLh+Dh+1;
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for almost all ¢ € (g — ,02, 10).

(i) Since pp p = — > pu , according to Lemma 2.3 we have
L <cp—r)? / ju? + |V pn.pPdxds < c(p =) uls g, -
Qp

(ii) Recalling that po. g = p1.p + p2.p = — 2, pdiv(u @ u) + 3”% pAu by virtue
of Lemma 2.1 we find

2
||p],B ||L3/2(Qp) = c“u||L3(Qp)’

| p2,B ”Lz(Qp) =< C”Vu”LZ(Qp)-

Thus, with help of Holder’s inequality together with the estimates above we easily
deduce

L= cp=n" s 10812, +c0 =7 IVl 2, 18] 120,

On the other hand, by using Lemma 2.3 having ||vp ||L3(Qp) < c||u||L3(Qp) and
lvp ||L2(Q,,) < c||u||L2(Qp), we apply Young’s inequality to arrive at

3
L3(Q,)

2
L2(Q))

2

1

L<clp—r""ul +clp—r) 2 ul

(iii) Again using Holder’s inequality recalling that Apy p = 0 in B x (0, T) and
arguing as above we infer

173

L=clp—n""luljag, +elullsg / V2 pi, 5 dxds

o
3

<clp=n""ullys g,

Inserting estimates of /1 — I3 into (4.3) and applying Holder’s inequality we are let
to

2 2
169511} poir2s ) + 19V08l 320,

<cp(p —r) 2 |ul?

1
—1 3 2
L3(t0—,02;L9/4(Bp)) + C(p - V) ”u” + Z”Vll”

L3(Q,) L2(Q,)°
4.4)

By means of Sobolev’s embedding theorem using Holder’s inequality we get
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2
lpvp ”L3(to—p2;L18/5(Bp))

S C:O(IO - r)_z||u||i3(t07p2;L9/4(Bp)) + C(p ) 1||u||L3(Q ) ||Vu||L2(Q )
Recalling Apy, p = 0 and applying Lemma 2.3 we see that

+21Vpn. 57

2 2
I|¢u”L3(to—p2;L18/5(Bp)) = 2”¢v3”L3(t0—p2;L‘3/5(Bp)) L3(tg—p?: L18/5(By))

2 1
< 2”¢UB||L3(t()—,02;L18/5(Bp)) +clp—r)" ”u”L’(to 02 LY4(B,))"
Combining the last two inequalities we deduce that

”u”ﬁ(z /2, LI8/5(B,))

< eRo—r) 7 (0.3 g 19y 180y ) T 318 g 49)
Similarly, one proves

<cR(p—r> 2(||u||m0 . L9/4(BZR))+||u||Lz(Q )

IIVMII (4.6)

L*(Qp)
By means of (4.5) and (4.6) we obtain

el +IVal?

L3(t9—r2; L'8/5(B,)) L%(Qr)

1
-2 3 2
< eR(p =) (1133 aposortiamen + 1813300,0) + 51781720,

with an absolute constant ¢ > 0. By a well-known algebraic iteration argument (see,
g. [8]) we get

+ IVul?

L3(t0 R2;L"8/5(BR))
_ 3
S (e LT AN ¢
Multiplying both sides by R~! we complete the proof of the first inequality (4.1).
2° Proof of (4.2). For given R < r < p < 2R let ¢ € C3°(Q) denote the
same cut-off function as in 1°. Appealing to Remark 3.3/1. besides (4.3) we have the
inequality’

5 Here we have used the fact that (curl  x VpnB)-Vppp=0ae. in Qp.
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t
/Ivg(t)|2¢2(t)dx+2 / /IVv3|2¢2dxds

By 10—p* Bp
t t
< / / 05 2@36% + AgP)dxds + / / (> + 2po,5)vs - $Vgdads
to—p> Bp to—p> Bp
t
-2 / /(curlu X vp) - Vph,quzdxds, “4.7)
10—p> Bp
=L+h+I

(i) Clearly, as in 1° we see that
=201, 112
L <p(p—r) ”u”L3(t0—p2,t0;L9/4(Bp))'

(ii)) Making use of (3.18) with g = 2 with help of Holder’s inequality arguing similar
asin 1° we find

I < c(p—nHeurlu < ull posg,) 16005 1s4y—p 102128,
+e(o =Vl Ivsl2g,)

2 — —
<cpi(p—nleurlullo, Nullgag Fep(o=r) 2l o o),

1 2 1 2
Ty WVulliag,) + g 190B 2 120,

(iii) Similarly as above using Lemma 2.2 we estimate

2
L%(Q,)

2

z -2 1 2
Iy < cp3(p —1r)7*| curlu| L0y T 7198 iy 2 iin28,)

flull
Inserting the estimates of I, I> and Ié into (4.7) we are led to

2 2
169515, p2.r205,) + 19V08132 4

_ 2 _ 2 2
<cp(p =) NulGag, o gomgp,yteod (o = leurdulgy o lulfs g, |

(to—p

1
+ 2 1VEl2 g, (4.8)
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Using the same reasoning as in 1° from (4.8) we deduce that

2 2
||u ||L3(to—r2;L18/5(B,)) + ”Vu”Lz(Qr)

2 2 -1 2 2
< cR(p—r1) (”u”L3(to—4R2;L9/4(BzR))+CR i Curlu||L2(Q2R) ||u||L3(Q2R))

+51Vul g

where ¢ > 0 denotes an absolute constant. As in 1° from the last estimate we
obtain the second inequality (4.2). O

5 Partial regularity

On the basis of the two Caccioppoli-type inequalities (4.1) and (4.2), we are now in a
position to prove the following local regularity result

Theorem 5.1 Let u be a local suitable weak solution to (NSE).

1. There exists €1 > 0 such that for any Qr(Xo) C Q there holds
2
3

/ luPdxdt | <ei = ulgg, € CO(Qrp(X0). (5.1)
Or(Xo)

Wl

2. There exists ey > 0, such that for every Xo C Q there holds

lim sup R! / |cur1u|2dxdt <&
R—0
Or(Xo)
= 3p>0: ulg,xy € C'(0,(X0)). (5.2)

In particular, if S(u) is the set of possible singularities then
P1(S(u)) =0, (5.3)

where Py stands for the one-dimensional parabolic Hausdorff measure.

Proof 1° Let Qg = Qr(Xo) C Q be fixed. Let ¢ € C;°(Bg2) be a cut-off function,
with { = 1 on Bg/4. Noticing, that

u@ue L0, T; L R¥>3)n L0, T; L7 (Q; R>?)),
PLBrp € L0, T; L (Brp2)) N L0, T; L7 (Bg)2))

by the L? — L4 theory of the heat equation (cf. [10]) there exists a unique weak solution
3 2 W22 3 2 CW2e
W e L2(to — R*/4,1t0; W*35) N L7 (to — R /4, to; W=7)
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to the system of the heat equations

W —AW =—Cu®u—I{pi gy, in R’ x(1g—R*/4 1),
W(to — R?*/4) =0 in R3.

Then, applying divergence to both sides of the above system we se that the vector
function w = divW is a weak solution to the system

S) dw — Aw = —div(tu @ u) — V(¢p1.sg,) in R? x (1o — R*/4, 19),
w(to — R?/4) =0 in R3.

By the L? — LY theory of the heat equation (cf. [10]) making use of Gagliardo—
Nirenberg’s inequality we infer

”w”L3(IO—R2/4,t0;L9/4)
2
= IV L3y r2ja,10:297) S WV Wl 1360 R2ja,00:297)
2
= C”u”L3(to—R2/4,t0;L18/5(BR/2)) +cllpi,Bgy ”L3/2(to—R2/4,to;L9/5(BR/2))'
In addition, verifying that

—div(¢u @ u) — V(¢pi.sg,) € L0, T; L¥?)

it follows that w € L (ry — R2/4, t0; L3/2).
Next, applying Holder’s inequality together with Sobolev’s inequality, making use
of Lemma 2.1 and (4.1), from the inequality above we infer

RIS 3 g g 19y = TAR/DT < cUERP +[ERT).  (54)

Next, set U :=u — w a.e. in Q2. Clearly, according to Lemma2.2 U satisfies the
following equation

/U — AU = =0V pp.Brjy — VP2,Bgsy I ORya (5.5
in the sense of distributions. Define,
VZ=U+Vph’BR/2~I—VP a.e.in  Qpgy,

where

t

P(x,1) = / P2,Bgp (X, 8)ds,  (x,1) € QRya.
to—R2/4
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Recalling thatboth pj, g, and p> g, are harmonic we see that V' is a caloric function
in QR/4, i.e.

a,V — AV =0 in QR/4-

Thus, we get for 0 < t < %

4y 12
ct [V

4 <
L3(t9—472R2,10; L9/*(Byrg)) — L3(t9—R2/16,10; L/*(Bry4))"

On the other hand, using the mean value property of harmonic functions, from the
definition of V we get for0 < 7 < é

8
3 2
3

<t ”U”L3(10*R2/16»f0§L9/4(3R/4))

2
L3(10—R?/4,t0; L%/*(BR2))

2
NOW Ly -av2 R, 1094 Bac) =
8
+ct3 ”vph,BR/z ”
§ 2
+ct3 R”pZ,BR/z ”LZ(QR/Z).
By means of Lemmas 2.1 and 2.3, using (4.1) we infer
Do(2TR) < ¢t3(Do(R/2) + D(R) + B(R/2))
2 3
< ct3(Do(R/2) + E(R)) + c[E(R)]2, (5.6)

with an absolute constant ¢ > 0, where

Do(p) = p2 U 0<p<X
o(p) = p L3(ZO—P2J0;L9/4(BP))’ P = 2 .
Alternatively, using (4.2) we have
Do(2TR) < ct3(Do(R/2) + E(R)) + cB(R)E(R). (5.7)

Applying (4.1) and then using (5.6) and (5.4) we estimate

E(tR) < cDQ2tR)) + ct 2[E(R)]?
< ¢Dy(2TR)) + et 2(E(R)]? + [E(R)P)
< ct3(Do(R/2) + E(R)) + et 2(E(R)]? + [E(R))
< cTIE(R) + ct 2(ER)]? + [E(R)T).

Thus, there exists an absolute constant ¢y, such that for every 0 < t < 1 and for every

Or = Qr(Xp) C O,

E(TR) < aiT3ER) + c17 2(IE(R))2 + [E(R)P). (5.8)
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If E(R) < W then with 7 := ﬁ we get

E(tR) < 13 E(R).

In fact, from (5.8) and the definition of 7 it follows that

E(tR)

IA

1
STHER) 42017 PE(R)ZE(R)

—T3E(R) + (2C1) WE(R) = 'C3E(R)

IA
()

Define,

|
T 16 206

Let Qr(Xo) C O, such that E(R, Xo) < &;1. Then, observing Q,2(¥Y) C Qr(Xo)
forevery Y € Qr/2(Xo) we have

Hence, (5.8) gives

E(tR/2.Y) < T3E(R/2.Y) VY € Qrp(Xo).

Thus, by using a standard iteration argument the above inequality yields

o3 R
2

E(o, Y)gC(%)jE(R/Z, Y)gCel(R)3 VYeQrn(Xo). YO<o<= (59

with an absolute constant C > 0. By a similar reasoning as in [22] and [23] from
(5.9) we getu + Vpp gy € CO’“(QR/Q(XO)) for some 0 < o« < 1 and Vpy, g, €
C%(Qr(X0)). Whence, the claim.

2° Given Qg = Qr(Xo) C O let w € L2(tg — R2/4,10: Wh3) N L®(1g —
3
R?/4, ty; L) denote the unique solution to the heat equation

hw — Aw = —¢curlu x u — §V(p1,BR/2 + @) in R3x (fo — R2/4, 10),
w(tp — R?/4) = 0 in R3.
(%)

@ Springer



170 Ann Univ Ferrara (2015) 61:149-171

Once more using the L? — L9 theory of the heat equation (cf. [10]) we see that

Il ooty R2 4,10: 1372y F+ I 13 00— R2 /4,10 1974

< c| curlu x u“L°/5(to—R2/4,to;L7/5(BR/2))

|u|?
+e| ¥ (pr + 75|

2 TN L8530 R2/4,10;L7/5 (B )2))|

By the aid of Lemma 2.3 and Holder’s inequality taking into account (4.2) we are led
to

-2 2 -2 2 2
RN - g2 g g oy = RN eurlwlipa g I 0 g2 4 1001975 (i )
= cB(R)A(R/2)
< cE(R)(B(R) +[B(R)I%. (5.10)

Next, setting U := u — w we see that U verifies (5.5). Accordingly, as in 1° with help
of (5.7), (5.10) and (4.2) we estimate

E(TR) < ¢cDQTR)) + ct 2B(R)E(R)
< ¢Dy(2TR)) + ct *(B(R) + [B(R)) E(R)
< et (Do(R/2) + E(R)) + et 2(B(R) + [B(R)P)E(R)
<t E(R) + et 2(B(R) + [B(RP)E(R).

Thus, there exists an absolute constant ¢; > 0, such that for every 0 < t < 1 there
holds ) B _
E(tR) < 2t3E(R) + c2t 2(B(R) + [B(R)]*)E(R). (5.11)

. 1 . 1 : B
Define 7 := e’ and e 1= FTGESLE Let Xo € Q, such thatlim supg_, o B(R, Xo)
< &7. Arguing as above we see that there exists Ry > 0 such that

E(tR, Xo) < t3E(R, Xo) VO < R < Ry,

which shows that limg_.o0 E(R, X9) = 0. According to the first statement of the
theorem u is continuous in a neighbourhood of Xg.

Finally, the set of singular points S(u) is containted in the set of all X € QOr
for which limsupg_, o+ R~ fQR(XO) |Vu|*’dxdt > 0. Thus, as in [4] one proves
P1(S(u)) = 0. This completes the proof of the theorem. O
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