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Abstract We prove local in time well-posedness of the Cauchy problem in Sobolev
spaces for semi-linear 3-evolution equations of the first order. We require real princi-
pal part, but complex valued coefficients for the lower order terms. Therefore decay
conditions on the imaginary parts are needed, as x →∞.
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1 Introduction and main result

Let us consider the Cauchy problem

{
P(t, x, u(t, x), Dt , Dx )u(t, x) = f (t, x), (t, x) ∈ [0, T ] × R

u(0, x) = u0(x), x ∈ R
(1.1)
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for the semi-linear operator

P := Dt + a3(t)D
3
x + a2(t, x, u)D2

x + a1(t, x, u)Dx + a0(t, x, u), (1.2)

where D := 1
i ∂, a3 ∈ C([0, T ];R), a j ∈ C([0, T ];C∞(R × C)) and x �→

a j (t, x, w) ∈ B∞(R) (here B∞(R) is the space of complex valued functions which
are bounded on R together with all their derivatives), for j = 0, 1, 2.

We are so dealing with a semi-linear non-kowalewskian 3-evolution equation Pu =
f with the real characteristic (in the sense of Petrowski) τ = −a3(t)ξ3. In the case
a3(t) ≡ −1, a2 ≡ a0 ≡ 0, a1(t, x, u) = −6u, we recover the Korteweg-de Vries
equation.

The aim of this paper is to give suitable decay conditions on the coefficients in
order that the Cauchy problem (1.1) is locally in time well-posed in Hs with s great
enough, and in H∞.

The well-posedness result will be achieved by developing the linear technique of
[5] (coming from the examples in [7,8] and used also in [3,4]), and applying then a
fixed point argument, following the ideas of [1,2,9].

We consider here x ∈ R only for simplicity’s sake; x ∈ R
n, n ≥ 2 could be

considered with only technical changes in our proofs, see [10,13].
The assumption a3(t) ∈ R is due to the necessary condition of the Lax-Mizohata

Theorem (cf. [15]), while the assumptions a j (t, x, w) ∈ C for 0 ≤ j ≤ 2 imply some
decay conditions on the coefficients because of the necessary condition of Ichinose
(cf. [12]). We shall thus assume, in the following, that there exists a constant C3 > 0
such that

a3(t) ≥ C3 ∀t ∈ [0, T ], (1.3)

and that there exist constants C, ε > 0 and a function h : C → R
+ bounded on

compact sets (for instance, h continuous) such that for all (t, x, w) ∈ [0, T ]×R×C:

|Im a2(t, x, w)| ≤ C

〈x〉1+ε h(w) (1.4)

|Im a1(t, x, w)| ≤ C

〈x〉1/2 h(w) (1.5)

|Re a2(t, x, w)| ≤ Ch(w) (1.6)

|∂x Re a2(t, x, w)| ≤ C

〈x〉1/2 h(w) (1.7)

|∂wa2(t, x, w)| ≤ C

〈x〉1/2 h(w), (1.8)

with the notation 〈x〉 := √1+ x2.
Under the assumptions above we prove the following result:

Theorem 1.1 Let P be as in (1.2) satisfying (1.3)–(1.8). Then the Cauchy problem
(1.1) is locally in time well-posed in H∞. More precisely, for every given s > 5/2
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and for all f ∈ C([0, T ]; Hs(R)) and u0 ∈ Hs(R), there exists 0 < T ∗ ≤ T and a
unique solution u ∈ C([0, T ∗]; Hs(R)) of (1.1) satisfying the following inequality:

‖u(t, ·)‖2s ≤ eσ t

⎛
⎝‖u0‖2s +

t∫
0

‖ f (τ, ·)‖2s dτ

⎞
⎠ ∀t ∈ [0, T ∗], (1.9)

for some positive constant σ depending on s.

Remark 1.2 Estimate (1.9) gives local in time well-posedness of the Cauchy problem
(1.1) in Hs, s > 5/2. By the same estimate we gain also H∞ well-posedness: if the
Cauchy data are f ∈ C([0, T ]; H∞(R)) and u0 ∈ H∞(R), then the solution u ∈
C([0, T ]; Hs) for every s > 5/2, and then by Sobolev’s embeddings we immediately
get u ∈ C([0, T ]; H∞).

Example 1.3 Let us consider the non-linear equation

P(t, x, u, Dt , Dx ) = Dt u + a3(t)D
3
x + a2(x, u)D2

x u = f (t, x)

with

f ∈ C([0, T ]; Hs(R)), s ≥ 5/2

a3(t) ∈ C([0, T ];R), a3(t) ≥ C3 > 0 ∀t ∈ [0, T ]
a2(x, w) = i

sin xα

(1+ x2)
1+ε

2

1

1+ w2 , α, ε > 0.

Then

|Im a2| ≤ 1

〈x〉1+ε

|∂wa2| =
∣∣∣∣−i

sin xα

〈x〉1+ε
2w

(1+ w2)2

∣∣∣∣ ≤ 2

〈x〉1+ε ≤
2

〈x〉1/2 .

Therefore Theorem 1.1 can be applied to get, for some 0 < T ∗ ≤ T , a unique solution
u ∈ C([0, T ∗]; Hs(R)) of the Cauchy problem

{
P(t, x, u, Dt , Dx )u(t, x) = f (t, x) (t, x) ∈ [0, T ∗] × R

u(0, x) = u0(x) ∈ Hs(R), x ∈ R.

The same result holds if, more in general, we take

a2(t, x, w) = ia′2(t, x)a′′2 (w)

for some real valued functions a′2 ∈ C([0, T ];B∞(R)) satisfying (1.4) and a′′2 ∈
C([0, T ];C∞(R)) with bounded derivative ∂wa′′2 .
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Example 1.4 By simple computations it is easy to check that Example 1.3 works also

considering, for example, a2(t, x, w) = ia′2(t,x)
〈x+w〉1+ε , or a2(t, x, w) = ia′2(t,x)

〈x〉1+ε+w2 , with a

real valued function a′2 ∈ C([0, T ];B∞(R)) satisfying (1.4).

2 Notation and main tools

The proof of Theorem 1.1 is based on the pseudo-differential calculus. In this paper we
denote by Sm := Sm(R2) the space of symbols a(x, ξ) such that for every α, β ∈ N

sup
x,ξ∈R

|∂αξ Dβ
x a(x, ξ)|〈ξ 〉−m+|α|

h <∞,

where 〈ξ 〉h :=
√

h2 + ξ2, h ≥ 1 fixed. Our symbols will be of the form a(x, w, ξ),
depending smoothly on a parameter w ∈ C.

The idea of the proof is to fix u ∈ Br ,

Br := {u ∈ C([0, T ]; Hs) : sup
t∈[0,T ]

‖u(t, ·)‖s ≤ r},

with r > 0 to be determined later on, to solve the linear Cauchy problem

{
P(t, x, u, Dt , Dx )v = f
v(0, x) = u0(x)

(2.1)

in the unknown v(t, x) following [5], and then use a fixed point argument to find the
solution of the non-linear Cauchy problem (1.1).

For this reason we recall now some definitions and results from [5]. According to
[5, formula (2.4) and Remark 3.1], we define

λ2(x, ξ) := M2

x∫
0

〈y〉−1−εψ
(
〈y〉
〈ξ 〉2h

)
dy (2.2)

λ1(x, ξ) := M1

x∫
0

〈y〉− 1
2ψ

(
〈y〉
〈ξ 〉2h

)
dy · 〈ξ 〉−1

h (2.3)

where the constants M1,M2 > 0 have to be chosen in the sequel,ψ ∈ C∞0 (R) satisfies
0 ≤ ψ ≤ 1 and

ψ(y) =
{

1 |y| ≤ 1
2

0 |y| ≥ 1.
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Then

|λ2(x, ξ)| ≤ M2

〈x〉∫
0

〈y〉−1−εdy ≤ C2

|λ1(x, ξ)| ≤ C M1〈x〉 1
2 〈ξ 〉−1

h χsuppψ(x) ≤ C1 M1,

for some C2,C1 > 0, where χsuppψ is the characteristic function of the support of
ψ(〈x〉/〈ξ 〉2h).

Therefore, for �(x, ξ) := λ1(x, ξ)+ λ2(x, ξ), we have that

|�(x, ξ)| ≤ C ′2 (2.4)

for some C ′2 > 0; moreover, from [5, Lemma 2.1] (with δ = 0):

|∂αξ Dβ
x�(x, ξ)| ≤ δα,β〈ξ 〉−αh ∀α, β ∈ N, (2.5)

for some δα,β > 0.
This proves that the pseudo-differential operator e�(x,Dx ) has symbol e�(x,ξ) ∈ S0,

and then we can apply the following:

Lemma 2.1 (see Lemma 2.3, [5]) Let �(x, ξ) satisfy (2.5). There exists a constant
h0 ≥ 1 such that for h ≥ h0 the operator e� is invertible and

(e�)−1 = e−�(I + R), (2.6)

where I is the identity operator and R is an operator of the form R =∑+∞
n=1 rn with

principal symbol

r̃(x, ξ) = ∂ξ�(x, ξ)Dx�(x, ξ). (2.7)

We conclude this section by recalling two results that will be crucial in deter-
mining the minimal assumptions needed on the coefficients a j in (1.2) to get the
well-posedness result here presented:

Theorem 2.2 (Sharp-Gårding inequality, [14]) Let a(x, Dx ) be a pseudo-differential
operator with symbol a(x, ξ) ∈ Sm suche that Re a(x, ξ) ≥ 0. Then there exists c > 0
such that

Re 〈a(x, Dx )u, u〉 ≥ −c‖u‖2(m−1)/2. (2.8)

Theorem 2.3 (Fefferman–Phong inequality, [11]) Let a(x, ξ) ∈ Sm with a(x, ξ) ≥ 0.
Then there exists c > 0 such that

Re 〈a(x, Dx )u, u〉 ≥ −c‖u‖2(m−2)/2. (2.9)
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3 Proof of Theorem 1.1

To start with the proof we fix s > 5/2, f, u ∈ C([0, T ]; Hs) and u0 ∈ Hs(R) , and
consider the linear Cauchy problem (2.1). A direct application of [5, Theorem 1.1 and
Remark 1.5] immediately gives the existence of a unique solution v ∈ C([0, T ]; Hs)

of problem (2.1) such that

‖v(t, ·)‖2s ≤ Cs(u)

⎛
⎝‖u0‖2s +

t∫
0

‖ f (τ, ·)‖2s dτ

⎞
⎠ ∀t ∈ [0, T ] (3.1)

for some Cs(u) > 0, since assumption (1.4) gives no loss of derivatives (σ = 2δ = 0
in [5, Theorem 1.1]). This is not enough for our purposes, since to proceed with the
proof and apply a fixed point scheme we need to know precisely the constant Cs(u).
We thus quickly retrace in what follows the proof of Theorem 1.1 in [5], taking care
of the dependence of the constants on the fixed function u, and taking advantage of
the choice of p = 3.

We write

i P(t, x, u, Dt , Dx ) = ∂t + A(t, x, u, Dx )

with

A(t, x, u, Dx ) := ia3(t)D
3
x + ia2(t, x, u)D2

x + ia1(t, x, u)Dx + ia0(t, x, u)

and compute the symbol of the pseudo-differential operator (e�)−1 Ae�.
We have:

σ(Ae�) = (ia3ξ
3 + ia2ξ

2 + ia1ξ)e
� + (3ia3ξ

2 + 2ia2ξ)Dx e�

+1

2
(6ia3ξ)D

2
x e� + Ãe� (3.2)

for some Ã ∈ S0.
To compute then σ((e�)−1 Ae�) we need to write down the symbol of (e�)−1 by

means of (2.6) and (2.7).
In the sequel it will be useful to estimate, from (2.2) and (2.3):

|∂ξλ2(x, ξ)| ≤ M2

∣∣∣∣∣∣
x∫

0

〈y〉−1−ε〈y〉
(
∂ξ

1

〈ξ 〉2h

)
ψ ′

(
〈y〉
〈ξ 〉2h

)
dy

∣∣∣∣∣∣≤C ′2 M2
〈x〉1−ε
〈ξ 〉3h

χsuppψ ′

(3.3)

|∂xλ2(x, ξ)|| ≤ M2〈x〉−1−εψ
(
〈x〉
〈ξ 〉2h

)
≤ C ′2 M2〈x〉−1−ε (3.4)
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|∂ξλ1(x, ξ)| ≤ M1

∣∣∣∣∣∣
x∫

0

〈y〉− 1
2 〈y〉

(
∂ξ

1

〈ξ 〉2h

)
ψ ′

(
〈y〉
〈ξ 〉2h

)
dy

∣∣∣∣∣∣ 〈ξ 〉
−1
h

+M1

∣∣∣∣∣∣
x∫

0

〈y〉− 1
2ψ

(
〈y〉
〈ξ 〉2h

)
dy ·

(
∂ξ

1

〈ξ 〉h
)∣∣∣∣∣∣

≤ C ′1 M1

(
〈x〉3/2
〈ξ 〉4h

χsuppψ ′ + 〈x〉
1/2

〈ξ 〉2h

)
(3.5)

|∂xλ1(x, ξ)| ≤ M1〈x〉− 1
2ψ

(
〈x〉
〈ξ 〉2h

)
〈ξ 〉−1

h ≤ C ′1 M1
〈x〉− 1

2

〈ξ 〉h (3.6)

for some C ′2,C ′1 > 0, where χsuppψ ′ is the characteristic function of

suppψ ′
(
〈x〉
〈ξ 〉2h

)
⊆

{
x ∈ R : 1

2
〈ξ 〉2h ≤ 〈x〉 ≤ 〈ξ 〉2h

}
.

Therefore

|r̃(x, ξ)| = |∂ξ�(x, ξ) · Dx�(x, ξ)| ≤ CM1,M2〈x〉−
1
2−ε〈ξ 〉−2

h ;

by simple computations we get that r̃(x, ξ) ∈ S−2 and, by (2.6) and (2.7):

(e�)−1 = e−�(I + r̃ + R−3)

with r̃(x, D) a pseudo-differential operator with symbol r̃(x, ξ) and R−3 an operator
of order −3.

Then, from (3.2):

σ((e�)−1 Ae�) = (e−� + e−�r̃)
(

ia3ξ
3 + ia2ξ

2 + ia1ξ
)

e�

+ (e−� + e−�r̃)
(

3ia3ξ
2 + 2ia2ξ

)
(Dx�)e

�

+ (e−� + e−�r̃)(3ia3ξ)
(

D2
x�+ (Dx�)

2
)

e�

− (∂ξ�)
(

i Dx a2ξ
2
)
− (∂ξ�)

(
ia3ξ

3 + ia2ξ
2
)
(Dx�)

− (∂ξ�)
(

3ia3ξ
2
) (

D2
x�+ (Dx�)

2
)

+ 1

2

(
∂2
ξ �+ (∂ξ�)2

) (
ia3ξ

3
) (

D2
x�+ (Dx�)

2
)
+ A′0

= ia3ξ
3 + ia2ξ

2 + ia1ξ + r̃(x, ξ)
(

ia3ξ
3
)
+

(
3ia3ξ

2
)
(Dx�)
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+ (2ia2ξ)(Dx�)+ (3ia3ξ)
(

D2
x�+ (Dx�)

2
)

− (∂ξ�)
(

i Dx a2ξ
2
)
− r̃(x, ξ)

(
ia3ξ

3
)
+ A′′0

= ia3ξ
3 +

[
ia2ξ

2 +
(

3ia3ξ
2
)
(Dxλ2)

]

+
[
ia1ξ +

(
3ia3ξ

2
)
(Dxλ1)+ (2ia2ξ)(Dxλ2)

+ (3ia3ξ)
(

D2
xλ2 + (Dxλ2)

2
)
− (∂ξλ2)

(
i Dx a2ξ

2
)]
+ A0

for some A′0, A′′0, A0 ∈ S0, since a3 = a3(t) and because of (3.3) and (3.5).
Therefore

σ((e�)−1 Ae�) = A3 + A2 + A1 + A0,

with A j ∈ S j defined by:

A3(t, ξ) := ia3ξ
3

A2(t, x, u, ξ) := ia2ξ
2 + (3ia3ξ

2)(Dxλ2)

A1(t, x, u, ξ) := ia1ξ + (3ia3ξ
2)(Dxλ1)+ (2ia2ξ)(Dxλ2)

+ (3ia3ξ)(D
2
xλ2 + (Dxλ2)

2)− (∂ξλ2)(i Dx a2ξ
2).

Note that assumption (1.3) implies

Re A3(t, ξ) = 0. (3.7)

As in the proof of Theorem 1.1 of [5], we look first for M2 > 0 great enough to apply
the Fefferman–Phong inequality (2.9) to

Re A2 = −Im a2ξ
2 + 3a3ξ

2∂xλ2. (3.8)

By (1.4)

|Im a2(t, x, u)ξ2| ≤ C

〈x〉1+ε h(u)〈ξ 〉2h, (3.9)

while, by (1.3) and (3.4), for |ξ | ≥ h we have

3a3(t)ξ
2∂xλ2(x, ξ) = 3M2a3(t)ξ

2〈x〉−1−εψ
(
〈x〉
〈ξ 〉2h

)

≥ 3M2C3ψ〈x〉−1−ε|ξ |2

≥ 3√
2

M2C3ψ〈x〉−1−ε〈ξ 〉2h . (3.10)
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Substituting (3.9) and (3.10) in (3.8):

Re A2 ≥ 3√
2

M2C3ψ
〈ξ 〉2h
〈x〉1+ε −

C

〈x〉1+ε h(u)〈ξ 〉2h

= ψ
(

3√
2

C3 M2 − Ch(u)

) 〈ξ 〉2h
〈x〉1+ε − Ch(u)

〈ξ 〉2h
〈x〉1+ε (1− ψ)

≥ ψ
(

3√
2

C3 M2 − Ch(u)

) 〈ξ 〉2h
〈x〉1+ε − 2Ch(u)

since 〈ξ 〉2h ≤ 2〈x〉 on supp

(
1− ψ

(
〈x〉
〈ξ〉2h

))
.

We thus choose M2 >
√

2Ccr/3C3, where

cr := sup
(t,x)∈[0,T ]×R

u∈Br

h(u)

is a positive constant because h maps compact sets into bounded sets by assumption
and sup(t,x)∈[0,T ]×R |u(t, x)| ≤ Cs supt∈[0,T ] ‖u(t, ·)‖s since s > 5

2 >
1
2 by Sobolev

embedding Theorem.
Then

Re A2(t, x, u, ξ) ≥ −2Ccr

and, applying the Fefferman–Phong inequality (2.9) to the operator Re A2(t, x, u, ξ)+
2Ccr , we have that

Re 〈Re A2z, z〉 ≥ −c(1+ cr )‖z‖20 (3.11)

for some fixed constant c > 0.
On the other hand, we can write the operator Im A2(t, x, u, Dx ) = iRe a2(t, x, u)

D2
x as

Im A2 = Im A2 + (Im A2)
∗

2
+ Im A2 − (Im A2)

∗

2
(3.12)

with

Re

〈
Im A2 − (Im A2)

∗

2
z, z

〉
= 1

2
Re 〈Im A2z, z〉 − 1

2
Re 〈z, Im A2z〉

= 1

2
Re 〈Im A2z, z〉 − 1

2
Re 〈Im A2z, z〉 = 0 (3.13)
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and Im A2+(Im A2)
∗

2 of order 1 since

σ(Im A2)+ σ((Im A2)
∗) ∼ σ(Im A2)+

∑
α≥0

1

α!∂
α
ξ Dα

x σ(Im A2)

= iRe a2ξ
2 − iRe a2ξ

2 + ∂ξ Dx (−iRe a2ξ
2)+ B0

= − 2∂x Re a2ξ + B0

for some B0 ∈ S0.
Let us now choose M1 > 0 in order to apply the sharp-Gårding inequality (2.8) to

Ã1(t, x, u, Dx ) := A1(t, x, u, Dx )− 2(∂x Re a2)Dx

with symbol

Ã1(t, x, u, ξ) = ia1ξ + (3ia3ξ
2)(Dxλ1)+ (2ia2ξ)(Dxλ2)

+ (3ia3ξ)(D
2
xλ2 + (Dxλ2)

2)− (∂ξλ2)(i Dx a2ξ
2)− 2(∂x Re a2)ξ.

(3.14)

By (1.3) and (2.3):

Re (3ia3ξ
2 Dxλ1) = 3a3ξ

2∂xλ1

≥ 3c|ξ |2 M1〈x〉−1/2ψ

(
〈x〉
〈ξ 〉2h

)
〈ξ 〉−1

h

≥ 3√
2

C3 M1ψ
〈ξ 〉h
〈x〉1/2 (3.15)

if |ξ | ≥ h.
On the other hand, by (1.5):

|Re (ia1ξ)| = |Im a1| · |ξ | ≤ C

〈x〉1/2 h(u)〈ξ 〉h . (3.16)

By (1.6) and (3.4):

|Re [(2ia2ξ)(Dxλ2)] = |2Re a2ξ∂xλ2|

≤ 2|Re a2|〈ξ 〉h M2〈x〉−1−εψ
(
〈x〉
〈ξ 〉2h

)

≤ 2C M2h(u)ψ
〈ξ 〉h
〈x〉1/2 . (3.17)

By (1.3):

Re [(3ia3ξ)(D
2
xλ2 + (Dxλ2)

2) = 0. (3.18)
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By (1.7), (1.8) and (3.3):

|Re [(∂ξλ2)(i Dx a2ξ
2)]| = |∂ξλ2| · |Re ∂x

(
a2(t, x, u)

)| · |ξ |2
≤ cM2

〈x〉1−ε
〈ξ 〉3h

χsuppψ ′ · |Re (∂x a2)+ Re (∂wa2)(∂x u)|〈ξ 〉2h

≤ cM2
1

〈ξ 〉2h
χsuppψ ′ · C

〈x〉1/2 h(u)(1+ |∂x u|)〈ξ 〉2h

≤ cC M2h(u)(1+ |∂x u|) 〈ξ 〉h〈x〉1/2 (3.19)

for some c > 0.
By (1.7) and (1.8):

∣∣∂x Re
(
a2(t, x, u(t, x))

)
ξ
∣∣ = |∂x (Re a2)+ Re (∂wa2)(∂x u)| · |ξ |
≤ C

〈x〉1/2 h(u)(1+ |∂x u|)〈ξ 〉h . (3.20)

Substituting (3.15)–(3.20) in (3.14) and taking into account that 〈x〉−1/2〈ξ 〉h ≤ 2 on
supp (1 − ψ), we finally find a constant c > 0, which depends also on the already
chosen M2, such that

Re Ã1 ≥
(

3C3√
2

M1ψ − Ch(u)− 2C M2ψh(u)

− cC M2h(u)(1+ |∂x u|)− Ch(u)(1+ |∂x u|)
) 〈ξ 〉h
〈x〉1/2

= ψ
(

3C3√
2

M1 − C(M2)h(u)(1+ |∂x u|)
) 〈ξ 〉h
〈x〉1/2

− (1− ψ)C(M2)h(u)(1+ |∂x u|) 〈ξ 〉h〈x〉1/2
≥ − 2C(M2)Cr

for some constant C(M2) > 0 which depends on the already chosen M2, and for

M1 ≥
√

2C(M2)
3C3

Cr with

Cr := sup
(t,x)∈[0,T ]×R

u∈Br

h(u)(1+ |∂x u|) ≥ cr .

Applying the sharp-Gårding inequality (2.8) to Ã1 + 2C(M2)Cr we obtain that

Re 〈 Ã1(t, x, u, Dx )z, z〉 ≥ −c(1+ 2C(M2)Cr )‖z‖20 (3.21)

for some fixed constant c > 0.
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Summing up, we have chosen M1,M2 > 0 sufficiently large so that A� :=
(e�)−1 Ae� satisfies:

Re 〈(e�)−1 Ae�z, z〉 ≥ −C̃(1+ Cr )‖z‖20 (3.22)

for some fixed constant C̃ > 0, because of (3.7), (3.11), (3.13) and (3.21).
Now, for every z ∈ C([0, T ]; H3) ∩ C1([0, T ]; L2), from the identity i P� =

∂t + A�, where P� := (e�)−1 Pe�, A� := (e�)−1 Ae�, we have:

d

dt
‖z‖20 = 2Re 〈∂t z, z〉 = 2Re 〈i P�z, z〉 − 2Re 〈A�z, z〉
≤ 2(‖P�z‖20 + ‖z‖20)+ C̃(1+ Cr )‖z‖20
= 2‖P�z‖20 + (2+ C̃(1+ Cr ))‖z‖20.

By Gronwall’s Lemma:

‖z‖20 ≤ e(2+C̃(1+Cr ))t

⎛
⎝‖z(0, ·)‖20 +

t∫
0

2‖P�z(τ, ·)‖20dτ

⎞
⎠.

By usual arguments we get also, for s ≥ 5/2:

‖z‖2s ≤ e(3+C̃(1+Cr ))t

⎛
⎝‖z(0, ·)‖2s +

t∫
0

‖P�z(τ, ·)‖2s dτ

⎞
⎠. (3.23)

The a-priori estimate (3.23) gives existence and uniqueness of a solution z ∈
C([0, T ]; Hs) of the Cauchy problem

{
P�(t, x, u, Dt , Dx )z(t, x) = f�(t, x)
z(0, x) = (u0)�(x)

(3.24)

equivalent to (1.1) for f� := (e�)−1 f, (u0)� := (e�)−1u0; moreover the solution
satisfies the following energy estimate:

‖z‖2s ≤ e(3+C̃(1+Cr ))t

⎛
⎝‖(u0)�‖2s +

t∫
0

‖ f�(τ, ·)‖2s dτ

⎞
⎠. (3.25)

Remark now that z is a solution of (3.24) if and only if v = e�z is a solution of
(2.1). Since e� ∈ S0, from (3.25) we thus have that the solution v of the Cauchy
problem (2.1) satisfies:
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‖v‖2s ≤ c1‖z‖2s ≤ c1e(3+C̃(1+Cr ))t

⎛
⎝‖(u0)�‖2s +

t∫
0

‖ f�(τ, ·)‖2s dτ

⎞
⎠

≤ c2e(3+C̃(1+Cr ))t

⎛
⎝‖u0‖2s +

t∫
0

‖ f (τ, ·)‖2s dτ

⎞
⎠, (3.26)

for some fixed constants c1, c2 > 0. Note that (3.26) implies (3.1) for Cs(u) :=
c2e(3+C̃(1+Cr ))T .

It is then defined a map

S : Br → C([0, T ]; Hs)

u �→ v

which associates, to every fixed u ∈ Br , the unique solution v ∈ C([0, T ]; Hs) of the
Cauchy problem (2.1), satisfying

‖v(t, ·)‖s ≤ √c2e
1
2 (3+C̃(1+Cr ))t (‖u0‖s +

√
t‖ f (t, ·)‖s) ∀t ∈ [0, T ]. (3.27)

We now choose r > 2e
√

c2 max{‖u0‖s, supt∈[0,T ] ‖ f (t, ·)‖s}. Then

‖v(t, ·)‖s ≤ r

2
(1+√t)e

1
2 (3+C̃(1+Cr ))t−1 < r

if t ∈ [0, T0] for T0 sufficiently small.
For such a choice of T0 we thus have that, for

u ∈ B0
r := {u ∈ C([0, T0]; Hs) : sup

t∈[0,T0]
‖u(t, ·)‖s ≤ r},

the Cauchy problem (2.1) admits a unique solution v ∈ B0
r , i.e.

S : B0
r → B0

r .

We are now ready to use a fixed point argument. Fix u, ũ ∈ B0
r , let v = S(u) and

ṽ = S(ũ) the corresponding solutions of (2.1) and set w = v − ṽ.
From

Dtv + a3(t)D
3
xv + a2(t, x, u)D2

xv + a1(t, x, u)Dxv + a0(t, x, u) = f (t, x)

Dt ṽ + a3(t)D
3
x ṽ + a2(t, x, ũ)D2

x ṽ + a1(t, x, ũ)Dx ṽ + a0(t, x, ũ) = f (t, x)

we have that

Dtw + a3(t)D
3
xw + a2(t, x, u)D2

xv − a2(t, x, ũ)D2
x ṽ

+ a1(t, x, u)Dxv − a1(t, x, ũ)Dx ṽ + a0(t, x, u)− a0(t, x, ũ) = 0,
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i.e.

Dtw + a3(t)D
3
xw + a2(t, x, u)D2

xw + a1(t, x, u)Dxw

+[a2(t, x, u)− a2(t, x, ũ)]D2
x ṽ + [a1(t, x, u)− a1(t, x, ũ)]Dx ṽ

+[a0(t, x, u)− a0(t, x, ũ)] = 0.

This means that w is a solution of

P̃(t, x, u, Dt , Dx )w(t, x) = f̃ (t, x, u, ũ, ṽ),

where P̃(t, x, u, Dt , Dx ) := P(t, x, u, Dt , Dx )− a0(t, x, u) and

f̃ (t, x, u, ũ, ṽ) := [a2(t, x, u)− a2(t, x, ũ)]D2
x ṽ

+[a1(t, x, u)− a1(t, x, ũ)]Dx ṽ + [a0(t, x, u)− a0(t, x, ũ)].

Since u, ũ, ṽ ∈ C([0, T0]; Hs) we have that f̃ ∈ C([0, T0]; Hs−2) and, from (3.27)
and w(0, x) = 0:

‖w(t, ·)‖s−2 ≤ √c2e
1
2 (3+C̃(1+Cr ))T0

√
T0 sup

t∈[0,T0]
‖ f̃ ‖s−2 (3.28)

with

‖ f̃ ‖s−2 ≤ ‖(a2(t, x, u)−a2(t, x, ũ))D2
x ṽ‖s−2+‖(a1(t, x, u)−a1(t, x, ũ))Dx ṽ‖s−2

+‖a0(t, x, u)− a0(t, x, ũ)‖s−2.

Since s − 2 > 1/2 by assumption, then Hs−2(R) is an algebra and

‖(a2(t, x, u)− a2(t, x, ũ))D2
x ṽ‖s−2 ≤ Cs‖a2(t, x, u)− a2(t, x, ũ)‖s−2‖D2

x ṽ‖s−2

≤ Cs,r‖u − ũ‖s−2 (3.29)

where Cs,r is a positive constant depending on s and r , and more precisely

Cs,r = C ′s

⎛
⎜⎝ ∑
α+β≤[s]−1

sup
(t,x)∈[0,T0]×R

|w|≤Csr

|Dα
x Dβ+1

w a2(t, x, w)|
⎞
⎟⎠ ‖ṽ‖s

for some C ′s > 0.
Analogously, up to changing the constant Cs,r ,

‖(a1(t, x, u)− a1(t, x, ũ))Dx ṽ‖s−2 ≤ Cs,r‖u − ũ‖s−2 (3.30)

‖a0(t, x, u)− a0(t, x, ũ)‖s−2 ≤ Cs,r‖u − ũ‖s−2. (3.31)
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Substituting (3.29), (3.30) and (3.31) in (3.28) we have that

‖w‖s−2 ≤ 3Cs,r
√

c2e
1
2 (3+C̃(1+Cr ))T0

√
T0 sup

t∈[0,T0]
‖u − ũ‖s−2. (3.32)

We now choose T ∗ ≤ T0 sufficiently small so that

L := 3Cs,r
√

c2e
1
2 (3+C̃(1+Cr ))T ∗

√
T ∗ < 1,

and define

‖|u‖|s := sup
t∈[0,T ∗]

‖u(t, ·)‖s ,
B∗r := {u ∈ C([0, T ∗]; Hs) : ‖|u(t, ·)‖|s ≤ r}.

Then (3.32) implies that S : B∗r → B∗r is a contraction with the ‖| · ‖|s−2 norm:

‖|S(u)− S(ũ)‖|s−2 ≤ L‖|u − ũ‖|s−2, 0 < L < 1. (3.33)

Define now recursively

{
u1 = S(u0)

un+1 = S(un), n ≥ 1.

From (3.33):

‖|un+1 − un‖|s−2 = ‖|S(un)− S(un−1)‖|s−2 ≤ L‖|un − un−1‖|s−2

= L‖|S(un−1)− S(un−2)‖|s−2 ≤ L2‖|un−1 − un−2‖|s−2

≤ . . . ≤ Ln‖|u1 − u0‖|s−2.

Therefore,

‖|un+p − un‖|s−2 ≤ ‖|un+p − un+p−1‖|s−2 + ‖|un+p−1 − un+p−2‖|s−2

+ . . .+ ‖|un+1 − un‖|s−2

≤ Ln(1+ L + . . .+ L p−1)‖|u1 − u0‖|s−2

≤ Ln

1− L
‖|u1 − u0‖|s−2,

so that {un}n∈N is a Cauchy sequence in C([0, T ∗]; Hs−2) and hence converges in
C([0, T ∗]; Hs−2) to some u ∈ C([0, T ∗]; Hs−2). In particular, for every fixed t ∈
[0, T ∗],

un(t, ·)→ u(t, ·) in Hs−2. (3.34)
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At the same time, since Hs(R) is a reflexive space and ‖un(t, ·)‖s ≤ r , by Kakutani’s
Theorem we have that there exists a subsequence {unh }h∈N which weakly converges
in Hs to some ũ ∈ Hs(R):

unh (t, ·) ⇀ ũ(t, ·) in Hs (3.35)

and hence

‖ũ(t, ·)‖s ≤ lim inf
h→+∞ ‖unh (t, ·)‖s . (3.36)

From (3.34) and (3.35) we have that u(t, ·) = ũ(t, ·) ∈ Hs(R).
Moreover, by (3.33):

‖|S(un)− S(u)‖|s−2 ≤ L‖|un − u‖|s−2 → 0.

Therefore, as n→+∞:

u ← un+1 = S(un)→ S(u) in C([0, T ∗]; Hs−2),

so that S(u) = u ∈ C([0, T ∗]; Hs) and we have thus found a solution u ∈
C([0, T ∗]; Hs) of the Cauchy problem

{
P(t, x, u, Dt , Dx )u(t, x) = f (t, x), (t, x) ∈ [0, T ∗] × R

u(0, x) = u0(x), x ∈ R.

Since (3.26) is satisfied with v(t, ·) = unh (t, ·), for t ∈ [0, T ∗], from (3.36) we
have that

‖u(t, ·)‖2s ≤ c2e(3+C̃(1+Cr ))t

⎛
⎝‖u0‖2s +

t∫
0

‖ f (τ, ·)‖2s dτ

⎞
⎠ ∀t ∈ [0, T ∗]

which gives (1.9).
Uniqueness follows from (3.33).
The proof is thus complete. ��
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