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Abstract The purpose of this paper is to present a fixed point theorem due to Dass
and Gupta (Indian J Pure Appl Math 6:1455–1458, 1975) in the context of partially
ordered metric spaces.
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1 Introduction

In [1], Dass and Gupta proved the following fixed point theorem.

Theorem 1 Let (X, d) be a complete metric space and T : X → X a mapping such
that there exist α, β ≥ 0 with α + β < 1 satisfying

d(T x, T y) ≤ α d(y, T y)[1 + d(x, T x)]
1 + d(x, y)

+ β d(x, y)
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for all x, y ∈ X.
Then T has a unique fixed point.

The aim of this paper is to give a version of Theorem 1 in the context of partially
ordered metric spaces.

Existence of fixed point in partially ordered metric spaces has been considered
recently by many authors (see, [2–13], for example).

2 Main result

Definition 1 Let (X,≤) be a partially ordered set and T : X → X . T is said to be a
nondecreasing mapping if for x, y ∈ X

x ≤ y ⇒ T x ≤ T y.

Theorem 2 Let (X,≤) be a partially ordered set and suppose that there exists a metric
d in X such that (X, d) is a complete metric space. Let T : X → X be a continuous
and nondecreasing mapping such that there exists α, β ≥ 0 with α+β < 1 satisfying

d(T x, T y) ≤ α d(y, T y)[1 + d(x, T x)]
1 + d(x, y)

+ β d(x, y) for x, y ∈ X with x ≤ y.

(1)

If there exist x0 ∈ X such that x0 ≤ T x0 then T has a fixed point.

Proof If T x0 = x0 then the proof is finished.
Suppose that x0 < T x0. Since T is a nondecreasing mapping, by using induction,

we obtain

x0 < T x0 ≤ T 2x0 ≤ . . . ≤ T n x0 ≤ T n+1x0 ≤ . . . .

Put xn+1 = T xn .
If there exists n ≥ 1 such that xn+1 = xn then xn+1 = T xn = xn , and xn is a fixed

point of T and the proof is finished.
Suppose that xn+1 �= xn for n ≥ 0.
Since xn+1 ≤ xn for any n ∈ N, using the contractive condition (1), we have for

n ≥ 1

d(xn, xn+1) = d(T xn−1, T xn)

≤ α d(xn, T xn)[1 + d(xn−1, T xn−1)]
1 + d(xn−1, xn)

+ β d(xn−1, xn)

= α d(xn, xn+1)[1 + d(xn−1, xn)]
1 + d(xn−1, xn)

+ β d(xn−1, xn) ,

and, the last inequality implies

(1 − α) d(xn, xn+1) ≤ β d(xn−1, xn) for any n ∈ N,
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or, equivalently,

d(xn, xn+1) ≤ β

1 − α
d(xn−1, xn) for any n ∈ N.

Using mathematical induction, we have

d(xn, xn+1) ≤
(

β

1 − α

)n

d(x0, x1) for any n ∈ N.

Notice that r = β

1 − α
< 1.

Moreover, for m > n, we have

d(xn, xm) ≤ d(xn, xn+1)+ . . .+ d(xm−1, xm)

≤ (rn + . . .+ rm−1)d(x0, x1)

<
rn

1 − r
d(x0, x1).

Letting n,m → ∞ and, since r < 1, we obtain lim
n,m→∞ d(xn, xm) = 0.

This proves that (xn) is a Cauchy sequence.
Since (X, d) is a complete metric space, lim

n→∞ xn = x for certain x ∈ X .

The continuity of T gives us

T x = T
(

lim
n→∞ xn

)
= lim

n→∞ T xn = lim
n→∞ xn+1 = x .

Therefore, x is a fixed point.
This finishes the proof. 	

In the sequel, we will prove that Theorem 2 is still valid for T not necessarily

continuous, assuming the following hypothesis in X :

if (xn) is a nondecreasing sequence in X such that xn → x then xn ≤ x for all n ∈ N.

(2)

Theorem 3 If in Theorem 2 we replace the condition of continuity of T by (2), the
same conclusion holds.

Proof In fact, following the proof of Theorem 2, we only have to check that x is a
fixed point.

Since (xn) is a nondecreasing sequence in X and xn → x then, by (2), we have
xn ≤ x for all n ∈ N.
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Using the contractive condition, for any n ∈ N, we get

d(xn+1, T x) = d(T xn, T x)

≤ α d(x, T x)[1 + d(xn, T xn)]
1 + d(xn, x)

+ β d(xn, x)

= α d(x, T x)[1 + d(xn, xn+1)]
1 + d(xn, x)

+ β d(xn, x) .

Taking into account that if xn → x then d(xn, xn+1) −−−→
n→∞ 0, letting n → ∞ in the

last inequality, it follows

d(x, T x) ≤ α d(x, T x)

and since α < 1, this is imposible unless that d(x, T x) = 0 this proves that T x = x .
Thus, the proof is complete. 	

Now, we present an example where it can be appreciated that assumptions in The-

orem 2 do not guarantee the uniqueness of the fixed point. This example appears
in [9].

Example 1 Let X = {(1, 0) (0, 1)} ⊂ R
2 and consider the usual order given by

(x, y) ≤ (z, t) ⇔ x ≤ z and y ≤ t.

(X,≤) is a partially ordered set whose different elements are not comparable. Besides,
(X, d2), where d2 is the euclidean distance, is a complete metric space. The identity
map T (x, y) = (x, y) is obviously continuous and nondecreasing and the contractive
condition appearing in Theorem 2 is satisfied since elements in X are only comparable
to themselves. Moreover (1, 0) ≤ T (1, 0) and T has two fixed points.

In what follows, we present a sufficient condition for the uniqueness of the fixed
point in Theorems 2 and 3.

The condition is:

for x, y ∈ X there exists a lower bound. (3)

Theorem 4 Adding assumption (3) to the hypotheses of Theorem 2 (or Theorem 3)
we obtain uniqueness of the fixed point.

Proof Suppose that x, y ∈ X are fixed point of T . We distinguish two cases:

Case 1: x and y are comparable.
Suppose x ≤ y (the same argument works for y ≤ x). By using the contractive
condition, we get

d(x, y) = d(T x, T y)

≤ α d(y, T y)[1 + d(x, T x)]
1 + d(x, y)

+ β d(x, y)

= β d(x, y) .
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Since β < 1, this is only posible when d(x, y) = 0. Thus x = y.
Case 2: x and y are not comparable.

By (3), there exists z ∈ X with z ≤ x and z ≤ y.
Since z ≤ x , the nondecreasing character of T gives us

T nz ≤ T n x = x for any n ∈ N.

By using the contractive condition, for any n ∈ N, we have

d(T nz, x) = d(T nz, T n x)

≤ α d(T n−1x, T n x)[1 + d(T n−1z, T nz)]
1 + d(T n−1z, T n−1x)

+ β d(T n−1z, T n−1x)

= α d(x, x)[1 + d(T n−1z, T nz)]
1 + d(T n−1z, x)

+ β d(T n−1z, x)

= β d(T n−1z, x) .

Using mathematical induction, we obtain

d(T nz, x) ≤ βn d(z, x)

and, since β < 1, lim
n→∞ d(T nz, x) = 0.

This means that lim
n→∞ T nz = x .

Using a similar argument, we can get lim
n→∞ T nz = y.

Finally, the uniqueness of the limit gives us x = y.
This finishes the proof. 	


3 Some remarks

Remark 1 In [9] instead condition (3), the authors use the following weaker condition:

For x, y ∈ X there exists z ∈ X which is comparable to x and y. (4)

We have not been able to prove Theorem 4 using condition (4).
The reason is that the contractive condition appearing in Theorem 2 is not symmetric

in the following sense, it adopts distinct forms depending x ≤ y or y ≤ x .

Remark 2 If in Theorems 2, 3 and 4, we put α = 0, then Theorems 2.1, 2.2 and 2.3
of [9] are obtained.

If in Theorems 2, 3 and 4, β is equal to zero, we have the following fixed point theorem
in ordered metric spaces.

Theorem 5 Let (X,≤) be a partially ordered set and suppose that there exists a metric
d in X such that (X, d) is a complete metric space. Let T : X → X be a nondecreasing
mapping such that there exists α ∈ [0, 1) satisfying
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d(T x, T y) ≤ α d(y, T y)[1 + d(x, T x)]
1 + d(x, y)

for x, y ∈ X with x ≤ y. (5)

Suppose also that either T is continuous or X satisfies condition (2).
If there exist x0 ∈ X such that x0 ≤ T x0 then T has a fixed point.
Besides, if (X,≤) satisfies condition (3), then the fixed point is unique.

Remark 3 If in Theorems 2, 3 and 4, α = 0 and 0 < β < 1
3 then the contractive

condition (1) appearing in Theorem 2 implies that

d(T x, T y) ≤ γ [d(x, T x)+ d(y, T y)] for x, y ∈ X with x ≤ y,

where γ ∈ (0, 1
2 ) (this is a Kannan type condition).

In fact, since α = 0 and 0 < β < 1
3 , the condition (1) takes the form

d(T x, T y) ≤ β d(x, y) for x, y ∈ X with x ≤ y.

By using the triangular inequality, for x, y ∈ X with x ≤ y we have

d(T x, T y) ≤ β d(x, y) ≤ β [d(x, T x)+ d(y, T y)] + β d(T x, T y),

and from this inequality it follows

d(T x, T y) ≤ β

1 − β
[d(x, T x)+ d(y, T y)].

From 0 < β < 1
3 it is easily proved that γ = β

1−β ∈ (
0, 1

2

)
.

Remark 4 If diamX ≤ 1 and 2α+β < 1 then the contractive condition (1) appearing
in Theorem 2 implies the following Reich type condition:

d(T x, T y) ≤ α d(x, T x)+ α d(y, T y)+ β d(x, y) for x, y ∈ X with x ≤ y.

In fact, for x, y ∈ X with x ≤ y we have

d(T x, T y) ≤ α d(y, T y)[1 + d(x, T x)]
1 + d(x, y)

+ β d(x, y)

≤ α d(y, T y)[1 + d(x, T x)] + β d(x, y)

≤ α d(y, T y)+ α d(y, T y)d(x, T x)+ β d(x, y).

Since diamX ≤ 1, d(y, T y) ≤ 1, and therefore, the last inequality implies that

d(T x, T y) ≤ α d(y, T y)+ α d(x, T x)+ β d(x, y).

In the sequel, we present an example where Theorem 2 can be applied and it cannot
be treated by Theorem 1.

123



Ann Univ Ferrara (2013) 59:251–258 257

Example 2 Let X = {(0, 1) (1, 0) (1, 1)} and we consider in X the partial order
given by R = {(x, x) : x ∈ X}. Notice that elements in X are only comparable to
themselves. Moreover, (X, d2), where d2 is the euclidean distance, is a complete metric
space.

Let T : X → X be defined by T (0, 1) = (1, 0) T (1, 0) = (0, 1) and T (1, 1) =
(1, 1).

Obviously, T is continuous and nondecreasing, and the contractive condition
appearing in Theorem 2 is satisfied since elements in X are only comparable to them-
selves.

As (1, 1) ≤ T (1, 1), Theorem 2 says us that T has a fixed point [this fixed point is
(1, 1)].

On the other hand, for x = (0, 1), y = (1, 1), we have

d2(T x, T y) = d2(x, y) = 1

d2(x, T x) = √
2

d2(y, T y) = 0

and the contractive condition appearing in Theorem 1 is not satisfied since

1 = d2(T x, T y) ≤ α d(y, T y)[1 + d(x, T x)]
1 + d(x, y)

+ β d(x, y)

= α · 0[1 + √
2]

1 + 1
+ β · 1 = β · 1 = β.

Therefore, this example cannot be treated by Theorem 1.
Moreover, notice that in this example we have uniqueness of the fixed point and

(X,≤) does not satisfy condition (3). This proves that condition (3) is not necessary
condition for the uniqueness of the fixed point.
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