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Abstract We prove local in time well-posedness of the Cauchy problem in Sobolev
spaces for semi-linear 3-evolution equations of the first order. We require real princi-
pal part, but complex valued coefficients for the lower order terms. Therefore decay
conditions on the imaginary parts are needed, as x — oo.
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1 Introduction and main result

Let us consider the Cauchy problem

P(t,x,u(t,x), Dy, Dy)u(t,x) = f(t,x), (t,x)e[0,T]xR (.1
u(,x) =up(x), xelR ’
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for the semi-linear operator
P:= D; +a3(t)D} + ax(t, x,u)D? + ay(t, x, u) Dy + ap(t, x,u),  (1.2)

where D := 13,a3 € C([0,T];R),a; € C(0,T];C®R x C)) and x +>
a;j(t,x,w) € BXR) (here B*°(R) is the space of complex valued functions which
are bounded on R together with all their derivatives), for j = 0, 1, 2.

We are so dealing with a semi-linear non-kowalewskian 3-evolution equation Pu =

f with the real characteristic (in the sense of Petrowski) T = —a3(r)&3. In the case
az(t) = —l,a0 = agp = 0,a;(t,x,u) = —6u, we recover the Korteweg-de Vries
equation.

The aim of this paper is to give suitable decay conditions on the coefficients in
order that the Cauchy problem (1.1) is locally in time well-posed in H*® with s great
enough, and in H*.

The well-posedness result will be achieved by developing the linear technique of
[5] (coming from the examples in [7,8] and used also in [3,4]), and applying then a
fixed point argument, following the ideas of [1,2,9].

We consider here x € R only for simplicity’s sake; x € R",n > 2 could be
considered with only technical changes in our proofs, see [10,13].

The assumption a3 (¢) € R is due to the necessary condition of the Lax-Mizohata
Theorem (cf. [15]), while the assumptions a; (¢, x, w) € Cfor 0 < j < 2 imply some
decay conditions on the coefficients because of the necessary condition of Ichinose
(cf. [12]). We shall thus assume, in the following, that there exists a constant C3 > 0
such that

a3(1) = C3 Vi €0, T], (1.3)

and that there exist constants C, & > 0 and a function # : C — R7T bounded on
compact sets (for instance, 4 continuous) such that for all (¢, x, w) € [0, T] x R x C:

Tman(e, x, w)] < meeh(“’) (1.4)
Tmar ¢, x, w)] < mil/zhuu) (1.5)
[Reax(t, x, w)| < Ch(w) (1.6)
BeRear(t, x, w)]| < mil/zhuu) (1.7)
Buwas(t, x, w)] < m%h(wx (1.8)

with the notation (x) := +/1 + x2.
Under the assumptions above we prove the following result:

Theorem 1.1 Let P be as in (1.2) satisfying (1.3)—(1.8). Then the Cauchy problem
(1.1) is locally in time well-posed in H*°. More precisely, for every given s > 5/2
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and for all f € C([0, T]; H*(R)) and ug € H*(R), there exists 0 < T* < T and a
unique solution u € C([0, T*]; HS(R)) of (1.1) satisfying the following inequality:

t
(e, M2 < e | lluoll? + / I £ (z, )lI2de vt € [0, T*], (1.9)
0

for some positive constant o depending on s.

Remark 1.2 Estimate (1.9) gives local in time well-posedness of the Cauchy problem
(1.1) in H®, s > 5/2. By the same estimate we gain also H*> well-posedness: if the
Cauchy data are f € C([0, T]; H®(R)) and ug € H*°(R), then the solution u €
C([0, T]; H®) forevery s > 5/2, and then by Sobolev’s embeddings we immediately
getu € C([0, T]; H™).

Example 1.3 Let us consider the non-linear equation

P(t,x,u, Dy, Dy) = Dju + a3(t) D3 + ax(x, u) D2u = f(t, x)

with
feC(0,T]; H'(R)), s=>5/2
az(t) € C([0, T; R), asz(t) >C3 >0Vt e[0,T]
( - sin x* 1 £>0
ar(x, w) =i , a, &> 0.
2 (14x2)F T+ w?
Then
Imay| < (x)—”g
5 _ . sin x“ 2w _ 2 - 2
| w012| = |—1 (x)H'E (a +w2)2 —= (x)H'E — (x>1/2'

Therefore Theorem 1.1 can be applied to get, for some 0 < 7* < T, a unique solution
u € C([0, T*]; H*(R)) of the Cauchy problem

P(t,x,u, Dy, Du(t,x) = f(t,x) (¢t,x) € [0, T*] xR
u0,x) =up(x) € H*(R), x eR.

The same result holds if, more in general, we take
ar(t, x, w) = ias(t, x)ay (w)

for some real valued functions a) € C([0, T]; B*(R)) satisfying (1.4) and a) €
C([0, T]; C*(R)) with bounded derivative 9,,a5.
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Example 1.4 By simple computations it is easy to check that Example 1.3 works also
S a1, ia(t,x)
considering, for example, a» (¢, x, w) = <jjr2;>).clg, orax(t,x,w) = mﬁ’

real valued function a} € C([0, T]; B*(R)) satisfying (1.4).

with a

2 Notation and main tools

The proof of Theorem 1.1 is based on the pseudo-differential calculus. In this paper we
denote by S := S (R2) the space of symbols a(x, &) such that for every o, 8 € N

sup 3¢ Dla(x, £)1()," 1 < o0,
x,6€R

where (£)5 := vh% + &2, h > 1 fixed. Our symbols will be of the form a(x, w, &),
depending smoothly on a parameter w € C.
The idea of the proofis to fix u € By,

B, :={ueC(0,T]; H*) : sup |lu(t,)lls <r},
tel0,T]

with r > 0 to be determined later on, to solve the linear Cauchy problem

[P(t,x,u, Dy, Dy)v=f (2.1)

v(0, x) = uo(x)

in the unknown v(¢, x) following [5], and then use a fixed point argument to find the
solution of the non-linear Cauchy problem (1.1).

For this reason we recall now some definitions and results from [5]. According to
[5, formula (2.4) and Remark 3.1], we define

ho(x, €)== My / e (2 ) ay 2.2)
/ &)

h(x, €)= M1/<y>5w(<i)2)dy () 2.3)
/ &)

where the constants M, M> > 0 have to be chosen in the sequel, ¢ € C(‘)>O (R) satisfies
0<y¢y <1land

1

_J1 =3
w(y)—IO |y|zf.
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Then

(x)
ha(x, )] < Mz/<y>*‘*€dy <G

0
1

110, 6)] < CM1(x)2(E);, Xouppy (¥) < C1M1,
for some C, C; > 0, where xsuppy is the characteristic function of the support of

Y ((x)/(E)7)-
Therefore, for A(x, &) := A1(x, £) + Azx(x, &), we have that

|A(x, §)| < C) (2.4)
for some Cé > (; moreover, from [5, Lemma 2.1] (with § = 0):
|3§‘D5'3A(x, E) <dapl&),” Va,peN, (2.5)
for some &4, > 0.
This proves that the pseudo-differential operator e *-Px) has symbol e2*§) ¢ §9,
and then we can apply the following:

Lemma 2.1 (see Lemma 2.3, [5]) Let A(x, &) satisfy (2.5). There exists a constant
ho > 1 such that for h > hq the operator e is invertible and

€™M T =e NI+ R), (2.6)

where I is the identity operator and R is an operator of the form R = Z::Cxl) r't with
principal symbol

r(x,§) = 0¢A(x, §)Dx Ax, §). 2.7

We conclude this section by recalling two results that will be crucial in deter-

mining the minimal assumptions needed on the coefficients a; in (1.2) to get the
well-posedness result here presented:

Theorem 2.2 (Sharp-Garding inequality, [14]) Let a(x, Dy) be a pseudo-differential

operator with symbol a(x, &) € S™ suche thatRe a(x, &) > 0. Then there exists ¢ > 0
such that

Re (a(x, Do)u, uy = —cllullg, ) - (2.8)

Theorem 2.3 (Fefferman—Phonginequality, [11])Leta(x, &) € S™ witha(x,&) > 0.
Then there exists ¢ > 0 such that

Re (a(x, Dy)u, u) > —cllull, s /- (2.9)
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3 Proof of Theorem 1.1

To start with the proof we fix s > 5/2, f,u € C([0, T]; H*) and ug € H*(R) , and
consider the linear Cauchy problem (2.1). A direct application of [5, Theorem 1.1 and
Remark 1.5] immediately gives the existence of a unique solution v € C([0, T]; H*)
of problem (2.1) such that

t
v, Y2 < Cs@) | luoll2 + / I f(z, )2dT Vvt € [0, T] (3.1)
0

for some C (1) > 0, since assumption (1.4) gives no loss of derivatives (¢ = 25 = 0
in [5, Theorem 1.1]). This is not enough for our purposes, since to proceed with the
proof and apply a fixed point scheme we need to know precisely the constant C (u).
We thus quickly retrace in what follows the proof of Theorem 1.1 in [5], taking care
of the dependence of the constants on the fixed function u, and taking advantage of
the choice of p = 3.

We write

iP(t,x,u, D, Dx) = 0y + A(t, x, u, Dy)
with
A(t,x,u, Dy) := ia3(t)D§ +iax(t, x, u)Df +iai(t,x,u)Dy +iaop(t, x, u)

and compute the symbol of the pseudo-differential operator (e*) ™! Ae™.
We have:

o(Aed) = (ia3€® + ia€® + ia1€)e™ + Biaze? + 2iar€)Dye™
l . 2 A A
+5 (6iaz§) Die™ + Ae (3.2)

for some A € S°.

To compute then o ((e®)~1Ae?) we need to write down the symbol of (eM)! by
means of (2.6) and (2.7).

In the sequel it will be useful to estimate, from (2.2) and (2.3):

[0 A2(x, &) < M> j<y>_l_8(y> a&‘L W ﬂ dy 5C5M2MXsupp¢’
/ (&)2 &)z &)

(3.3)
(x)

[0xA2(x, E)|| = Mz(X)_l_ew(W) < Ch)My(x)™'7° 34
h
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X

10 A1(x, §)| = My

_1 1 A )
/ 5~ (35—2)1/f (—)dy
/ By

+ M

U E

oo @ (02

< C\ M, (W)ﬁuppw’ + —=
M

-1 (x> —1 /
[0xA1(x, 8)| = Myi(x) 2 2 &), =CiM

h

for some Cj, C| > 0, where Xsuppy 18 the characteristic function of

A ) 1
supp ¥ (@)E [x eR: 5@)2 <

Therefore

1

F(x, E)] = 106 A(x, &) - Dy A(x, &) < Cary mp (x)27(E)

by simple computations we get that 7(x, £) € S~2 and, by (2.6) and (2.7):
(€™M T =e (I +F+R_3)

of order —3.

Then, from (3.2):

o () Aeh) = (™ + e (i3 + i +iag )
T 4 e M) (3ia3§2 + 2ia2§) (D A)e™
(e + e 2 F) (BiazE) (DfA + (DXA)Z) oA

— @) (iDsarg?) = @A) (ia38” +ia26%) (D, )

— (9 A) (3ia3§2) (DfA + (DxA)z)
+ % (agA + (agA)z) (ia353) (DfA + (DxA)z) + A

— a3 i€ ¥ iarE +F(x, £) (m3g3) 4 (3ia3$2) (D, A)

@ Springer
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+ Qiaz6) (Do A) + Giazé) (DIA + (D))

— @) (iDarg?) = 7 (x, &) (ia38”) + AF
= ia3¢” + [ia26” + (3ia:7) (Di22)]

+ [ins + (3ia382) (D) + Qiar§) (Do)

+ (Giaz€) (Dﬁxz n (Dxxz)z) — (8s22) (liazé'z)] + Ao

for some Aj), Ay, Ao € SO, since a3 = az(r) and because of (3.3) and (3.5).
Therefore

o (€™ 7TAet) = A3 + Ay + A1 + A,

with A; € S/ defined by:

A3(t,£) = iazt’
Ao(t,x,u, §) i= iaE? + (Biazt?) (Do)
At x,u, 8) = iar & + (Biazg?)(Dxry) + 2iazé)(Dyh)
+ (Biasg)(D2ra + (Dx22)?) — (922) (i Dxart?).

Note that assumption (1.3) implies
Re A3(t, &) = 0. (3.7

As in the proof of Theorem 1.1 of [5], we look first for M»> > 0 great enough to apply
the Fefferman—Phong inequality (2.9) to

Re Ay = —Im a2&? + 3a3E29,Ms. (3.8)
By (1.4)
IImax(t, x, u)&?| < Lh<u><s>2 (3.9)
e = (x)lte h :

while, by (1.3) and (3.4), for |§| > h we have

(x

3a3(1)E2 0 ha(x, &) = 3Maaz(NE> (x) "y (#)
h

> 3MaCayr(x) g

3
> EM2C3W(X)_1_E(E)%- (3.10)
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Substituting (3.9) and (3.10) in (3.8):

3 2 C
Re s 2 —=MCsd SL — m—mhwmi
3 2
=y (EC3M2 - Ch<u)) (SZL Chu )<(§f+€ (1=
()i

3
> v (ﬁcst — Ch(“)) (>—1+8 2Ch(u)

since (E)i < 2(x) on supp (1 — (%))
h
We thus choose M, > ﬁCcr/3C3, where

cr = sup h(u)
(1,x)€[0, TT1xR
ueB,

is a positive constant because 4 maps compact sets into bounded sets by assumption
and sup(; )ep0,71xr [1(t, X)| < Cs sup,epo 7y lu(, s since s > 3 > 5 by Sobolev
embedding Theorem.

Then

Re A2(t, X, U, é) > _2CCV

and, applying the Fefferman—Phong inequality (2.9) to the operator Re A (¢, x, u, §)+
2Cc¢,, we have that

Re (Re Apz, 7) = —c(1 + ¢)zllg (3.11)

for some fixed constant ¢ > 0.
On the other hand, we can write the operator Im A» (¢, x, u, D) = iReay (¢, x, u)
D? as
X

Im Ay + (Im A2)*  Im Ay — (Im Ag)*
ImA, = - 2+2(m2)+m 2 Z(mZ) (3.12)

with

ImA>, — (Im Ay)*
Re<m22(m 2)

1 1
z, z> = ERe (Im Arz, z) — ERe (z,Im Asz)

1 |
= ERe (ImAyz, z) — ERC (ImAzz,z) =0 (3.13)
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* .
and w of order 1 since

o (Im A2) + o ((Im A)*) ~ o (Im Ap) + > | —ag D% (Im A)

a>0
= iReart? — iRe ap€? + 3 D, (—iRe azE?) + By
= —20,Re aré + By

for some By € SO,
Let us now choose M; > 0 in order to apply the sharp-Garding inequality (2.8) to

Ay(t, x,u, Dy) == A{(t, x,u, Dy) — 2(3;Re ap) Dy
with symbol

ALt x,u, 8) = ia1E + (Biazg?)(Dyhy) + (2iazé)(Dyd2)
+ (BiazE)(D2hy + (Dy12)?) — (3g22) (i Dyazk?) — 2(3cRe ar)é.

(3.14)
By (1.3) and (2.3):
Re (Biaz&2 D) = 3a3E20c A
> 3clgPMy (x) "2y ﬂz €)'
&)
3 En
7C3M1w Bk (3.15)
if [&] > h.
On the other hand, by (1.5):
C
Re (ia1§)| = [Imay]| - |§] < m—mh(u)(f?)h. (3.16)
By (1.6) and (3.4):
[Re [(2iax8)(DxA2)] = |2Re ax§dx 22|
l—¢ (x)
= 2[Rea|(§)nMr(x)” Y| —5
&),
(E)n
oG (3.17)
By (1.3):
Re [(3iaz&)(D*hy + (DxA2)?) = 0. (3.18)
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By (1.7), (1.8) and (3.3):

IRe [(3g42) (i DyazE™)]| = 8522 - [Re 3y (aa(t, x, w))| - |E[*

1—¢

< M= o= Xouppy - IRe (dxa) + Re (Da2) (x0) [(E)7
h
< My oo - b ) (L + [3,u) (E)}
e W wS
< cCMah(u)(1 + |3ul) <f>>1’;2 (3.19)
for some ¢ > 0.
By (1.7) and (1.8):
|0xRe (ax(t, x, u(t, x)))&| = |9c(Re az) + Re (3ya2) (dcu)| - |£]
< h(u)(1 + [0xu){&)n. (3.20)

— (x>1/2
Substituting (3.15)—(3.20) in (3.14) and taking into account that (x)~'/?(£), < 2 on

supp (I — ), we finally find a constant ¢ > 0, which depends also on the already
chosen M>, such that

ReA| > (3—21\411/; — Ch(u) — 2C Mayrh(u)

(E)n
(x>1/2

—cCMah(u)(1 + |0yul) — Ch(u)(1 + |8xu|))

3C
=y (_3M1 — C(My)h(u)(1 + |8xul)) S

V2 oz
— (=P CM)R(A + |3xu|)<)<cg)—)1l/12
> —2C(Mp)C,

for some constant C(M;) > 0 which depends on the already chosen M», and for
My = YLD C, with

C, = sup h(u)(1 4+ |0 ul) > cp.
(t,x)€[0,TIxR
UEB,

Applying the sharp-Gérding inequality (2.8) to Aj 4+ 2C(M»)C, we obtain that
Re (A1 (t, x,u, Dy)z.2) = —c(1 4+ 2C(M2)C,) |25 (3.21)

for some fixed constant ¢ > 0.
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Summing up, we have chosen M, M, > 0 sufficiently large so that Ay :=
(e®)~TAe? satisfies:

Re ((¢®)'Aetz,2) > —C(1 + C)llzlI} (3.22)

for some fixed constant C > 0, because of (3.7), (3.11), (3.13) and (3.21).
Now, for every z € C([0, T]; H3) N C'([0, T]; L?), from the identity i Py =
3 + Ap, where Py = (e®) 1 Pe?, Ap := (e®) 1 Ae?, we have:
d .
EIIZIIO = 2Re (07, z) = 2Re (i Ppz, 2) — 2Re (Apz, 2)
< 2 Pazlly + 1213) + €A + CHlz}
= 2| Pazll§ + 2+ C( + C)lIzll3.

By Gronwall’s Lemma:

t
lz]13 < e®FCAFENT {1200, )13 + / 2| Paz(z, ) I3dT

0
By usual arguments we get also, for s > 5/2:
t
Iz < eBFEUTEDT {120, 7 + / IPaz(z, )l5dT | (3.23)
0

The a-priori estimate (3.23) gives existence and uniqueness of a solution z €
C([0, T']; H®) of the Cauchy problem

Pp(t,x,u, Dy, Dy)z(t, x) = fa(t, X)

3.24
2(0, x) = (up)a(x) G2
equivalent to (1.1) for fo = (™)' f, (up)a := (¢®)"'up; moreover the solution
satisfies the following energy estimate:
t
Izl < eCHEUFED (g a )} + / I fa(z. l3d . (3.25)
0

Remark now that z is a solution of (3.24) if and only if v = ez is a solution of
(2.1). Since e e S°, from (3.25) we thus have that the solution v of the Cauchy
problem (2.1) satisfies:
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t
ol < crllzllf < c1eBTCIHED o) all + / I falT, )| 2dT
0

t
< e FCUFED 012 4 / I £ (z, )lI2d |, (3.26)
0

for some fixed constants ¢y, c; > 0. Note that (3.26) implies (3.1) for C(u) =
C26(3+é<1+c,))r.

It is then defined a map

S: B — C(0,T]; H

u —v

which associates, to every fixed u € B,, the unique solution v € C([0, T']; H®) of the
Cauchy problem (2.1), satisfying

o
v, s < J/e2e2 CFCATEN (uglls + V2 f(2,)ls) Ve e[0,T].  (3.27)

We now choose r > 2e./cy max{luolls, sup;efo. 71 | £ (7, )lls}. Then
r .
ot )l < 51+ Ve dHaramt <

if r € [0, To] for Ty sufficiently small.
For such a choice of Tjy we thus have that, for

ue B :={ueC(0,Tol: H): sup |u(t,)|s <r}
t€[0,To]

the Cauchy problem (2.1) admits a unique solution v € BY, i.e.
S: BY — B
We are now ready to use a fixed point argument. Fix u, i € B?, let v = S(u) and
v = S(u) the corresponding solutions of (2.1) and set w = v — v.

From

Dyv + a3(t) D3v + ax(t, x, u)D>v 4 ay (t, x, u) Dyv + ap(t, x, u) = f(t, x)
Do+ a3(t) D30 + ax(t, x, @) D20 4 ay (t, x, @) Dy ¥ + ao(t, x, it) = f(t, x)

we have that

Dyw + a3(t) D3w + ay (1, x, u) D>v — ax (t, x, i) D>
+ai(t, x,u)Dxv —ai(t, x,u) Dxv + ao(t, x, u) — ao(t, x, ) = 0,
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i.e.

Dyw + a3(t)D£w +asr(t, x, u)Dwa +ai(t,x,u)Dyw
+lax(t, x,u) — ax(t, x, )]DFV + [ar (t, x, u) — ai (¢, x, )] Dy D
+[a0([1 X, u) - aO(t: X, ﬁ)] = O

This means that w is a solution of
P(t,x,u, Dy, Do)w(t, x) = f(t,x,u,ii, v),
where 13(t, x,u, Dy, Dy) := P(t,x,u, D;, Dy) — ao(t, x, u) and

ft, x,u,it,0) := [ay(t, x, u) — ax(t, x, ii)| D>D
+ [al(tvxv M) - Cl](t,.x, ’Z)]Dxﬁ + [ao(t,x» l/l) - aO(t,x» ﬁ)]

Since u, u, v € C([0, Ty]; H®) we have that f e C([0, Tyl; HS_Z) and, from (3.27)
and w(0, x) = 0:

1 ~ ~
lw(t, )ls—2 < /c2e2CHCATEDT /T sup || Fll5—2 (3.28)
te[0,Tp]

with

I flls—2 < Il(aa(t, x, w)—ax(t, x, @) D0 |ls—2+ (a1 (1, x, u)—ai (t, X, @) Dy ]l 5—2
+llao(t, x, u) — ao(t, x, i) |ls—2.

Since s — 2 > 1/2 by assumption, then H*~2(R) is an algebra and

I (@a(t, x, u) — as(t, x, @))D>D||s_» < Cyllaz(t, x, u) — az(t, x, it)|ls_2|| D*ls_2
< Cyrllu —ills—2 (3.29)

where Cy , is a positive constant depending on s and r, and more precisely

Cor=Ci| > sup  [DEDE ay(r, x, w) | I3l
a+p=[s]—1 E-0E0.T]xR
- [w|=<Csr

for some C; > 0.
Analogously, up to changing the constant C .,

l(ai(t, x, u) —ai(t, x, i) Dxvlls—2 < Cs,r”u — ills—2 (3.30)
llao(t, x, u) —aop(t, x, W) |s—2 < Csrllu — ills—2. (3.3D)
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Substituting (3.29), (3.30) and (3.31) in (3.28) we have that

o
lwlly—2 < 3Csr/e2e23TCTHEDNTO /Ty sup fu — it (3.32)
t€[0,To]

We now choose T* < Ty sufficiently small so that

L :=3C, ,[ope? GHCATENT" /%

and define
Mullls :== sup |lu(, )lls,
t€[0,T*]
B :={u e C(0,T*; H*) : |llu(t, )lls <r}.
Then (3.32) implies that S : B — B} is a contraction with the ||| - ||[y—2 norm:

1S@) — S@llls—2 < Llllu — ullls—2, 0<L <1 (3.33)

Define now recursively

up = S(up)
Upt1 = S(uy), n>1.
From (3.33):
Mnr1 — unlls—2 = NSun) — Swn-lls—2 < Llllun — up—1llls—2
= L{IS(un-1) — Sn-2)lls—2 < L2llltn—1 — un—2llls—2
< ... < L"[lug — uollls—2-
Therefore,

|||un+p —uplls—2 < |||un+p — Un+p—1 ls—2 + |||un+p—1 - un+p—2|||s—2
+.o A Munr — unllls—2
L'+ L+ ...+ L7 Dy = uollls—2

n

1-L

IA

IA

Il — uollls—2.

so that {u,},en is a Cauchy sequence in C([0, T*]; HS_Z) and hence converges in
Cc ([0, T*; HS_Z) to some u € C([0, T*]; HS_Z). In particular, for every fixed ¢t €
[0, T*],

un(t,) — u(t,-) in H* 2. (3.34)
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At the same time, since H* (R) is a reflexive space and ||u, (¢, -)||s < r, by Kakutani’s
Theorem we have that there exists a subsequence {u,, },cy which weakly converges
in HS to some u € H*(R):

Upny, (t,-) = u(t,-) in H* (3.35)
and hence
i (t, ) s < liminf [Ju,, (£, )s. (3.36)
h—+o00

From (3.34) and (3.35) we have that u(¢, -) = (¢, -) € H*(R).
Moreover, by (3.33):

1S un) — S@)lls—2 < Llllup — ullls—2 — 0.
Therefore, as n — +o0:
U <ty = Sup) — Sw)  in C([0, T*]; H*™?),

so that S(u) = u € C([0,T*]; H*) and we have thus found a solution u €
C([0, T*]; H") of the Cauchy problem

P(t,x,u, D;, Dy)u(t,x) = f(t,x), (t,x) € [0, T*] xR
u(0, x) = up(x), x eR.

Since (3.26) is satisfied with v(z,-) = up, (¢, -), for t € [0, T*], from (3.36) we
have that

t
llu(r, H|Z < creBTCAFENT {3002 + / I £ (. )|>dT vt € [0, T*]
0

which gives (1.9).
Uniqueness follows from (3.33).
The proof is thus complete. O
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