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Abstract The purpose of this paper is to present a fixed point theorem due to Dass
and Gupta (Indian J Pure Appl Math 6:1455-1458, 1975) in the context of partially
ordered metric spaces.
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1 Introduction

In [1], Dass and Gupta proved the following fixed point theorem.

Theorem 1 Ler (X, d) be a complete metric space and T : X — X a mapping such
that there exist a, B > 0 with o + B < 1 satisfying

ad(y, Ty)[l +d(x, Tx)]
d(Tx,Ty) < T+ d0y) +Bd(x,y)
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forallx,y € X.
Then T has a unique fixed point.

The aim of this paper is to give a version of Theorem 1 in the context of partially
ordered metric spaces.

Existence of fixed point in partially ordered metric spaces has been considered
recently by many authors (see, [2-13], for example).

2 Main result

Definition 1 Let (X, <) be a partially ordered set and 7: X — X. T is said to be a
nondecreasing mapping if for x, y € X

x<y=Tx<Ty.

Theorem 2 Let (X, <) be apartially ordered set and suppose that there exists a metric
d in X such that (X, d) is a complete metric space. Let T : X — X be a continuous
and nondecreasing mapping such that there exists o, B > Q with o + B < 1 satisfying

diy, Ty)[1 +d(x, T
d(Tx,Ty) < 2dly. Ty)ll +d(x, Tx)] +Bd(x,y) forx,y e Xwithx <y.
1+d(x,y)

D

If there exist xy € X such that xg < Txq then T has a fixed point.

Proof If T xg = x¢ then the proof is finished.
Suppose that xg < Tx¢. Since T is a nondecreasing mapping, by using induction,
we obtain

x0<Tx0§T2x0§...§T"xofT”'onf....

Put x,, 41 = Tx,.

If there exists n > 1 such that x,,11 = x, then x,,41 = Tx, = x,, and x,, is a fixed
point of 7" and the proof is finished.

Suppose that x,+| 7# x, forn > 0.

Since x,4+1 < x, for any n € N, using the contractive condition (1), we have for
n=>1

d(xp, Xp+1) = d(Txp—1, Txy)

oadxy, Tx)[1 +dxy—1, Tx,—1)
1 +d(xp—1, xn)

_« d(xn, Xp+ D +d(xp—1, Xn)]

B 1 4+d(xp—1,xn)

] + Bd(xp—1,xn)

+ ﬁd('xn—ls xi’l) 9

and, the last inequality implies

(1 —a)d(x,, xy4+1) < Bd(xy,—1,x,) foranyn € N,
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or, equivalently,

d(xp, Xp+1) < 1 d(xp—1,x,) foranyn e N.

Using mathematical induction, we have

n
d(xy, Xp41) < (li) d(xo, x1) foranyn e N.
—

Notice that r = < 1.

—o
Moreover, for m > n, we have

d(xp, xm) < dxy, Xp41) + .o+ dXp—1, Xim)
<"+ ...+ " Hd(xg, x1)

rl’l

<

d(xg, x1).

—r

Letting n, m — oo and, since r < 1, we obtain lim d(x,, x,,) = 0.
n,m— oo

This proves that (x,) is a Cauchy sequence.
Since (X, d) is a complete metric space, lim x, = x for certain x € X.
n—oo

The continuity of T gives us

Tx =T ( lim xn) — lim Txp, = lim x4 = x.
n— oo n—>0oo n—0oo

Therefore, x is a fixed point.
This finishes the proof. O

In the sequel, we will prove that Theorem 2 is still valid for 7 not necessarily
continuous, assuming the following hypothesis in X:

if (x,) is a nondecreasing sequence in X such that x,, — x then x,, < x foralln € N.

@

Theorem 3 [f in Theorem 2 we replace the condition of continuity of T by (2), the
same conclusion holds.

Proof In fact, following the proof of Theorem 2, we only have to check that x is a
fixed point.

Since (x;) is a nondecreasing sequence in X and x, — x then, by (2), we have
x, < x foralln € N.
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Using the contractive condition, for any n € N, we get

d(-xl’l-i-]’ T-x) = d(T-xl’l’ T-x)
adx, Tx)[1 +d(x,, Tx,)]
< d(xy,
< T+ dGe, x) + B d(xn, x)
_ad(x, Tx)[1 +d(xn, Xp41)
N 1 +d(x,, x)

] + Bd(xn, x).

Taking into account that if x,, — x then d(x,, x,4+1) — 0, letting n — o0 in the
n—oo

last inequality, it follows
dx,Tx) <ad(x,Tx)

and since o < 1, this is imposible unless that d (x, Tx) = 0O this proves that Tx = x.
Thus, the proof is complete. O

Now, we present an example where it can be appreciated that assumptions in The-
orem 2 do not guarantee the uniqueness of the fixed point. This example appears
in [9].

Example I Let X = {(1,0) (0, 1)} C R? and consider the usual order given by
(x,y) <(z.t) & x<zandy <t.

(X, <) is a partially ordered set whose different elements are not comparable. Besides,
(X, d»), where d; is the euclidean distance, is a complete metric space. The identity
map T (x,y) = (x, y) is obviously continuous and nondecreasing and the contractive
condition appearing in Theorem 2 is satisfied since elements in X are only comparable
to themselves. Moreover (1, 0) < T(1,0) and T has two fixed points.

In what follows, we present a sufficient condition for the uniqueness of the fixed
point in Theorems 2 and 3.
The condition is:

forx, y € X there exists a lower bound. 3)

Theorem 4 Adding assumption (3) to the hypotheses of Theorem 2 (or Theorem 3)
we obtain uniqueness of the fixed point.

Proof Suppose that x, y € X are fixed point of 7. We distinguish two cases:
Case 1: x and y are comparable.

Suppose x < y (the same argument works for y < x). By using the contractive
condition, we get

d(x,y) =d(Tx,Ty)
ad(y, Ty)[1 +d(x, Tx)]
= 1+dx,y) +Bd(x. )

=pdx,y).
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Since § < 1, this is only posible when d(x, y) = 0. Thus x = y.
Case 2: x and y are not comparable.

By (3), there exists z € X withz <xandz < y.

Since z < x, the nondecreasing character of T gives us

T"z <T"x =x foranyn € N.
By using the contractive condition, for any n € N, we have

d(T"z,x) = d(T"z, T"x)
- ad(T" x, T"X)[1 +d(T" 'z, T"2)]
- 1 +d(Tn—1z, Tr—1x)
adx, )1 +d(T" 1z, T"7)] )
= d(T" 'z,
T dT 70 + Bd( 7, X)

=Bd(T" 'z, x).

+Bd(T" 'z, 7" x)

Using mathematical induction, we obtain
d(T"z,x) < p"d(z, x)

and, since B < 1, lim d(T"z,x) =0.
n—o00
This means that lim 7"z = x.
n— o0
Using a similar argument, we can get lim 7"z = y.
n— o0
Finally, the uniqueness of the limit gives us x = y.
This finishes the proof. O

3 Some remarks
Remark 1 In[9] instead condition (3), the authors use the following weaker condition:
For x, y € X there exists z € X which is comparable to x and y. @)

We have not been able to prove Theorem 4 using condition (4).
The reason is that the contractive condition appearing in Theorem 2 is not symmetric
in the following sense, it adopts distinct forms depending x < y or y < x.

Remark 2 If in Theorems 2, 3 and 4, we put ¢ = 0, then Theorems 2.1, 2.2 and 2.3
of [9] are obtained.

If in Theorems 2, 3 and 4, § is equal to zero, we have the following fixed point theorem
in ordered metric spaces.

Theorem 5 Let (X, <) be apartially ordered set and suppose that there exists a metric
din X such that (X, d) is a complete metric space. Let T : X — X be anondecreasing
mapping such that there exists o € [0, 1) satisfying
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d(y, Ty)[14+d(x, T
d(Tx, Ty) < xd(y 1)—2[51(—: y()x 2l forx,y e X withx <y. (&)

Suppose also that either T is continuous or X satisfies condition (2).
If there exist xg € X such that xo < Txo then T has a fixed point.
Besides, if (X, <) satisfies condition (3), then the fixed point is unique.

Remark 3 If in Theorems 2,3 and 4, = 0and 0 < 8 < % then the contractive
condition (1) appearing in Theorem 2 implies that

d(Tx,Ty) <yldx,Tx)+d(y,Ty)] forx,y e X withx <y,

where y € (0, %) (this is a Kannan type condition).
In fact, sincea =0and 0 < 8 < %, the condition (1) takes the form

d(Tx,Ty) < Bd(x,y) forx,ye X withx < y.
By using the triangular inequality, for x, y € X with x < y we have
d(Tx,Ty) <Bd(x,y) =Bldx,Tx)+d(y, Ty)l+Bd(Tx,Ty),

and from this inequality it follows

d(Tx,Ty) < %[d(x, Tx)+d(y, Ty)].

From0 < 8 < % it is easily proved that y = % € (O, %)

Remark 4 If diamX < 1 and 2« 4 B < 1 then the contractive condition (1) appearing
in Theorem 2 implies the following Reich type condition:

d(Tx,Ty) <adx,Tx)4+ad(y, Ty)+ Bd(x,y) forx,y e X withx <y.

In fact, for x, y € X with x < y we have

ad(y, Ty)[1 +d(x, Tx)]
d(Tx,Ty) < T+dGy) +Bd(x,y)
<ad(y, Tl +dx, Tx)]+Bd(x,y)

<ad(y,Ty) +ad(y, Ty)d(x, Tx) + Bd(x, y).

Since diamX < 1, d(y, Ty) < 1, and therefore, the last inequality implies that
d(Tx,Ty) <ad(y,Ty)+adx,Tx) + Bd(x,y).

In the sequel, we present an example where Theorem 2 can be applied and it cannot
be treated by Theorem 1.
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Example 2 Let X = {(0,1) (1,0) (1, 1)} and we consider in X the partial order
given by R = {(x,x): x € X}. Notice that elements in X are only comparable to
themselves. Moreover, (X, d»), where d; is the euclidean distance, is a complete metric
space.

Let T: X — X be defined by 7(0,1) = (1,0) 7(1,0) = (0,1) and T(1, 1) =
(1, 1).

Obviously, T is continuous and nondecreasing, and the contractive condition
appearing in Theorem 2 is satisfied since elements in X are only comparable to them-
selves.

As (1,1) < T(1, 1), Theorem 2 says us that 7 has a fixed point [this fixed point is
(1, DI

On the other hand, for x = (0, 1), y = (1, 1), we have

d(Tx, Ty) =dr(x,y) =1
d(x, Tx) =2
dr(y, Ty) =0

and the contractive condition appearing in Theorem 1 is not satisfied since

dy, Ty)[1 +d(x, T
| = dy(Tx, Ty) < 240 1%; y()x D4 gag.y)
o 0[1++/2] o
=1 ‘e l=p1=p

Therefore, this example cannot be treated by Theorem 1.

Moreover, notice that in this example we have uniqueness of the fixed point and
(X, <) does not satisfy condition (3). This proves that condition (3) is not necessary
condition for the uniqueness of the fixed point.
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