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Abstract The plane stationary free boundary value problem for the Navier-Stokes
equations is studied. This problem models the viscous fluid free-surface flow down
a perturbed inclined plane. For sufficiently small data the solvability and uniqueness
results are proved in Holder spaces. The asymptotic behavior of the solution is inves-
tigated.
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1 Introduction

We consider a plane stationary flow of a viscous incompressible fluid moving under the
gravity force along the fixed unbounded bottom § = {x € R? : x5 = £2¢p(x1)}, where
suppgp C (—1, 1), ande > Oisasmall positive parameter. So, S is a slightly perturbed
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plane {x € R? : x, = 0} and the perturbation has a compact support. We assume that
the vector e’ = (—cos y, sin y) makes anangle y € (0, 7) with x;-axis and coincides
with the direction of the gravitational force. The free boundary I" of the fluid is a priori
unknown and we look for I" in the form I' = {x € R? : xo = ¥ (x1) = 1 +eW(x1)}},
where ¥(x1) > 0 for x; € (—oo, +00) and

Iim W(x;) =0.
lx1|—00
Thus, we have to find the velocity vector u(x) = (ul(x), ug(x)), the pressure

function p(x) and the function W (x) that solve in the unknown domain
Q={xeR?: 2¢p(x1) <x2 <Y(x1) =1+e¥(x)), x| € R} (1.1

the following boundary value problem for the Navier—Stokes system of equations

[ —vAu+ (u-V)u+Vp = —ge’ in Q,
diva=0 in 2,
u=0 on §,
un=0,7-Swn=0 on T,

/ (1.2)
¥ (x1) S )
(«/1+w/(x1)2) =o' (= p@) +n-S@n)|,
lim o0 ¥ (x1) = 1,

sin
| Jo, w1 (0)dxy = £305,

where @ = 7 — y, T and n are unit vectors directed respectively along the tangent
and the outward normal to the free boundary I', v > 0 and 0 > 0 are the constant

coefficients of viscosity and surface tension, g is the acceleration of gravity, S(u)
auj

is the deformation tensor with the elements S;;(u) = v ( dui + Fm

axj )7i9j= 1’2701

is the cross-section of the domain €2 by the line x; = ¢,V = ( 9 i), divu =

X1 Ixp
V-u, Au= Vzu,a -b=aby +axbs.

Note that the left hand side of Eq. (1.2)s is equal to the curvature K (x) of the free
boundary I" and the condition (1.2)7 prescribes the flow rate of the fluid over the cross-
sections of the domain 2. It shows that the fluid moves only due to the gravity force.

Mathematical problems for the stationary flows of a viscous incompressible fluid
with a free boundary were a subject of many papers. Many references on this topic
can be found—e.g.—in the bibliographies of [7,15,17,18], etc. Coating flows with
the static or dynamic contact angles were investigated in [3,4,8,16,19-22]. In all
these papers, that are concerned both with compact and semi-infinite free boundaries,
the following iteration scheme proposed in [4,13], is used. It consists of solving the
Stokes problem for the velocity and pressure in a given domain defined by the previous
iteration and of finding the free boundary for the next iteration from the equation

1 Without loss of generality we suppose that the height of the fluid at infinity is equal to 1.
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K(x)=0"'(=px)+n-S@n)|r (1.3)

and some additional boundary conditions (in our case, (1.2)¢) depending on the con-
crete problem under consideration. The velocity and pressure in (1.3) are obtained
from the above-mentioned Stokes problem. This scheme of the solution of the com-
plete nonlinear problem can be illustrated by the diagram

o= Q= (,p)=T1=Q=>0,p)=Ti=>QU=> W, p)=--

Note that in this scheme the construction of (u, p) is separated from the construction
of the free boundary I' at every step.

The method described above can not be applied directly to the free boundary prob-
lems with free boundaries that are graphs over the whole line —oo < x; < 400 (like in
the problem (1.2)). The pressure gy in the k-th approximation obtained from the Stokes
problem in the domain 2 has the gradient decaying exponentially as x; — o0, but
qk (x) itself may tend to different constants q,j and g, . We always can normalize g (x)
by setting q,:“ = 0, however, it can happen that

gk =q; —q; #0. (1.4)

The pressure drop g, is the functional of the data of the Stokes problem (see for-
mula (2.17) below) and in general g, # 0. This makes it problematic to find the
next approximation I'y4 of the free boundary from (1.3) or, more exactly, from the
boundary value problem

1

U/ (x1) —go ™ cosa Wy (x1)

=o' (=gt +n-Sevon) \Fk = g1 () (1.5)

limyy; |- 00 Wkt1(x1) = 0.

that has a unique solution W1 (x1) if and only if the right-hand side &4, of Eq.
(1.5); decays sufficiently rapidly as |x;| — oo, which is possible only if ¢, = 0.

In order to overcome this difficulty, in [7] and independently in [1] a different
scheme was proposed which was based on linearization of the problem on an appro-
priate exact solution in the unperturbed “uniform” flow domain Qo = {x € R? : 0 <
x3 < 1}. The main difference of this scheme from the previous one is that on each step
of iterations the determination of the velocity vector u and the pressure function p is
not separated from the determination of the free boundary I" (i.e., of the functions W
describing I') and all the auxiliary problems are solved in the same fixed domain, i.e.
in the strip €2¢. This scheme can be illustrated as

(ug, po, ¥Yo) = (uy, p1, V1) = -+ = (W, pi, Vi) = ---

Note that the arising linearized problem contains more boundary conditions than it
is allowed by general ADN-elliptic theory and contains additionally the unknown
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function Wy in the boundary conditions prescribed on the “free surface” {x € R? :
xp = 1} of the “uniform” domain €2y. The solvability of the problem (1.2) and of
the corresponding linear problem was proved in [7] and in [1]. In [7] the proofs are
based on L2-theory for the above-mentioned generalized elliptic problems (see [5] for
general results of such type), and in [1]—on the detailed investigation of the pseudo-
differential operator corresponding to the linearized problem.

Analogous results for two-fluid flows down a perturbed inclined infinite plane and
in a perturbed inclined infinite channel with one moving wall were obtained in [11,12].
The three-dimensional stationary free-surface flow over an inclined plane was studied
in [2], and the non-stationary flow in [23].

Both methods proposed in [7] and [1] are rather complicated, and it is difficult to
apply them in different (from L?) functional settings. Moreover, these methods do
not work in more complicated geometries. For example, they cannot be applied in the
case where we have two nonintersecting free boundaries tending to some constants as
XxX] = 400 and x; — —o0.

In this paper, we propose a new iteration scheme which allows to investigate such
cases. Having in mind further applications, we realize this scheme for the problem (1.2)
and prove its solvability in the Holder spaces. The scheme consists of the following:
as in [1,7], we map the unknown flow domain onto the strip 2o and consider the
problem in the fixed domain. However, now we separate finding the solutions (v, gx)
of the Stokes problem from determination of the functions W; describing the free
boundary. In order to guarantee that on every step of iterations the pressure drop
g« = 0, we introduce a smooth function Hy(x1) and look for Wy is the form Wy (x1) =
Xk Ho(x1) + Y (x1). The constants yj are chosen so that the pressure g (x) in the k-th
iteration satisfies the condition g« = 0. This gives us the possibility to solve the
problem (1.5) for the (k + 1)-th iteration, hence all (u(x), pr(x), xk, Yk(x1)) are
well defined. Finally, we prove that the sequence of iterations

(0 (), pr(x), Yi(x1) = 1+ exx Ho(x1) + £ Tk (x1))

converges to the solution (u(x), p(x), w(xl)) of the problem (1.2).

2 Function spaces and auxiliary results

2.1 Definition of function spaces

Let Qp={x : 0<x3 <1} be the strip in R?, So={x : xo=0} and To={x : xp=1}.
Let us introduce function spaces which we use in the paper. Denote by C**%(Q; )

(I = 0is an integer, 6 € (0,1), 8 > 0) the Banach space consisting of [-times
differentiable in €2¢ functions having finite norm

”U”CH—&(QO;ﬂ) = || exp (ﬂ 1 + x12) v||cz+s(90), (21)

where C'*9(Qg) is the usual Holder space of functions.
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Analogously, we define C! (R, p) as the space of functions on R with finite norm

lvllcres r: gy = Il exp (ﬂ 1+ xf) vl et ) 2.2)

2.2 Transformation of the domain

Consider the function w(yy, y2; W) given by the formula

1 1
oy, y2; ¥) = §(yz)/K(r) epo(y1 + Ty2)dT + (1 — C(yz))/ K@)V (y1 + ty)dr,
—1 —1

2.3)
where K (7) is an infinitely smooth function such that
1 1
suppK C (—1,1), /K(‘C)d‘l,' =1, /tK(r)dt =0, 2.4
—1 -1
and ¢ is an infinitely smooth cut-off function with {(y2) = 1 for |y2| < % and
Z(y2) = 0 for |yz]| > % Then w satisfies the boundary conditions
®ly=0 = epo (1), Byl (=0, wlyo1 =YD, 30|, =0,
where 9y, = g—;‘j, i=1,2.
Define the transformation X (y):
X1 =y1, x2=y+teo(y;¥) (2.5)

which maps ¢ onto the domain €2 given by formula (1.1). Let

1 0
L= (88),10) 1 —l—eayza))

lzg the Jacobi matrix of this transformation; then L = detL is the Jacobian and
L = LL£~ 1 is the co-factors matrix of £. It is clear that L = 1 + £0y,w,

edy, @

> £8y2a) 0 T _ 0 T T+edy,o
£_1+(_88y1w o) (Y =1+ 0 _lsamw . (2.6)
+88y2w
_ £dy, w 0
Le=14+ (g 2.7)
Tedy,0

The lemma below is proved by direct calculations using the formulas (2.3)-(2.7).
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Lemma 2.1 Let gy € C!3H(R), supppy € (—1,1), ¥ € CT3H (R, B), B > 0.
Then w € C13(Qq, B) and the following estimates

||60||Cl+3+8(90;ﬂ) < C(8||(p()||cl+3+5([_1’1]) + ”\IJ”CH3+5(R,[3))’ (28)

X&) — y||cl+3+8(90;,5) + llaij (y) — 3ij||cl+3+6(90;,5)
< ce(s||<p0||cl+3+a([_l,1]) Wl . ﬂ)) 2.9)

hold. Here a;j(y) = (8Xj7]/8xi)|
L—T — (ﬁ_l)T.

=Xy bJ= 1, 2, are the elements of the matrix

2.3 Stokes problem

Consider in €2¢ the Stokes problem

—VvAW+ Vs =f in Qo,
divw=20 in Qo,
w=a on Sp, (2.10)

w-n=b,t-SwW)-n=d on IY.

Theorem 2.1 Let f € C%(Qo;B),a € C*R;B),b € C*R;p),d €
C'TO(R; B), where B € (0, By) with sufficiently small By, and let the following com-
patibility condition

/ b(n)dy1 — / ar(y1)dy; =0 @.11)
R R
be satisfied.

(i) There exists a unique2 solution w € C*+3 (R0; B), Vs € C%(Q; B) of problem
(2.10) satisfying the estimate

IWllc24s ;) + 1Vsllesosp) = C(”f”C‘S(Qo:ﬂ) + llallc2vsw; p)

Hbllcrsep + Idlcrp)- (2:12)

Moreover, the pressure function s exponentially tends to certain constant limits
st and s~ as y| — +o0 and y; — —oo.

(ii) The difference s, = s+ — s~ is uniquely determined by the data of problem
(2.10). There holds the following formula

2 The pressure s is unique up to an additive constant.
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se=st—5~ :/f-WOdy+/(3va1 —a2Q0)dy1+/(bQ0+%d) dyi,

Q So To
(2.13)

where

3y22 —y2)

wl(y) = 3

L Wi =0, 0°0) = -3y
is the Poiseuille solution in Qq satisfying the boundary conditions
0 _ 0 _
W Mly=0 =0, Wy (»ly,=1 =0,

and having the unit flux.
(iti) Ifs™ = s~, thenthe pressure s can be normalized by the condition lim|y,| oo s (y)
= 0. In this case the estimate

Isller+s ;) SC(”f”cS(Qo;ﬁ) +lallc2vs gy + 101l 240 iy + ||d||cl+5(R;ﬁ))
(2.14)

holds.

Remark Inequality (4.4) with a small ¢ shows that also the exponent 8 should be
chosen small. It can be shown that the constants in the inequalities (2.12) and (2.14)
remain bounded when 8 is decreasing. The same is true for the estimate (2.19).

Proof (i) The first statement of the theorem is well known, for the proofs of analogous
results in similar domains with noncompact boundaries see [7,8, 18], etc.

(i) Let us prove formula (2.13). Multiply equations (2.10); by WY, integrate over
the domain Qor = {y € Qo : |y1| < k} and, taking into account the identity
(note that divw = 0)

0 bl
VAw; Wio = va(&k(wo)wi) — vﬁ(Sik(w)Wio) — vAWl-Owi,

reduce the obtained expression to the form

/f~W0dy=/(—vAw+Vs)-WOdy

Qo Qo
3
=—/vAWO-Wdy—3v/a1dy1—5/ddS
Q0 Sok Cok
o [ (S WO = Sumwl) |, oo

o (k)
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-V / (321(W0)w2—511(0)W9)|y1=,kdy2
o (=k)
[ [ W

o (k) o(—k)
Here Sox = So N {y1 : Iy1l <k}, Toxk =ToN{y1 : [yil <k},o(£k) ={y €

Q0 : y1 = =£k}. Passing in the last identity to a limit as k — oo and using the
flux condition we derive

3
/f-wody=—v/AW°-wdy—3u/a1dy1—E/ddSJr(s*—s*).

Qo Qo So To
(2.15)

In view of the equation —vAW + VQ = 0 we have

—U/AWO.Wdyz —/VQO.wdyz/aonyyzzodyl —/bQO|r0dS.

Q0 Q0 So Iy
(2.16)

From (2.15) and (2.16) it follows that

se=sT—5" =/f.W0dy+/(3va1 —azQO)dy1+/(bQ0+%d)dS.

Q0 So Iy
(2.17)
(iii) If sT™ = s~ = 0, then estimate (2.14) follows from (2.12). O
2.4 Boundary value problem for the ordinary differential equation
Consider the problem
" _ —
YD) =Ty =GO, yeR, 2.18)

limy, |00 Y(y1) =0,

where yy is a positive constant. The theorem below follows from the representation
of the solution Y of (2.18) in terms of the Green function.

Theorem 2.2 LetG € C'TO(R; B), B > 0. Then problem (2.18) has a unique solution
Y e C3(R; B) and the following estimate

”T”C3+5(R;ﬁ) f C||G||C1+6(]R;ﬁ) (219)

holds.

@ Springer



Ann Univ Ferrara (2014) 60:225-244 233

3 Linearization of the free boundary problem

Let

gsina

v(l) x) = 2v

02— x2), v3(x) =0, p’(x) =gcosa(l —xz), Yolx1)=1

be the exact Poiseuille type solution of (1.2) fore =0, i.e.,

— AV () + (VO VIV + VRO (x) = —ge”, divv? =0, (3.1
and
Y
0 0 1
= O, = O’ _ =
v |S() vzll_'() 8)C2 Ty

Yo —1 0 dvy
~ =0 P + a—xz |[‘O.
I+,
1

0 gsino
dx, = .
/vl(x) X2 o

0

Using the formulas
(1, eW(x1)) _ (=e¥x). D

TZ—/, n_—/,
V14 e2W'2(x) V14 e2W'2(xy)

it is easy to calculate that on the perturbed boundaries S = {x : xp = 82(/)() (x1)} and
[ ={x:x» =1+ &W(x;)} of the domain 2 the function v° satisfies the boundary
conditions

xeTl, (3.2)

gsina
UIs = =5 —* 02 — e (x1). 0).

T .S(Vo)n|r =—(1+ ez\IJ/Z(xl))_le(

v

sin o ,
2w — egsinaW 2 Wn)),
Vv

gsina (1 — e2W2)eW (x))

v V14202 (n)

(3.3)

vO(x) - n(0)|r

Substitute
ux) =v0x) +eVx), px)=p’() +eq(x), Yx1) =1+ eW(x)),

into (1.2), introduce a new vector-field v = Zi’\(y)), V(y) = V(X (y)), whose com-
ponents are given by>

3 We performe this change of the unknown function in order to keep the divergence equal to zero.
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vi(») = ViXO) (1 +€0y,0(y), v2(y) = Va(X () — eVi(X(1)0y,0(y),
and make the change of variables x = X (y) in (1.2). Since

divyv(y) = diva(x)|x:X(y)(1 + £dy,w(y)) =0

1M o=t = (VO 00| ego T+ E29200),

we get the following problem in the strip o:

—VAV+ Vg =—-0 - V)v— (v- V)V +F(v, ¢, V) in Qo,

divv=0 in Qq,

v1|y2 0=A1’ v2|y:0:A2

Valypmt = EMNAY | (W), (3.4)
(B8 55) oy = gsined + D0 W),

V' —gotcosaW =0"1(—q(y)+2v g;’;)|y2=1 + O(v, V),

limy |00 W(y1) = 0.

Let us compute F. Since vO(x) satisfies (3.1) we have
F=v(V2-VHV-(V-V)g+ V>V -v)—e(V-V)V
@V =-VYIV (=) V- ")V -V (3.5)
~(V- V=)V = - VF =) — (V-v)- V)V,

where V. = V, and V = £7TV is the transformed gradient V,. Making use of
V_v= (L ‘L—I)v V-V =(LT-1)V, we obtain

_~ ~ - gd &0y ~ ~ o~
F=u(V2 V)V ¥ = V) + V2 (—%‘”vl, %‘”ul) —e(V-9)V
E0y, 0~ €0y, ~ 0 £0y,w g0y, 0 PN
+( L' Vi + L2 vz)ayzv + L2 vlayl—T‘ulayz \
0 £0y,w €0y = €0y 0 = E0y,w 0
+ (v -V)(—Tzvl, L‘ v1)—(V1 L] +V, L2 3y, V
£0y,w g0y, @ -0 €0y,w o €y |
—(— ij v1dy, + ij vlayl)v —i—(v-V)( )Lz vy, — zl vy ),

where L =1 + €0y, w.
As for the boundary conditions, it is straightforward to compute

oY1) 2 — 2po(n)),

gsina
A1(y) = —¢
2v

Sin o
Ax(yp) = 38

S92 - %00 (y))eh(y1)
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and

2gs1n

B(y)) =— >

W ()W ().

In addition, as

T(x) - S(VE)N(X) = (1 — 282 (x1))S12(V) + V'S (V) — eWSn(V), x €T,
3‘72 3?1 88y1w 8‘72 anza) 3?1

Spvy=22 4270 " 22 "Ond 71
A N 1+ edy,o dys 1+ €0y,0 dy2

dvy A 9 ( gy, w ) d ( g0y, )
=—+—————w»)—-— | ——
dyr  dy2  dy1 \1+¢edyw 0y2 \ 1+ ¢eoy,w

g0y, @ oV, £0y,w Vi

L 9y, L oy

n-S(V)n = 2n1mS(V) + 13811 (V) + n3Sn(V),
IVa(x) Vs ednwdls
s oy L oy

’

_on 88y2w8\72 il <8a)y1 )
-t 1),

Ty L 9y, 9y \ L

we obtain

8V2
D(y1) = ve ( ()’) )

(w )’1)811(V) YOS + e 00En )|

Oy el Oy, @
—— ) |
8y2 1+ edy,w oy \1+¢dy,0

—g? gsina¥’ (y1)‘l’(y1),

N 2 v
V = VZ(aJm(y) +alm(y)7)

m=1 n

y2=1

=

»n=1

1

B EE IS

(( - 28\11/()71)3\12(?) + 82‘11/2()71)3\11(?)

V- AV ,
+2821ﬂ1”2(y1)8722 + 2v(axn(y) — I)J) |y2:1+8g Slna\l’(yl)‘l‘/(yl))

+2ve ( Oy ) RN )/ &
ve— [ —2—v 5
v l—i—sayza)l w=1 27 dy; . +58\I’/2(y1))3/2

Assume that

||V||Cl+2+5(g20;'3) + ||Vq||C[+5(Qo;ﬂ) + ”\IJHC[‘*%‘*"S(R,/S) < A().
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For sufficiently small ¢ from (2.8) (2.9) follow the estimates

”FHCH‘S(QO;,S) = SC(”V”CHZH(QO;'S) + ||vq||cl+6(g20;ﬁ) + ||\IJ||C1+3+S(R;/3)),

IF(vi, g1, V1) — F(v2, g2, ‘p2)||cl+5(g20;/3)

< ec(||v1 —Vallerrss gy +1Va1 = Vaallcres gy + 191 — \p2||cz+3+a(R;ﬁ));

||B||C’+2+5(R;;3) =< 8C||‘IJ||C1+3+5(R;ﬁ),
B(W1) — B2l creresm:py < €CIVIL — Wallcists w: gy

||D||C1+1+5(R;ﬂ) < SC(HV”CHZH(QO;’B) + ||\IJ||CJ+3+5(R;/3)),
D1, W1) — D(va, W)l ci+1+5(R. gy

< ec(||v1 — Vallgtias gy + 191 — q/2||cz+3+5(R;ﬂ));

Pl 145 (R: gy < 8C<”V”Cl+2+5(90;ﬁ) + ||‘l’||cl+3+5(IR;ﬁ))v
||(I>(V1, \1’1) — d)(Vz, \PZ)”CIH‘*"S(R;;S)

< eC(IVi = Vall oy + 191 = Wallcrsss g ).
where

C = C(Ao, lleollcr+3+s(—1.1))-

Moreover,

(3.6)

3.7

(3.8)

(3.9)

||A||c1+2+8(R;,3) < cg| Sina|(||‘/’0||c1+3+5(_1,1) + 8”(/)0”2C/+3+5(71,1))’ (3.10)

where the constant ¢ is independent of | sin | and €.

4 Successive approximations

Let the function Hy € C!3+3(R; B) be such that
2v
We choose Hj as the solution of the problem

H (y1) — yoHo(y1) = ho(y1),
limyy, |—o00 Ho(y1) =0,
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where yp = go ! cosa, hy € C'3H(R; B),
”hO”CHHS(R;ﬁ) < ce and /ho(yl)dyl = —1. “4.3)
R

Relations (4.3) are possible if the condition
0 < B =<coe < Bs (4.4)
is satisfied. Then in virtue of (2.19),
| Hollci+3+s R gy < cllhollci+1+sw; ) < cE. 4.5)
Integrating (4.2) we get
/(Hé’(yl) — wHo(y1)) dy) = —go ™! cosa/ Ho(y1) dyi =/ho(y1)dy1 =—1.
R R R

On the other hand, integrating by parts we obtain

00 1 3
Ko = / (ZH(;(YI)QO()’I)‘F EHO()’I)) dy = 3/H0(y1)dy1.
R

—00
From this formula and (4.3) we conclude that

30
ko = £0. 4.6)
gcosa

Setting W = y, Ho+ Y in (3.4) with the constant yx, that will be defined later leads
to

—VAV+ Vg = -0 V)v — (v V)VO+

+F(u, g, x«Ho + 1) in o,
divv=0 in o,
Vi |y2:0 = Ay, v2|y2:O = As,
valymt = 250 Hy + S50 + B Ho + 1),

V(M + dﬂ) |xz:1 = gsinax,Hy + gsinaY @7

dy2 9y
+D(u, xxHo + ),

LcosaY = x.(— HY + go~' cosaHy)

T” _go_—

o1 (—q(y) + 21)3%) e+ O, e Ho + 1),

limjy,; 00 T(y1) = 0.
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Take as zero approximation (ug, po, Yo, xo0) = (v, po, 1, 0), then define

1
0=~ [ (01— 420%) v, 48)
g sina kg
So
and solve the following problems:
—VAV] + Vg =0 in o,
divv; =0 in Qo,
Vi |y2:0 =A = (A1, Ay), (4.9)

sina yy/

v 1ly=1 = X155~ Hj),
vy 1 v} — i .
V(— + _)’)’ZZI = x18 sina Ho;

ay2 ay1
and
Ti/ - gU_l cosa Y| = Xl(_H(/)/ + go_l cos a Hp)
+o! (—611()’) +2v aav;z]) |y2=1 + ®(uy, Yo), (4.10)

lim|y; |00 T1(y1) =0,

where u; = vO+ evy, p1 = pO + eq. Define Yy = 1 4+ e(x1Ho + Y1). From (4.8),
(2.12), (2.19) and the definition of A it follows that

xi~ e IMilleasmp ~ e (4.11)
IVillcrats p:p) + 1911l cii+s ;8 ~ €l sinl.

The following approximations are defined by
Wort =V +6Vart, Pt =P’ +6Gui1s Va1 = 14 e(ar1 Ho+ Tuy1),

where

Xn+1 = —(gsinako) ™! /(— & V)V, — (v - VIV) - W0y

Qo
b [ B prato + T Wody + [ (3041 = 220%)
Qo So
3
+/(B(XnHO+Tn)QO+ED(un7 XnH0+Tn))dy1
To
. 1 ’r 10 3
+gsina —Y, 0"+ =", )dy |, 4.12)
2v 2

To
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(Vi+1, gn+1) are solutions of the problems:

[ — VAVt + Vg = =V - VIV, — (v - VOVO
+F g, pn, xnHo + Y) in o,
divv,;1 =0 in o,
Variy,_o = A, 4.13)

V2nt1ly,=1 = Xn+1g521]r)1aH(/) + gszlgaT,/l + B(XnHO + Tn)a

Vintl | OV2ntl _ : :
u( By2 + oy ’yz:l = Xp+18&Sina Hy + gsinaY,

| +D(u,, 30 Ho + T»).

Finally, Y}, are solutions of

Y, — 8o cosaYui1 = xnt1(—H{ + go " cosa Ho)
to~ (—Cln+1 () +2v avazy’;“) ot + PWat1, X Ho + Ta),  (414)

limyy, |00 Ynt1(y1) = 0.

Notice that x, 4+ are chosen so that
Gt = M gui1(x) — lim_ gup1(x) =0.
xX]—>00 X]——00

Indeed, applying (2.13) to the problem (4.13), we obtain

Gt — Gog1 = /(— V)WV — (V- IV + FQy, pos xaHo + Y)) - WO dy
Q0

+/(3vA1 ~ 420") dy1+/(B(XnHo+Tn)QO

So To

3
+ ED(un: xnHo + Y\n)) dy,

3 . .
+ E /(Xn+lg sinaHy + g sinaY, + D(u,, x,Ho + Yy))dy1,
To

or, equivalently,

+ - .
9p+1 — 9p41 = Xn+18 SINAKQ

+/ (= - V)W — (V- OV + F(Wy, po g Ho + ) - WO dy

Q0
+/(3vA1 ~ 420°) dY1+/(B(XnHo+Tn)QO
So Iy
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3
+5D(uannH0+Tn))dy1
. 1 /' 0 3
+gsina ET”Q +§Tn dyy,
To
where
—/ L 3 my)d £0
Ko = 7 0 ) 0)ayi .
To

Substituting (4.12) into the last formula, we get
q;::l*l — Gy =0
5 Convergence of successive approximations; existence of the solution
Assume that
elsina| ' <1 as &, a — 0.
From (2.12), (3.6), (3.7), (3.8), (3.10), (2.19) follow the inequalities

Ixil < cellgollcresvs(—1. 1

||V1 ||Cl+2+8(g20;ﬁ) + ||q1 ||Cl+l+6(90;13)

< C(||A||c/+2+a(R;,3) + |Sina||)(1|||H0||C1+3+3(R;ﬁ))

< celsinal (llgoll 1.1y + ).

|| T] || Cl+3+8 (R;ﬂ)

< C(”Vl lct+2+5(0q: ) T 1191l ci+1+5 (0 8y + |X1|||H0||cl+3+8(R;,3))

< CS(II<P0||CI+3+6(—1,1) + i I);

1] = ¢ (I¥nll sy + IMall s )
.
+ ce|sinaf (||Vn |l ci+2+5 (. py + Nanll i1+ (0 )
+ ”Tn“CH3+3(]R;ﬂ) + 8|Xn|) + C€||§0()||Cl+3+6(_1’1),

IVat1llctr2+s g p) T gn+1ll i1+ g p)

(5.1

5.2)

(5.3)

< C(”F”CHB(QO;ﬁ) + IAllcr2tswr: gy + I Bll 25 v, gy + | Dl cr1+5 (R, gy

+c|sine| (||Vn||Cl+2+5(QO;ﬂ) +elxn+1l + 11T ||c1+3+6(R;,3)))
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=< 08(||Vn||cl+2+8(szo;,3) + llgn llcr+1+5(q:. gy + 1 Tnll ct+3+5 R gy
+eltal + Isinallgollcrass 1.1

+elsinal(I¥allcross @y + 1] + Iallcrsss@ip) ).

111l cr+3+8 (R )

= C(||Vn+1 lct+2+5 (g p) T lgn+1llciri+sqy: gy + €l Xn+11 + ||®||cl+1+a(R;ﬁ))
(5.5)

=< C€(||Tn lcr+3+5 (. g) + 8|Xn|) + C(||Vn+1 | c1+2+5 (2 p)

+ I gnt1llci+1+s(0q: ) + 8|Xn+1|)-

From (5.3)—(5.5) it is easy to deduce the following estimates:

1Tn+1 ||c1+3+5 (R;B)
< CS(”Vn ||C’+2+5(Qo;ﬂ) + ”CIn”CH'l‘HS(QO;ﬂ) + ||Tn||C[+3+5(]R;/3) + €|Xn|)
+ celsinalllgoll ci+3+s(—1,1)3

Vn+1 ||C1+2+5(Qo;ﬂ) + 1gn+1 ”CHH‘S(Q():ﬁ)

=< C(8 +1 sina|)(||v,,||cl+z+s(90;ﬁ) + llgnll ci+1+5 ;)

I Cullcresss sy + eltal) + cel sinalligoll s, 1y 5.6
[Xn+1l

< (e + Isinal) (Ia-1llcizsigyep) + Idn-tll o)
Tt lravsig) + Elxn11)
+ ce|sina| ™! (||Vn||cl+2+6(90;,3) + llgn llcr+1+5 (0 gy
+ 1Tl cr+3+s r; gy + 8|Xn|) + celleoll crra+s(—1,1-
Denote
Zn = IVallctv2+5(Qy; ) + lanllcr+i+s(@q: gy + 1 Tnll cis+s w; gy + [Xnl-
For sufficiently small ¢ and | sin «| it follows from (5.6) that
Zns1 < 0(Zn + Zn—1) +cellgollcrses_y,y With o < %
Hence if Z,, and Z,_ satisfy
Zy <ce(1—20)7" l@ollcr+a+s(—1,1) = Ax, (5.7)

then the same inequality holds for Z,, ;.
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Since Zo = 0 and Z; satisfies (5.7) (in view of (5.2)), (5.7) holds for all m > 1.
Let us estimate the differences

Ry = IVat1 — Vallcr+2+sqq: gy + I gn+1 — gnllci1+5(q: gy
+ 1 nt1 — Tn||Cl-*-3+5(]R;ﬂ) + [ Xn+1 = Xnl-

‘We have

[Xn+1 — Xul

< c(||vn — Vil ey + 1 — Tn_1||cl+3+5(R;ﬂ))

na <||Fn — Focillctissy.p) + 1Bn — Buctllcros msp)

+ 1Dy = Dyl (5.8)

< (¥ = Va-tllerss gy + 100 = Tuct lerass gap))

| Sina| (”Vn — Vn—1 ||C1+2+5(90§ﬁ) + Ian —dn—1 ”CH—I_HS(QO?/g)

1w = Tt llgrass gy + €120 — xu-11):
Va1 = Vallcrea+s (g gy + 1gn+1 — gnll ci+1+5 (0 g
< c(e + | sinoz|)(||v,, — Va—tllct+24s(9q; ) + 190 — dn—1llciv1+s @y (5.9)
+ 1T — Ta—illci+a+s . gy + €lXn — Xn—1 I) + celsinallxp+1 — Xxal;
Va1 = Yallcrsts g p)
< ecltut1 = tal + (a1 = Vallcrss @iy + lanst = dallcrsresayp))

e (IVat1 = Vallcrss gy + 1 Tn = Tuct leaes g + &0 = xa1l)-

(5.10)
Then for sufficiently small ¢ and | sin | we obtain from (5.8)—(5.10)
Ry = 1Vat1 — Vallcre2+5Qy: gy + 1gn+1 — gnll ci+1+5 (0 )
F g1 — Yallcres+sr. gy + 1 Xnt+1 — Xnl
= Q(”Vn — Va—tllci+2+s(qq:p) + 1Va—1 — Va2l ct42+5 (0 p)
(5.11)

+ llgn — gn—1llcre1+ (g py + 1gn—1 — gn—2ll ci+1+5 (Q; g
+ 11 — Ta—tllcres+s . gy + 1Tn—1 — Tu2llcr+3+5 (. g)

+Xn — Xn—1l + | Xn—1 — Xn—2|) = Q(Rn—l + Rn—2)
with o < %
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Note that in view of (5.7)
R, < Zn+1 +Z, < 2A>k-
If n = 2m, then

Ron < 0(Ran-1 + Ran-2) < 0*(Ron—2 + 2R3 + Ron-a) <
"= Q"(C,(Z)Rn + CrI,Rn—Z + -+ C,’ZR()) < ZA*Q"(C’? + Crll 4L C”ll)
=2A,20)" =2A,\"

with A < 1. The case n = 2m + 1 is similar. Now it is standard to show that

1Vin — Vallci+2+s (Qp: gy T 1@m — Gnllci+1+5 (0 p)
H1Cm — Yallcres+sr,gy + 1 Xm — xnl = 0 as n,m — oo,

hence the sequence {V,, g, Yy, x» } converges in C'*279(Qq; B) x C!19(Qp; B) x
CIH3 T (R; By xRto{v, g, Y, xs}. Obviously, u(x) = v0(x)+v(x), p(x) = p’(x)+
qg(x) and ¥ (x1) = 1 + exHp(x1) + €Y (x1) solve problem (1.2). Thus, we have
proved the main result of the paper:

Theorem 5.1 Assume that ¢y € C!T33(—1,1), suppgo C (=1, 1), and the num-
bers €, a, | sina| =" are sufficiently small. Then problem (1.2) has a unique solution
(u, p, w). This solution admits the representation

u(x) = v () +ev(x), p(x) = p’(x) +eq(x), ¥(x1) = l+exHo(x1) + &Y (x),

where

gsinu
2v

Wx) = 02 —x2), v3(x) =0, p’(x) =gcosa(l —x),

X« IS a constant,
ve C Qo B), q € CTIT(Qo; B), Ho, T € CPH(R; B)

with 0 < B < cpe.
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