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Abstract We consider the Navier–Stokes equations in three spatial dimensions and
present a newproof of theCaffarelli–Kohn–Nirenberg theorem, based on a generalized
notion of a local suitable weak solution, involving the local pressure. By estimating
the integrals involving the pressure in terms of velocity, the pressure term is cancelled
in the local decay estimates. In particular, our proof shows that the Caffarelli–Kohn–
Nirenberg theorem holds for any open set�without any restriction on the size and the
regularity of the boundary. In addition, the method forms a basis for proving partial
regularity results to other fluid models such as non-Newtonian models or models with
heat conduction.

Keywords Navier–Stokes equations · Non-Newtonian fluids · Suitable weak
solutions · Existence · Regularity

Mathematics Subject Classification (2000) 35B65 · 35Q30 · 76D05 · 76N10

1 Introduction

Let � ⊂ R
3 be any domain and let 0 < T < +∞. Set Q = � × (0, T ). We consider

the following generalized Navier–Stokes equations (g-NSE)

(g-NSE)

{
divu = 0 in Q,

∂tu + (u · ∇)u − divS +∇ p = −div f in Q,
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where

u = (u1, u2, u3) = unknown velocity of the fluid,

p = unknown pressure,

−div f = external force,

S = deviatoric stress tensor.

The system (g-NSE) will be completed with the following boundary and initial con-
ditions

u = 0 on ∂� × (0, T ), (1.1)

u = u0 on � × {0}, (1.2)

where u0 is a given initial velocity distribution.

1.1 Models for the constitutive law S

Due to friction the deviatoric stress S depends on D(u), where

Di j (u) = 1

2
(∂i u

j + ∂ j u
i ) (i, j = 1, 2, 3).

In addition, in case of heat conducting fluids S can depend also on the temperature
θ of the fluid which is due to heat transfer. We present various models which are
well-known models of fluid motions.

(i) Newtonian fluid with constant viscosity: Here S is proportional to D(u), i.e. there
exists a constant ν > 0 which is called the viscosity of the fluid such that

S = 2νD(u). (1.3)

Owing to divu = 0 we have divS = 2νdivD(u) = ν�u. Thus, (g-NSE) turns
into the usual NSE

(NSE)

{
divu = 0 in Q,

∂tu + (u · ∇)u − ν�u + ∇ p = −div f in Q.

(ii) Newtonian fluid with non-constant viscosity: There exists a bounded measurable
function ν : Q → R, such that

S = νD(u), 0 < ν0 ≤ ν(x, t) ≤ ν1 < +∞ for a. e.(x, t) ∈ Q. (1.4)

where ν0, ν1 = const > 0.
(iii) Non-Newtonian fluids with shear dependent viscosity: There exists a positive

function μ : R+ → R+ such that
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S = μ(|D(u)|)D(u). (1.5)

In the engineering practice one often makes use of the so called power lawmodel,
where

μ(s) = (1 + s2)
q−2
2 or μ(s) = sq−2, 1 < q < ∞. (1.6)

Here we distinguish between the following three cases

First case : 1 < q < 2 shear thinning,
Second case : q = 2 Newtonian,

Third case : 2 < q < +∞ shear thickening.

(iv) Heat conducting fluids: Due to heat conduction, the viscosity may depend on the
temperature θ , such that

S = ν(θ)D(u). (1.7)

and the generalized NSE being coupled by the equation of heat transport,

∂tθ + u · ∇θ − div(κ∇θ) = ν(θ)|D(u)|2, (1.8)

where κ > 0 denotes the heat capacity due to Fourier’s law. The Eq. (1.8) will
be completed by appropriate initial and boundary conditions.

For further details on fluid mechanical background see [2,13].

1.2 Notion of a weak solution

First, let us introduce the function spaces which will be used in what follows. By
Wk, q(�),Wk, q

0 (�) (k ∈ N; 1 ≤ q ≤ +∞)we denote the usual Sobolev spaces (see,
e. g. [1]). Spaces of vector valued functions will be denoted by bold letters, i.e. instead
of Wk, q(�;Rm), Lq(�;Rm), etc. we write shorter W k, q(�), Lq(�), etc.

Let C∞
0,σ (�) denote the space of solenoidal smooth functions having compact

support in �. We define

Lq
σ (�) := closure ofC∞

0,σ (�) w.r.t. the norm in Lq(�),

W1, q
0,σ (�) := closure ofC∞

0,σ (�)w.r.t. the norm inW1, q
0 (�).

In particular, we set

V := W1, 2
0,σ (�), H := L2

σ (�).

Let X be a Banach space with norm ‖ · ‖X . Then, by Lq(a, b; X) we denote the
space of Bochner measurable functions, such that
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‖ f ‖qLq (a,b;X)
=

b∫
a

‖ f (t)‖qXdt < +∞ if 1 ≤ q < +∞,

‖ f ‖L∞(a,b;X) = ess supt∈(a,b) ‖ f (t)‖X < +∞

(for details see [18]).
Now, we introduce the notion of a weak solution. For the sake of simplicity we only

consider the case of NSE with ν = 1 and f = 0.

Definition 1.1 Let u0 ∈ H . A function u : Q → R
3 is called a weak solution to the

NSE if

(i) u ∈ L∞(0, T ; H) ∩ L2(0, T ; V ).
(ii) For every ϕ ∈ C1([0, T );C∞

0,σ (�)):∫
Q

−u · ∂tϕ − u ⊗ u : ∇ϕ + 2Du : Dϕdxdt =
∫
�

u0ϕ(·, 0)dx . (1.9)

(iii) In addition, u is called a Leray–Hopf solution if the following energy inequality
is fulfilled:

‖u(t)‖2H + 2

t∫
0

∫
�

|∇u|2dxds ≤ ‖u0‖2H for a.e. t ∈ (0, T ). (1.10)

The existence of a Leray–Hopf solution is well-known and can be found in Leray
[14] for the case � = R

3 and in Hopf [11] for general bounded domains. However,
the notion of a Leray–Hopf solution is not sufficient for the study of local regularity
properties, since in general there is no control of the local energy. For this reason, first
Scheffer [17] introduced the notion of a suitable weak solution and then he proves
the partial regularity for such solutions. Later, this notion has been also used in the
celebrated paper by Caffarelli–Kohn–Nirenberg [4] to obtain the partial regularity,
proving that the 1-dimensional parabolic Hausdorff measure of the singular set is
zero. For more simplified proofs of this result see [12,15]. Recently a new proof of
the Caffarelli–Kohn–Nirenberg theorem has been given by Vasseur in [21].

Let us now recall the notion of a suitable weak solution due to Scheffer. A pair
(u, p) is called suitable weak solution to (NSE) if u is a weak solution to (NSE),
p ∈ L

3
2 (Q) and the following local energy inequality is fulfilled for all nonnegative

φ ∈ C∞
0 (Q) and for almost all t ∈ (0, T ):

∫
�

|u(t)|2φ(t)dx + 2

t∫
0

∫
�

|∇u|2φdxds

≤
t∫

0

∫
�

|u|2(∂tφ + �φ) + (|u|2 + 2p)u · ∇φdxds. (1.11)
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Clearly, in order to establish such suitable weak solutions to (NSE) one has to define
a pressure function p, which is only available if � is a uniform C2 domain (cf. [5]).
Therefore, we cannot expect to obtain such solutions for general domains. The same
difficulties occur if one considers other models like heat conducting fluids or non-
Newtonian fluids. The purpose of this paper is to provide a newmethod in constructing
suitable weak solutions for general domains and general models. Aswewill see below,
wemay introduce a notion of a local suitable weak solution to theNSE instead defining
a global pressure, we introduce a local pressure decomposition p = ∂t ph + p0.
However, this notion requires some study on the steady Stokes equation, which will
be the subject of Sect. 2.

2 Local estimate of the pressure

2.1 The definition of the spatial pressure

The aim of this section is the construction of a special operator which maps every
F ∈ W−1, q(�) into a class [p] ∈ Lq

loc(�)/R. To begin with, we recall a well-known
result due to Galdi et al. [7] (for a similar result on Lipschitz domains see [3]), which
is the following

Lemma 2.1 (Galdi–Simader–Sohr)Let G ⊂ R
n be a bounded domainwith ∂G ∈ C1.

Then, for every F ∈ W−1, q(G) (1 < q < ∞) there exists exactly one pair (v, p) ∈
W1, q

0,σ (G) × Lq
0(G)1 such that

divv = 0 in G, −�v + ∇ p = F in W−1, q(G), (2.1)

v = 0 on ∂G. (2.2)

In addition, there holds

‖∇v‖Lq (G) + ‖p‖Lq (G) ≤ Cq‖F‖W−1, q (G). (2.3)

As an immediate consequence of Lemma 2.1 we have the

Lemma 2.2 For every 1 < q < ∞ there holds

W−1, q(G) = W−1, q
div (G) ⊕ W−1, q

grad (G), (2.4)

where

W−1, q
div (G) = {−�v | v ∈ W1, q

0,σ (G)}, W−1, q
grad (G) = {∇ p | p ∈ Lq

0(G)}.

Lemma 2.2 enables us to define the surjective bounded operator Pq,G :
W−1, q(G) → Lq

0(G) by settingPq,GF = p, where F−∇ p ∈ W−1, q
div (G). Clearly,

1 Here Lq0 (G) means the space of all f ∈ Lq (G) with
∫
G f dx = 0.
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Pq,G∇ p = p for all p ∈ Lq
0(G). Consequently, ∇Pq,G defines a projection of

W−1, q(G) onto W−1, q
grad (G).

Notice, due to uniqueness of the weak solution we have Pq,GF = Ps,GF for all
F ∈ W−1, q(G) ∩ W−1, s(G) (1 < s, q < +∞). Thus, in what follows PG stands
forPq,G for some 1 < q < +∞.

By means of elliptic regularity we have the following regularity property of PG :

Lemma 2.3 Let G ⊂ R
n be a bounded C2 domain. Let f ∈ Lq(G) ↪→ W−1, q(G).

Then PG f ∈ W 1, q(G) and there holds the estimate

‖∇PG f ‖Lq (G) ≤ c‖ f ‖Lq (G), (2.5)

where c = const > 0 depending on q, n and the geometry of G only.

2.2 The time dependent case

Next, let F ∈ Ls(a, b,W−1, q(G)). With help of Pettis’ theorem (e.g. see [24];
Chap.V.4.) we may definePG : Ls(a, b,W−1, q(G)) → Ls(a, b, Lq

0(G)) according
to

(PGF)(t) = PG(F(t)) for a. e. t ∈ (a, b).

Furthermore, for every F ∈ Ls(a, b,W−1, q(G)) we define

PG∂t F = ∂tPGF in the sense of distributions.

Using the above definition of the projections Pq,G we have the following

Lemma 2.4 Let u ∈ L2(0, T ; V ) ∩ L∞(0, T ; H) be a weak solution to the (NSE)
with f = 0. Then for every bounded subdomain G ⊂ � with ∂G ∈ C2 there holds

−
T∫

0

∫
G

(u + ∇ ph,G) · ∂tϕdxdt −
T∫

0

∫
G

(u ⊗ u + p1,G I) : ∇ϕdxdt

+
T∫

0

∫
G

(∇u − p2,G I) : ∇ϕdxdt = 0 (2.6)

for all ϕ ∈ C∞
0 (G × (0, T )), where2

ph,G = −P2,Gu,

p1,G = −P 3
2 ,Gdiv(u ⊗ u),

p2,G = P2,G�u.

2 Here I stands for the identity matrix in R
3×3.
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In addition, we have the estimates,

‖∇ ph,G(t)‖Lm (G) ≤ c‖u(t)‖Lm (G) (1 < m ≤ 6), (2.7)

‖p1,G(t)‖L3/2(G) ≤ c‖u(t) ⊗ u(t)‖L3/2(G), (2.8)

‖p2,G(t)‖L2(G) ≤ c‖∇u(t)‖L2(G), (2.9)

for almost all t ∈ (0, T ). Here c = const > 0 depends on the geometry of G and in
(2.7) on m only. In particular, if G is the ball BR(x0) then c in (2.7) depends only on
m, while in (2.8) and (2.9) c is an absolute constant.

Proof According to Lemma 2.1 there exists vh, v2 ∈ L2(0, T ;W1, 2
0,σ (G)), v1 ∈

L
3
2 (0, T ;W1, 3

2
0,σ (G)) such that

− �vh + ∇ ph = −u, (2.10)

−�v2 + ∇ p2 = �u, (2.11)

−�v1 + ∇ p1 = −div(u ⊗ u). (2.12)

Since u is a weak solution to (NSE) we see that

T∫
0

∫
G

−∇vh : ∇ϕt + (∇v1 + ∇v2) : ∇ϕdxdt = 0

for all ϕ ∈ C1
0(0, T ;C∞

0,σ (G)). Introducing the Steklov mean of f ∈ L1(Q) by

fλ(x, t) := 1

λ

t+λ∫
t

f (x, τ )dτ, (x, t) ∈ G × (0, T − λ), 0 < λ < T,

the above identity leads to

T−λ∫
0

∫
G

(
∇∂t (vh)λ+∇(v1)λ+∇(v2)λ

)
: ∇ϕdxdt = 0 ∀ϕ ∈ C1

0(0, T−λ;C∞
0,σ (G))

(2.13)
for all 0 < λ < T .

Let 0 < λ < T be arbitrarily chosen. Fix η ∈ C1
0(0, T − λ) and define

w(x) :=
T−λ∫
0

(
∂t (vh)λ(x, t) + (v1)λ(x, t) + (v2)λ(x, t)

)
η(t)dt, x ∈ G.
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Insertingϕ(x, t) = ψ(x)η(t) forψ ∈ C∞
0,σ (G) into (2.13) andusingFubini’s theorem,

it follows that
∫
G

∇w : ∇ψdx = 0 ∀ψ ∈ C∞
0,σ (G).

By the definition of vh, v1 and v2 we see that w ∈ W
1, 3

2
0,σ (G). Clearly, w solves the

Stokes system (2.1), (2.2) with F = 0. Thus, thanks to Lemma2.1 we have w = 0.
Recalling the definition of w this shows that

∫
G×(0,T−λ)

(
∂t (vh)λ + (v1)λ + (v2)λ

)
· ϕdxdt = 0 ∀ϕ ∈ C∞

0 (G × (0, T − λ)).

Whence, ∂t (vh)λ + (v1)λ + (v2)λ = 0 a. e. in G × (0, T − λ). Now, observing

T−λ∫
0

∫
G

(
∇∂t (vh)λ + ∇(v1)λ + ∇(v2)λ

)
: ∇ϕdxdt = 0 ∀ϕ ∈ C∞

0 (G × (0, T − λ))

applying integration by parts and passing to the limit λ → 0 we arrive at

T∫
0

∫
G

−∇vh : ∇ϕt + ∇v1 : ∇ϕ + ∇v2 : ∇ϕdxdt = 0 ∀ϕ ∈ C∞
0 (G × (0, T )).

(2.14)
Whence, the assertion follows from (2.10)–(2.12) using (2.14).

In order to verify (2.7) wemay chose N ⊂ (0, T )with Lebesguemeasure zero such
that u(t) ∈ L6(G) for all t ∈ (0, T ) \ N . Then (2.7) is an immediate consequence of
(2.5) (cf. Lemma 2.3). Similarly, (2.8) and (2.9) follows by using (2.3) (cf. Lemma
2.1). 
�
Remark 2.5 1. Owing to divu = 0 we see that both ph,G(t) and p2,G(t) defined

above are harmonic for a. e. t ∈ (0, T ).
2. As it is readily seen the statement of Lemma 2.4 remains true if one replaces the

convective term divu ⊗ u by divH for a general matrix H ∈ L
3
2 (G × (0, T )) and

replacing p1,G by −PGdivH .

3 Local suitable weak solutions to the Navier–Stokes equations

Based on the local projections introduced in Sect. 2 we are in a position to introduce
a notion of local suitable weak solutions, which reads as follows

Definition 3.1 A weak solution u to (NSE) is called a local suitable weak solution,
if for every ball B ⊂⊂ � there holds
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∫
B

|vB(t)|2φ(t)dx + 2

t∫
0

∫
B

|∇vB |2φdxds

≤
t∫

0

∫
B

|vB |2(∂tφ + �φ) + (|u|2 + 2p0,B)vB · ∇φdxds

+
t∫

0

∫
B

2uiu j∂i (∂ j phφ) − |u|2∇ ph,B · ∇φdxds, (3.1)

for all nonnegative φ ∈ C∞
0 (B × (0, T )) and for almost all t ∈ (0, T ), where vB =

u + ∇ ph,B and

ph,B = −P2,Bu,

p0,B = P2,B�u − P 3
2 ,Bdiv(u ⊗ u).

For the definition of the operator Pq,B see Sect. 2.

Now,weobtain the following result on the existence of a local suitableweak solution

Theorem 3.2 For every u0 ∈ H there exists a local suitable weak solution to (NSE).

Proof Let η ∈ C∞(R) with η ≡ 1 on (−∞, 1) and η ≡ 0 in (2,+∞). Set ηε(τ ) =
η(ετ) (τ ∈ R; ε > 0). Clearly, there exists a uniqueweak solution uε ∈ L2(0, T ; V )∩
L∞(0, T ; H) to the approximate system

(NSE)ε

⎧⎨
⎩

divuε = 0 in Q,

∂tuε + div(ηε(|uε|2)uε ⊗ uε) − �uε + ∇ pε = 0 in Q,

uε(0) = u0 in �.

Integration by parts gives

‖uε‖2L∞(0,T H) + 2
∫
Q

‖∇uε‖2dxdt ≤ 2‖u0‖2H . (3.2)

Furthermore, by using Hölder’s inequality and Sobolev’s embedding theoremwe infer
that

‖uε‖Lα(0,T Lβ(B)) ≤ c‖u0‖H ∀α, β ∈ [2,+∞) with
2

α
+ 3

β
= 3

2
. (3.3)

Thus, bymeans of reflexivity and Banach–Alaoglu’s theorem3 one finds a sequence
(εk) with εk → 0 and a function u ∈ L2(0, T ; V ) ∩ L∞(0, T ; H) such that

3 Note, L∞(0, T ; H) can be identified with (L1(0, T ; H))∗.
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uεk ⇀ u in L2(0, T ; V ), (3.4)

uεk

∗
⇀ u in L∞(0, T ; H) as k → +∞. (3.5)

In addition, we have for a. e. t ∈ (0, T )

uεk (t) ⇀ u(t) in H as k → +∞. (3.6)

Next, fix a ball B ⊂⊂ �. Define

pkh,B = −P2,Buεk ,

pk1,B = P2,B�uεk ,

pk2,B = −P 3
2 ,Bdiv(ηε(|uεk |2)uεk ⊗ uεk ).

Owing to (2.5) and (3.2) we have

‖pkh,B‖L2(0,T ;L2(B)) ≤ c‖uεk‖L2(0,T ;H) ≤ cT
1
2 ‖u0‖H ,

‖∇ pkh,B‖L2(0,T ;L2(B)) ≤ c‖∇uεk‖L2(0,T ;H) ≤ c‖u0‖H .

Thus, eventually passing to a subsequence there exists ph ∈ L2(0, T ;W 1, 2(B)) such
that

pkh,B ⇀ ph in L2(0, T ;W 1, 2(B)) as k → +∞.

Observing (3.4) by virtue of the boundedness of P2,B there holds ph = ph,B =
P2,Bu. In addition, thanks to (3.6) we find

pkh,B(t) ⇀ ph,B(t) in L2(B) as k → +∞ (3.7)

for almost all t ∈ (0, T ). Let t ∈ (0, T ) such that (3.7) is true. Let x ∈ B and
Br (x) ⊂ B. Since pkh,B(t) and ph,B(t) are harmonic functions by using the mean
value property we have

pkh,B(x, t) = 1

Br (x)

∫
Br (x)

pkh,B(y, t)dy → 1

Br (x)

∫
Br (x)

ph,B(y, t)dy = ph,B(x, t)

as k → +∞.

This shows that

pkh,B → ph,B a. e. in B × (0, T ) as k → +∞. (3.8)
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On the other hand, by (3.2) for every 0 < τ < 1 and every multi-index α ∈ N
3
0 we

have

‖Dα pkh,B‖L∞(τ B×(0,T )) ≤ c(α, τ )‖u0‖H ∀ k ∈ N.

Then, by virtue of (3.8) taking into account that pkh,B are harmonic, we deduce that

pkh,B → ph,B in L3(0, T ;W 2, 3(τ B)) as k → +∞. (3.9)

Define, vkB := uεk + ∇ pkh,B a. e. in B × (0, T ). By Lemma2.4 we see that vkB ∈
L∞(0, T ; L2(B)) ∩ L2(0, T ;W1, 2(B)) solving the equation

∂tv
k
B = �vkB − div(ηεk (|uεk |2)uεk ⊗ uεk ) − ∇ pk1,B − ∇ pk2,B in B × (0, T )

in the sense of distributions. According to (3.2) and the boundedness of P 3
2 ,B we

infer that

∥∥∥�vkB − div(ηεk (|uεk |2)uεk ⊗ uεk ) − ∇ pk1,B − ∇ pk2,B

∥∥∥
L3/2(0,T ;W−1, 3/2(B))

≤ c(1 + ‖u0‖2H ).

Hence, the sequence (vkB) is relatively compact in L1(B×(0, T )). Taking into account
(3.2), (3.3), (3.5) and (3.9) we deduce that

vkB → vB = u + ∇ ph,B in L3(B × (0, T )) as k → +∞.

Once more appealing to (3.9) we get

uεk → u in L3(B × (0, T )) as k → +∞. (3.10)

Consequently, there holds

uεk ⊗ ηεk (|uεk |2)uεk → u ⊗ u in L
3
2 (B × (0, T )) as k → +∞. (3.11)

This shows that u is a weak solution to (NSE). In addition, recalling the definition of
pk1,B and pk2,B from (3.5) and (3.11) we deduce that

pk1,B ⇀ p1,B in L2(B × (0, T )), (3.12)

pk2,B → p2,B in L3/2(B × (0, T )) as k → +∞. (3.13)

Now, it only remains to verify the validity of the local energy inequality (3.1).
To this aim we fix t ∈ (0, T ) such that (3.6) and (3.7) are fulfilled. Then, let φ ∈
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C∞
0 (B × (0, T )) be a nonnegative function. In (NSE)εk testing with vkBφ and using

integration by parts we are led to4

∫
B

|vkB(t)|2φ(t)dx + 2

t∫
0

∫
B

|∇vkB |2φdxds

=
t∫

0

∫
B

|vkB |2(∂tφ + �φ) − Hk(|uεk |2)uεk · ∇φ + (2pk1,B + 2pk2,B)vkB · ∇φdxds

+
t∫

0

∫
B

2ηεk (|uεk |2)uεk ⊗ uεk : ∇(∇ pkh,Bφ) + 2ηεk (|uεk |2)|uεk |2uεk · ∇φdxds,

(3.14)

where

Hk(ξ) =
ξ∫

0

ηεk (τ )dτ, ξ ≥ 0.

By means of (3.4), (3.5), (3.7) and (3.9) using Banach–Steinhaus’ theorem we see
that

∫
B

|vB(t)|2φ(t)dx + 2

t∫
0

∫
B

|∇vB |2φdxds

≤ lim inf
k→∞

⎛
⎝ ∫

B

|vkB(t)|2φ(t)dx + 2

t∫
0

∫
B

|∇vkB |2φdxds
⎞
⎠ . (3.15)

On the other hand, with the help of (3.9), (3.10), (3.11), (3.12) and (3.13) we verify

lim
k→∞

t∫
0

∫
B

|vkB |2(∂tφ + �φ) − Hk(|uεk |2)uεk · ∇φ + (2pk1,B + 2pk1,B)vkB · ∇φdxds

+ lim
k→∞

t∫
0

∫
B

2ηεk (|uεk |2)uεk ⊗ uεk : ∇(∇ pkh,Bφ) + 2ηεk (|uεk |2)|uεk |2uεk · ∇φdxds

=
t∫

0

∫
B

|vB |2(∂tφ + �φ) − |u|2u · ∇φ + (2p1,B + 2p2,B)vB · ∇φdxds

+
t∫

0

∫
B

2u ⊗ u : ∇(∇ ph,Bφ) + 2|u|2u · ∇φdxds. (3.16)

4 Here we argue as in the proof of Lemma2.4 replacing u⊗u by ηεk (|uεk |2)uεk ⊗uεk (cf. also Remark2.5,
2.).
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Thus, from (3.14), (3.15) and (3.16) it follows that

∫
B

|vB(t)|2φ(t)dx + 2

t∫
0

∫
B

|∇vB |2φdxds

≤
t∫

0

∫
B

|vB |2(∂tφ + �φ) + (|u|2 + 2p1,B + 2p2,B)vB · ∇φdxds

+
t∫

0

∫
B

2u ⊗ u : ∇(∇ ph,Bφ) − |u|2∇ ph,B · ∇φdxds.

This completes the proof of (3.1). 
�
Remark 3.3 1. Besides the local energy inequality (3.1) we may write an alternative

one. In fact, the last integral on the right of (3.1) can be rewritten as follows. Using
integration by parts together with the identity 2(u · ∇)u = 2 curl u × u + ∇|u|2
we get

t∫
0

∫
B

2u ⊗ u : ∇(∇ ph,Bφ) − |u|2∇ ph,B · ∇φdxds

= −2

t∫
0

∫
B

(curl u × u) · ∇ ph,Bφdxdt. (3.17)

2. Observing that

2Pq,B(curl u(t) × u(t)) = 2Pq,Bdiv(u(t) ⊗ u(t)) − Pq,B∇|u(t)|2
= −2p1,B(t) − |u(t)|2 + (|u(t)|2)B ∀ 1 < q ≤ 3,

using Lemma2.3 and Sobolev’s embedding theorem we obtain the estimate

⎧⎨
⎩

∥∥∥2p1,B(t) + |u(t)|2 − (|u(t)|2)B
∥∥∥
Lq (B)

≤ c‖ curl u(t) × u(t)‖
L

3q
3+q (B)

for a.e. t ∈ (0, T ), ∀ 3
2 < q ≤ 3.

(3.18)

4 Caccioppoli-type inequalities in terms of u only

In this section we will derive two Caccioppoli-type inequalities, which play the main
role in the proof of the partial regularity. First let us introduce the notations which
will be used below. For x0 ∈ R

3 and 0 < R < +∞ we denote by BR = BR(x0) the
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usual ball with center x0 and radius R. In addition, for X0 = (x0, t0) ∈ R
3 × R we

introduce the parabolic cylinder

QR = QR(X0) := BR(x0) × (t0 − R2, t0).

For the proof of partial regularity of suitable weak solutions it will be important to
obtain decay estimates for quantities like R−α‖u‖Lq (QR) which are invariant under
the natural scaling of the Navier–Stokes equations. The main quantities we are going
to work with are the following,

A(R) = A(R, X0) := R−1‖u‖2
L3(t0−R2,t0;L18/5(BR))

,

B(R) = B(R, X0) := R−1‖∇u‖2
L2(QR)

,

B̃(R) = B̃(R, X0) := R−1‖ curl u‖2
L2(QR)

,

D(R) = D(R, X0) := R−2‖u‖2
L3(t0−R2,t0;L9/4(BR))

,

E(R) = E(R, X0) := R− 4
3 ‖u‖2

L3(QR)
.

Lemma 4.1 Let u ∈ L2(0, T ; V )∩L∞(0, T ; H) be a local suitable weak solution to
(NSE). Then for every Q2R = Q2R(X0) ⊂ Q we have the following two Caccioppoli-
type inequalities

A(R) + B(R) + E(R) ≤ c
(
D(2R) + [E(2R)]3/2

)
, (4.1)

A(R) + B(R) + E(R) ≤ c
(
D(2R) + B̃(2R)E(2R)

)
, (4.2)

where c > 0 denotes an absolute constant.

Proof 1◦ Proof of (4.1). Let R ≤ r < ρ ≤ 2R be arbitrarily chosen. Set σ := r+ρ
2 .

Let φ ∈ C∞
0 (Q) such that 0 ≤ φ ≤ 1 in Q, φ ≡ 0 in Q \ Bσ × (t0 − σ 2, t0 + σ 2),

φ ≡ 1 on Qr and |∂tφ| + |�φ| + |∇φ|2 ≤ c(ρ − r)−2 in Q. Then, from (3.1) with
B = Bρ replacing φ by φ2 therein we get

∫
Bρ

|vB(t)|2φ2(t)dx + 2

t∫

t0−ρ2

∫
Bρ

|∇vB |2φ2dxds

≤
t∫

t0−ρ2

∫
Bρ

|vB |2(∂tφ2 + �φ2)dxds + 2

t∫

t0−ρ2

∫
Bρ

(|u|2 + 2p0,B)vB · φ∇φdxds

+
t∫

t0−ρ2

∫
Bρ

2uiu j∂i (∂ j phφ
2) + 2|u|2∇ ph,B · φ∇φdxds, (4.3)

= I1 + I2 + I3
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for almost all t ∈ (t0 − ρ2, t0).

(i) Since ph,B = −P2,Bu , according to Lemma 2.3 we have

I1 ≤ c(ρ − r)−2
∫
Qρ

|u|2 + |∇ ph,B |2dxds ≤ c(ρ − r)−2‖u‖2
L2(Bρ)

.

(ii) Recalling that p0,B = p1,B + p2,B = −P2,Bdiv(u ⊗ u) + P 3
2 ,B�u by virtue

of Lemma 2.1 we find

‖p1,B‖L3/2(Qρ) ≤ c‖u‖2
L3(Qρ)

,

‖p2,B‖L2(Qρ) ≤ c‖∇u‖L2(Qρ).

Thus, with help of Hölder’s inequality together with the estimates abovewe easily
deduce

I2 ≤ c(ρ − r)−1‖u‖2
L3(Qρ)

‖vB‖L3(Qρ) + c(ρ − r)−1‖∇u‖L2(Qρ)‖vB‖L2(Qρ).

On the other hand, by using Lemma 2.3 having ‖vB‖L3(Qρ) ≤ c‖u‖L3(Qρ) and
‖vB‖L2(Qρ) ≤ c‖u‖L2(Qρ), we apply Young’s inequality to arrive at

I2 ≤ c(ρ − r)−1‖u‖3
L3(Qρ)

+ c(ρ − r)−2‖u‖2
L2(Qρ)

+ 1

4
‖∇u‖2

L2(Qρ)
.

(iii) Again using Hölder’s inequality recalling that �ph,B = 0 in B × (0, T ) and
arguing as above we infer

I3 ≤ c(ρ − r)−1‖u‖3
L3(Qρ)

+ c‖u‖2
L3(Qρ)

⎛
⎜⎝

∫
Qσ

|∇2 ph,B |3dxds
⎞
⎟⎠

1/3

≤ c(ρ − r)−1‖u‖3
L3(Qρ)

.

Inserting estimates of I1 − I3 into (4.3) and applying Hölder’s inequality we are let
to

‖φvB‖2
L∞(t0−ρ2;L2(Bρ))

+ ‖φ∇vB‖2
L2(Qρ)

≤ cρ(ρ − r)−2‖u‖2
L3(t0−ρ2;L9/4(Bρ))

+ c(ρ − r)−1‖u‖3
L3(Qρ)

+ 1

4
‖∇u‖2

L2(Qρ)
.

(4.4)

By means of Sobolev’s embedding theorem using Hölder’s inequality we get
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‖φvB‖2
L3(t0−ρ2;L18/5(Bρ))

≤ cρ(ρ − r)−2‖u‖2
L3(t0−ρ2;L9/4(Bρ))

+ c(ρ − r)−1‖u‖3
L3(Qρ)

+ 1

4
‖∇u‖2

L2(Qρ)
.

Recalling �ph,B = 0 and applying Lemma 2.3 we see that

‖φu‖2
L3(t0−ρ2;L18/5(Bρ))

≤ 2‖φvB‖2
L3(t0−ρ2;L18/5(Bρ))

+ 2‖∇ ph,B‖2
L3(t0−ρ2;L18/5(Bσ ))

≤ 2‖φvB‖2
L3(t0−ρ2;L18/5(Bρ))

+ c(ρ − r)−1‖u‖2
L3(t0−ρ2;L9/4(Bρ))

.

Combining the last two inequalities we deduce that

‖u‖2
L3(t0−r2;L18/5(Br ))

≤ cR(ρ−r)−2
(
‖u‖2

L3(t0−4R2;L9/4(B2R))
+‖u‖3

L3(Q2R)

)
+ 1

4
‖∇u‖2

L2(Qρ)
. (4.5)

Similarly, one proves

‖∇u‖2
L2(Qr )

≤ 2‖φ∇vB‖2
L2(Qr )

+ ‖∇2 ph,B‖L2(Qσ )

≤ cR(ρ − r)−2
(
‖u‖2

L3(t0−4R2;L9/4(B2R))
+ ‖u‖3

L3(Q2R)

)

+ 1

4
‖∇u‖2

L2(Qρ)
. (4.6)

By means of (4.5) and (4.6) we obtain

‖u‖2
L3(t0−r2;L18/5(Br ))

+ ‖∇u‖2
L2(Qr )

≤ cR(ρ − r)−2
(
‖u‖2

L3(t0−4R2;L9/4(B2R))
+ ‖u‖3

L3(Q2R)

)
+ 1

2
‖∇u‖2

L2(Qρ)

with an absolute constant c > 0. By a well-known algebraic iteration argument (see,
e. g. [8] ) we get

‖u‖2
L3(t0−R2;L18/5(BR))

+ ‖∇u‖2
L2(QR)

≤ cR−1
(
‖u‖2

L3(t0−4R2;L9/4(B2R))
+ ‖u‖3

L3(Q2R)

)
.

Multiplying both sides by R−1 we complete the proof of the first inequality (4.1).

2◦ Proof of (4.2). For given R ≤ r < ρ ≤ 2R let φ ∈ C∞
0 (Q) denote the

same cut-off function as in 1◦. Appealing to Remark3.3/1. besides (4.3) we have the
inequality5

5 Here we have used the fact that (curl u × ∇ ph,B ) · ∇ ph,B = 0 a. e. in Qρ .
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∫
Bρ

|vB(t)|2φ2(t)dx + 2

t∫

t0−ρ2

∫
Bρ

|∇vB |2φ2dxds

≤
t∫

t0−ρ2

∫
Bρ

|vB |2(∂tφ2 + �φ2)dxds +
t∫

t0−ρ2

∫
Bρ

(|u|2 + 2p0,B)vB · φ∇φdxds

− 2

t∫

t0−ρ2

∫
Bρ

(curl u × vB) · ∇ ph,Bφ2dxds, (4.7)

= I1 + I2 + I ′
3.

(i) Clearly, as in 1◦ we see that

I1 ≤ ρ(ρ − r)−2‖u‖2
L3(t0−ρ2,t0;L9/4(Bρ))

.

(ii) Making use of (3.18) with q = 2 with help of Hölder’s inequality arguing similar
as in 1◦ we find

I2 ≤ c(ρ − r)−1‖ curl u × u‖L6/5(Qρ)‖φvB‖L6(t0−ρ2,t0;L2(Bρ))

+ c(ρ − r)−1‖∇u‖L2(Qρ)‖vB‖L2(Qρ)

≤ cρ
2
3 (ρ − r)−2‖ curl u‖2

L2(Qρ)
‖u‖2

L3(Qρ)
+cρ(ρ−r)−2‖u‖2

L3(t0−ρ2,t0;L9/4(Bρ))

+ 1

4
‖∇u‖2

L2(Qρ)
+ 1

4
‖φvB‖2

L∞(t0−ρ2,t0;L2(Bρ))
.

(iii) Similarly as above using Lemma 2.2 we estimate

I ′
3 ≤ cρ

2
3 (ρ − r)−2‖ curl u‖2

L2(Qρ)
‖u‖2

L3(Qρ)
+ 1

4
‖φvB‖2

L∞(t0−ρ2,t0;L2(Bρ))
.

Inserting the estimates of I1, I2 and I ′
3 into (4.7) we are led to

‖φvB‖2
L∞(t0−ρ2;L2(Bρ))

+ ‖φ∇vB‖2
L2(Qρ)

≤ cρ(ρ − r)−2‖u‖2
L3(t0−ρ2;L9/4(Bρ))

+cρ
2
3 (ρ − r)−2‖ curl u‖2

L2(Qρ)
‖u‖2

L3(Qρ)

+ 1

4
‖∇u‖2

L2(Qρ)
. (4.8)
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Using the same reasoning as in 1◦ from (4.8) we deduce that

‖u‖2
L3(t0−r2;L18/5(Br ))

+ ‖∇u‖2
L2(Qr )

≤ cR(ρ − r)−2
(
‖u‖2

L3(t0−4R2;L9/4(B2R))
+cR− 1

3 ‖ curl u‖2
L2(Q2R)

‖u‖2
L3(Q2R)

)

+ 1

2
‖∇u‖2

L2(Qρ)
,

where c > 0 denotes an absolute constant. As in 1◦ from the last estimate we
obtain the second inequality (4.2). 
�

5 Partial regularity

On the basis of the two Caccioppoli-type inequalities (4.1) and (4.2), we are now in a
position to prove the following local regularity result

Theorem 5.1 Let u be a local suitable weak solution to (NSE).

1. There exists ε1 > 0 such that for any QR(X0) ⊂ Q there holds

R− 4
3

⎛
⎜⎝

∫
QR(X0)

|u|3dxdt
⎞
⎟⎠

2
3

≤ ε1 �⇒ u|QR/2 ∈ C0(QR/2(X0)). (5.1)

2. There exists ε2 > 0, such that for every X0 ⊂ Q there holds

lim sup
R→0

R−1
∫

QR(X0)

| curl u|2dxdt ≤ ε2

�⇒ ∃ρ > 0 : u|Qρ(X0) ∈ C0(Qρ(X0)). (5.2)

In particular, if S(u) is the set of possible singularities then

P1(S(u)) = 0, (5.3)

where P1 stands for the one-dimensional parabolic Hausdorff measure.

Proof 1◦ Let QR = QR(X0) ⊂ Q be fixed. Let ζ ∈ C∞
0 (BR/2) be a cut-off function,

with ζ ≡ 1 on BR/4. Noticing, that

u ⊗ u ∈ L3/2(0, T ; L9/5(�;R3×3)) ∩ L3(0, T ; L9/7(�;R3×3)),

p1,BR/2 ∈ L3/2(0, T ; L9/5(BR/2)) ∩ L3(0, T ; L9/7(BR/2))

by the L p−Lq theory of the heat equation (cf. [10]) there exists a uniqueweak solution

W ∈ L
3
2 (t0 − R2/4, t0;W2, 95 ) ∩ L3(t0 − R2/4, t0;W2, 97 )
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to the system of the heat equations

{
∂tW − �W = −ζu ⊗ u − Iζ p1,BR/2 in R

3 × (t0 − R2/4, t0),

W(t0 − R2/4) = 0 in R
3.

Then, applying divergence to both sides of the above system we se that the vector
function w = divW is a weak solution to the system

(S)

{
∂tw − �w = −div(ζu ⊗ u) − ∇(ζ p1,BR/2) in R

3 × (t0 − R2/4, t0),
w(t0 − R2/4) = 0 in R

3.

By the L p − Lq theory of the heat equation (cf. [10]) making use of Gagliardo–
Nirenberg’s inequality we infer

‖w‖L3(t0−R2/4,t0;L9/4)

≤ ‖∇w‖L3(t0−R2/4,t0;L9/7) ≤ ‖∇2W‖L3(t0−R2/4,t0;L9/7)

≤ c‖u‖2
L3(t0−R2/4,t0;L18/5(BR/2))

+ c‖p1,BR/2‖L3/2(t0−R2/4,t0;L9/5(BR/2))
.

In addition, verifying that

−div(ζu ⊗ u) − ∇(ζ p1,BR/2) ∈ L1(0, T ; L3/2)

it follows that w ∈ L∞(t0 − R2/4, t0; L3/2).
Next, applying Hölder’s inequality together with Sobolev’s inequality, making use

of Lemma 2.1 and (4.1), from the inequality above we infer

R−2‖w‖2
L3(t0−R2/4,t0;L9/4(BR))

≤ c[A(R/2)]2 ≤ c([E(R)]2 + [E(R)]3). (5.4)

Next, set U := u − w a. e. in QR/2. Clearly, according to Lemma2.2 U satisfies the
following equation

∂tU − �U = −∂t∇ ph,BR/2 − ∇ p2,BR/2 in QR/4 (5.5)

in the sense of distributions. Define,

V := U + ∇ ph,BR/2 + ∇P a. e. in QR/4,

where

P(x, t) =
t∫

t0−R2/4

p2,BR/2(x, s)ds, (x, t) ∈ QR/4.
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Recalling that both ph,BR/2 and p2,BR/2 are harmonicwe see that V is a caloric function
in QR/4, i.e.

∂tV − �V = 0 in QR/4.

Thus, we get for 0 < τ < 1
8

‖V‖2
L3(t0−4τ 2R2,t0;L9/4(B2τ R))

≤ cτ 4‖V‖2
L3(t0−R2/16,t0;L9/4(BR/4))

.

On the other hand, using the mean value property of harmonic functions, from the
definition of V we get for 0 < τ < 1

8

‖U‖2
L3(t0−4τ 2R2,t0;L9/4(B2τ R))

≤ cτ
8
3 ‖U‖2

L3(t0−R2/16,t0;L9/4(BR/4))

+ cτ
8
3 ‖∇ ph,BR/2‖2L3(t0−R2/4,t0;L9/4(BR/2))

+ cτ
8
3 R‖p2,BR/2‖2L2(QR/2)

.

By means of Lemmas 2.1 and 2.3, using (4.1) we infer

D0(2τ R) ≤ cτ
2
3 (D0(R/2) + D(R) + B(R/2))

≤ cτ
2
3 (D0(R/2) + E(R)) + c[E(R)] 32 , (5.6)

with an absolute constant c > 0, where

D0(ρ) = ρ−2‖U‖2
L3(t0−ρ2,t0;L9/4(Bρ))

, 0 < ρ ≤ R

2
.

Alternatively, using (4.2) we have

D0(2τ R) ≤ cτ
2
3 (D0(R/2) + E(R)) + cB̃(R)E(R). (5.7)

Applying (4.1) and then using (5.6) and (5.4) we estimate

E(τ R) ≤ cD(2τ R)) + cτ−2[E(R)] 32
≤ cD0(2τ R)) + cτ−2([E(R)] 32 + [E(R)]3)
≤ cτ

2
3 (D0(R/2) + E(R)) + cτ−2([E(R)] 32 + [E(R)]3)

≤ cτ
2
3 E(R) + cτ−2([E(R)] 32 + [E(R)]3).

Thus, there exists an absolute constant c1, such that for every 0 < τ < 1 and for every
QR = QR(X0) ⊂ Q,

E(τ R) ≤ c1τ
2
3 E(R) + c1τ

−2([E(R)] 32 + [E(R)]3). (5.8)
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If E(R) ≤ 1
4(2c1)16

then with τ := 1
(2c1)3

we get

E(τ R) ≤ τ
1
3 E(R).

In fact, from (5.8) and the definition of τ it follows that

E(τ R) ≤ 1

2
τ

1
3 E(R) + 2c1τ

−2E(R)
1
2 E(R)

≤ 1

2
τ

1
3 E(R) + (2c1)

7 1

2(2c1)8
E(R) = τ

1
3 E(R).

Define,

ε1 := 1

16 · (2c1)16
.

Let QR(X0) ⊂ Q, such that E(R, X0) ≤ ε1. Then, observing QR/2(Y ) ⊂ QR(X0)

for every Y ∈ QR/2(X0) we have

E(R/2,Y ) ≤ 4E(R, X0) ≤ 1

4 · (2c1)16
.

Hence, (5.8) gives

E(τ R/2,Y ) ≤ τ
1
3 E(R/2,Y ) ∀Y ∈ QR/2(X0).

Thus, by using a standard iteration argument the above inequality yields

E(σ,Y )≤C
( σ

R

) 1
3
E(R/2,Y )≤Cε1

(σ

R

) 1
3 ∀Y ∈QR/2(X0), ∀ 0<σ ≤ R

2
(5.9)

with an absolute constant C > 0. By a similar reasoning as in [22] and [23] from
(5.9) we get u + ∇ ph,BR ∈ C0,α(QR/2(X0)) for some 0 < α < 1 and ∇ ph,BR ∈
C0(QR(X0)). Whence, the claim.

2◦ Given QR = QR(X0) ⊂ Q let w ∈ L
3
2 (t0 − R2/4, t0;W1, 95 ) ∩ L∞(t0 −

R2/4, t0; L 3
2 ) denote the unique solution to the heat equation

{
∂tw − �w = −ζ curl u × u − ζ∇

(
p1,BR/2 + |u|2

2

)
in R

3 × (t0 − R2/4, t0),

w(t0 − R2/4) = 0 in R
3.

(S’)
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Once more using the L p − Lq theory of the heat equation (cf. [10]) we see that

‖w‖L∞(t0−R2/4,t0;L3/2) + ‖w‖L3(t0−R2/4,t0;L9/4)

≤ c‖ curl u × u‖L6/5(t0−R2/4,t0;L7/5(BR/2))

+ c
∥∥∥∇

(
p1,BR/2 + |u|2

2

)∥∥∥
L6/5(t0−R2/4,t0;L7/5(BR/2))

.

By the aid of Lemma 2.3 and Hölder’s inequality taking into account (4.2) we are led
to

R−2‖w‖2
L3(t0−R2/4,t0;L9/4)

≤ cR−2‖ curl u‖2
L2(QR)

‖u‖2
L3(t0−R2/4,t0;L18/5(BR/2))

= cB̃(R)A(R/2)

≤ cE(R)(B̃(R) + [B̃(R)]2). (5.10)

Next, setting U := u−w we see that U verifies (5.5). Accordingly, as in 1◦ with help
of (5.7), (5.10) and (4.2) we estimate

E(τ R) ≤ cD(2τ R)) + cτ−2 B̃(R)E(R)

≤ cD0(2τ R)) + cτ−2(B̃(R) + [B̃(R)]2)E(R)

≤ cτ
2
3 (D0(R/2) + E(R)) + cτ−2(B̃(R) + [B̃(R)]2)E(R)

≤ cτ
2
3 E(R) + cτ−2(B̃(R) + [B̃(R)]2)E(R).

Thus, there exists an absolute constant c2 > 0, such that for every 0 < τ < 1 there
holds

E(τ R) ≤ c2τ
2
3 E(R) + c2τ

−2(B̃(R) + [B̃(R)]2)E(R). (5.11)

Define τ := 1
(2c2)3

and ε2 := 1
4(2c2)16

. Let X0 ∈ Q, such that lim supR→0 B̃(R, X0)

≤ ε2. Arguing as above we see that there exists R0 > 0 such that

E(τ R, X0) ≤ τ
1
3 E(R, X0) ∀ 0 < R ≤ R0,

which shows that limR→0 E(R, X0) = 0. According to the first statement of the
theorem u is continuous in a neighbourhood of X0.

Finally, the set of singular points S(u) is containted in the set of all X0 ∈ QT

for which lim supR→0+ R−1
∫
QR(X0)

|∇u|2dxdt > 0. Thus, as in [4] one proves
P1(S(u)) = 0. This completes the proof of the theorem. 
�
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