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Abstract We analyze the spatial anisotropic profiles at infinity of steady Stokes and
Navier–Stokes flows around a rotating obstacle. It is shown that the Stokes flow is
largely concentrated along the axis of rotation in the leading term and that a rotating
profile can be found in the second term. The leading term for Navier–Stokes flow
will be an adequate Landau solution. The proofs rely upon a detailed analysis of the
associated fundamental solution tensor.
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1 Introduction

In this survey article we find the leading profiles at infinity of steady Stokes and
Navier–Stokes flows in the exterior of a rotating obstacle. Our results make clear that
the axis of rotation plays an important role for both flows as preferred direction. Since
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the Navier–Stokes equations for incompressible fluids are rotationally invariant, with-
out loss of generality, the axis of rotation may be assumed to be the x3-axis so that the
angular velocity of the obstacle is given by ω = ae3, where a ∈ R\{0} is a constant
and e3 = (0, 0, 1)T . By using a coordinate system attached to the rotating obstacle, as
in [2,8,12], one can reduce the original Navier–Stokes problem to an equivalent one
in a fixed exterior domain D ⊂ R

3, where its boundary ∂ D is assumed to be smooth.
We will address steady flow (in the reference frame) which obeys

− �u − (ω × x) · ∇u + ω × u + ∇ p + u · ∇u = 0, divu = 0 (1.1)

in D subject to boundary conditions

u = ω × x (x ∈ ∂ D), u → 0 (|x | → ∞), (1.2)

where u(x) = (u1, u2, u3)
T and p(x) denote the velocity and pressure, respectively,

of the fluid. Note that the boundary condition on the surface ∂ D is the usual no-slip
one since ω × x = a(−x2, x1, 0)T is the rotating velocity of the obstacle.

By [9] and [5] we know that the problem (1.1)–(1.2) possesses a unique solution that
enjoys u(x) = O(1/|x |) as |x | → ∞ provided the angular velocity ω is sufficiently
small. The asymptotic stability of this steady flow has been proved by [10] and [14].
One of the purposes of this article is to find its leading term which decays exactly at
the rate 1/|x | so that the remaining term decays faster. It is proved that the leading
term is given by a member of the family of (−1)-homogeneous solutions, found first
by Landau [17] and resumed by Šverák [18], for the usual Navier–Stokes equation

− �u + ∇ p + u · ∇u = 0, divu = 0 (x ∈ R
3\{0}). (1.3)

Note that, for (1.3), (−1)-homogeneity is equivalent to self-similarity. It is proved in
[18] that the family of solutions constructed by Landau covers all self-similar solutions
of (1.3). Each member of this family is parameterized by a vector about which it is
axisymmetric, see Sect. 3. For the leading term of the flow under consideration, this
vectorial parameter is parallel to the angular velocity ω. Therefore, this leading term
satisfies also (1.1) in R

3\{0} since the additional two terms vanish, cf. (3.5) below.
This study is inspired by the recent work [15] due to Korolev and Šverák, in which the
leading term of the usual exterior Navier–Stokes flow for the case ω = 0 is provided;
it is given by another member of the same family as above and possesses symmetry
about the axis whose direction (the vectorial parameter mentioned above) is the net
force (3.4) of the given flow.

We remark that the leading profile is the Oseen fundamental solution (without effect
of nonlinearity) when the obstacle is translating with constant velocity, see for instance
[4], on account of better decay properties outside the wake region behind the obstacle.
In the case where both translation and rotation of the obstacle are taken into account,
a wake region was still found by [11] (see also [16] for the linearized problem); in this
case as well, very probably, the leading term comes from the Stokes flow unlike the
purely rotating problem discussed in this article.
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The first step toward analysis of Navier–Stokes flow should be the study of the
associated Stokes problem, that is, the problem (1.1)–(1.2) in which u ·∇u is neglected.
Even for this linear problem, it is no longer clear what the leading term of the Stokes
flow is, because we have the term (ω × x) · ∇u with variable coefficient. In addition,
the anisotropic decay structure arising from the effect of rotation is interesting in itself
and it must be observed at the level of the linear problem. The other purpose (closely
related to the previous one) is to derive such a structure from the asymptotic repre-
sentation of Stokes flow for |x | → ∞. We will look not only for the leading term
(∼1/|x |) but also for the second one (∼1/|x |2). It turns out that the leading profile
is given by the third column vector of the usual Stokes fundamental solution tensor
(2.2). The reason why the third one is selected is that the axis of rotation is the x3-axis.
This points out the important role of the axis of rotation and helps to find the leading
term of the Navier–Stokes flow explained above. The second term of the Stokes flow
is also interesting because it includes the rotating profile e3 × x . The proof relies upon
a detailed analysis of the fundamental solution of the Eq. (2.7) below.

In the next section we provide the asymptotic representation of the Stokes flow at
infinity. The final section is devoted to finding the leading term of the Navier–Stokes
flow. The complete proof of the results given here will be found in [6,7].

2 Stokes flow

In this section we consider the Stokes problem

− �u − (ω × x) · ∇u + ω × u + ∇ p = f, divu = 0 (x ∈ D) (2.1)

subject to (1.2) and derive an asymptotic representation for |x | → ∞ of the solution.
The results in [5,13] suggest that the optimal rate of decay of the solution to (2.1)
is 1/|x | in general even though the external force has good properties such as, for
instance, f = divF with F ∈ C∞

0 (D)3×3. Theorem 2.1 below provides its rigorous
explanation when we look at the leading term. For the sake of simplicity to catch
the profile, the external force is of the form f = divF with F ∈ C∞

0 (D)3×3, the
restriction of F ∈ C∞

0 (R3)3×3 to D (although divergence form is not needed, see [6]).
In the following, let the pair of (ESt , QSt ),

ESt (x) = 1

8π

(
1

|x | I + x ⊗ x

|x |3
)

, QSt (x) = ∇
( −1

4π |x |
)

= x

4π |x |3 , (2.2)

denote the usual Stokes fundamental solution, where I is the 3 × 3 unity matrix and
x ⊗ x = (xi x j )1≤i, j≤3. Moreover, let ν be the exterior unit normal to the boundary
∂ D, and

T = T (u, p) = ∇u + (∇u)T − pI (2.3)
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be the Cauchy stress tensor. Then

ν · (T + F) = (
(ν · (T + F))′, (ν · (T + F))3

)T =
(∑

j
(Ti j + Fi j )ν j

)
1≤i≤3

where we used the decomposition z = (z′, z3)
T , z′ = (z1, z2), for z ∈ R

3.

Theorem 2.1 Let ω = ae3 with a ∈ R\{0}. Given f = divF with F ∈ C∞
0 (D)3×3,

let (u, p) be the solution to (2.1) subject to (1.2). Then it has the representation

u(x) = U1st (x) + U2nd(x) +
(

1 + 1

|a|
)

O

(
1

|x |3
)

,

p(x) = P1st (x) + O

(
1

|x |3
) (2.4)

for |x | → ∞ with

U1st(x) = 1

8π

∫
∂ D

(ν · (T + F))3 dσy

(
e3

|x | + x3x

|x |3
)

= ESt (x)

⎛
⎝ ∫

∂ D

(ν · (T + F))3 dσy

⎞
⎠ e3, (2.5)

U2nd(x) = 1

8π |x |3

⎛
⎝α −β 0

β α 0
0 0 α

⎞
⎠

⎛
⎝ x1

x2
x3

⎞
⎠ − 3 (x ⊗ x)

8π |x |5

⎛
⎜⎜⎝

α′
2 x1

α′
2 x2

α3x3

⎞
⎟⎟⎠

= 1

8π |x |3
(

β(e3 × x) +
(

α3 − α′

2

) |x ′|2 − 2x2
3

|x |2 x

)
, (2.6)

P1st(x) =
∫

∂ D

{(ν · (�u)) y − pν + ν · F} dσy · QSt (x).

Finally,

α = −
∫

∂ D

y · (ν · (T + F))dσy +
∫
D

tr F dy = α′ + α3,

α′ = −
∫

∂ D

y′ · (ν · (T + F))′dσy +
∫
D

(F11 + F22)dy,
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α3 = −
∫

∂ D

y3(ν · (T + F))3dσy +
∫
D

F33dy,

β = e3 ·
∫

∂ D

y × (ν · (T + F))dσy +
∫
D

(F12 − F21)dy.

We set

N =
∫

∂ D

ν · (T (u, p) + F) dσ,

the total net force exerted on the boundary ∂ D by the fluid and the force term F .
From (2.5) we conclude that e3 · N is sufficient to control the rate of decay of u(x),

while all components of N are needed for the case ω = 0 to do so. In the second
term (2.6) the first part of the coefficient β of the rotating profile e3 × x is the third
component of

∫
∂ D

y × (ν · (T (u, p) + F)) dσy,

which stands for the total torque exerted on the boundary ∂ D.
We may consider the case of homogeneous boundary condition u|∂ D = 0 since the

original boundary condition (1.2) can be reduced to this case by subtracting a suit-
able auxiliary function, see [6]. So the proof is based on the potential representation
formula (2.10) below of the solution in terms of the fundamental solution of the Eq.
(2.7) in the whole space. First of all we find a useful explicit representation of the
fundamental solution. We say that the pair of 3 × 3-matrix 	(x, y) and column vector
Q(x, y) is the fundamental solution of the equation

− �u − (ω × x) · ∇u + ω × u + ∇ p = f, divu = 0 (x ∈ R
3) (2.7)

if the volume potentials

u(x) =
∫

R3

	(x, y) f (y) dy, p(x) =
∫

R3

Q(x, y) · f (y) dy

solve (2.7) for all f = ( f1, f2, f3)
T ∈ C∞

0 (R3)3. Since div [(ω × x) · ∇u −ω × u] =
(ω × x) · ∇div u = 0, we obtain �p = div f , so that

Q(x, y) = ∇y
1

4π |x − y| = QSt (x − y),

123



268 Ann Univ Ferrara (2009) 55:263–277

see (2.2). Set

G(x, t) = (4π t)−3/2e−|x |2/(4t)

which is the heat kernel in R
3. Then we see that

	0(x, y) =
∞∫

0

O(at)T G(O(at)x − y, t) dt (2.8)

is a fundamental solution of the operator −� − (ω × x) · ∇ + ω×, where

O(t) =
⎛
⎝ cos t −sin t 0

sin t cos t 0
0 0 1

⎞
⎠ .

The additional part arising from the pressure is given by

	1(x, y) = −
∞∫

0

s∫
0

∇x∇y[G(O(at)x − y, s)] dtds

=
∞∫

0

(4πs)−3/2

s∫
0

e−|O(at)x−y|2/(4s)

·
{(

x − O(at)T y
) ⊗ (O(at)x − y)

4s2 − 1

2s
O(at)T

}
dtds, (2.9)

where z ⊗ w = (ziw j )1≤i, j≤3; for details see [6].

Proposition 2.1 Let ω = ae3. Then the pair {	(x, y), QSt (x − y)} with

	(x, y) = 	0(x, y) + 	1(x, y)

is a fundamental solution of the Eq. (2.7), where 	0(x, y), 	1(x, y) and QSt (x) are
given by (2.8), (2.9) and (2.2), respectively.

We next introduce the following potential representation formula (2.10) of the solu-
tion u(x) to (2.1) in terms of the fundamental solution 	(x, y).

Proposition 2.2 Let f ∈ C∞
0 (D)3, the restriction of f ∈ C∞

0 (R3)3 to D. Then the
solution (u, p) to (2.1) with u|∂ D = 0 can be represented as

u(x) =
∫
D

	(x, y) f (y) dy +
∫

∂ D

	(x, y) (ν · T (u, p)) (y) dσy, (2.10)

123



Ann Univ Ferrara (2009) 55:263–277 269

p(x) =
∫
D

QSt (x − y) · f (y), dy +
∫

∂ D

ν · (∇ p − f )(y)

4π |x − y| dσy

−
∫

∂ D

ν · QSt (x − y)p(y) dσy . (2.11)

Here, QSt (x) is given by (2.2) and the formula (2.11) for the pressure holds true even
for the boundary condition u|∂ D = ω × x.

For the proof, we employ the following Green formula (2.12) associated with the
Stokes equation with rotation effect: if div u = div v = 0, then

∫
W

[v · {�u + (ω × x) · ∇u − ω × u − ∇ p}

−u · {�v − (ω × x) · ∇v + ω × v + ∇q}] dx

=
∫

∂W

[ν · {v · T (u, p) − u · T (v,−q)} + ν · (ω × x)(u · v)] dσ, (2.12)

where W ⊂ R
3 is any bounded domain with smooth boundary ∂W .

We fix R > 0 such that f (y) = 0 for |y| ≥ R. In view of (2.10), we may assume
|y| ≤ R and |x | ≥ 2R. Our task is now to find leading terms 
1(x) ∼ 1/|x | and

2(x, y) ∼ 1/|x |2 so that the fundamental solution is represented as

	(x, y) = 
1(x) + 
2(x, y) +
(

1 + 1

|a|
)

O

(
1

|x |3
)

(2.13)

for |x | → ∞. The last term means that

|	(x, y) − {
1(x) + 
2(x, y)}| ≤
(

1 + 1

|a|
)

CR

|x |3

for |x | ≥ 2R ≥ 2|y|, where CR > 0 is independent of a ∈ R\{0}. Let 	0(x, y) and
	1(x, y) be as in (2.8) and (2.9); then, one can show the following propositions.

Proposition 2.3 For |y| ≤ R and |x | → ∞ we have

	0(x, y) = 
0
1(x) + 
0

2(x, y) +
(

1 + 1

|a|
)

O

(
1

|x |3
)

where


0
1(x) = 1

4π |x | e3 ⊗ e3,

(2.14)


0
2(x, y) = 1

8π |x |3

⎛
⎝ x ′ · y′ (e3 × x) · y 0

−(e3 × x) · y x ′ · y′ 0
0 0 2x3 y3

⎞
⎠ .
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Proposition 2.4 For |y| ≤ R and |x | → ∞ one has

	1(x, y) = 
1
1(x) + 
1

2(x, y) +
(

1 + 1

|a|
)

O

(
1

|x |3
)

with


1
1(x) = 1

8π |x |3

⎛
⎜⎜⎝

0 0 x1x3

0 0 x2x3

0 0 −|x ′|2

⎞
⎟⎟⎠ ,


1
2(x, y) = −1

8π |x |3

⎧⎪⎪⎨
⎪⎪⎩

x ⊗ y +

⎛
⎜⎜⎝

x1 y1 x1 y2 0

x2 y1 x2 y2 0

0 0 2x3 y3

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

+ �(x, y),

where

�(x, y) = 3x

8π |x |5 ⊗
{ |x ′|2

2
(y′, 0)T + x2

3 (0, 0, y3)
T
}

. (2.15)

It follows from Propositions 2.3 and 2.4 that (2.13) holds with 
1 = 
0
1 + 
1

1 and

2 = 
0

2 + 
1
2, i.e.,


1(x) = 1

8π |x |3

⎛
⎜⎜⎝

0 0 x1x3

0 0 x2x3

0 0 |x |2 + x2
3

⎞
⎟⎟⎠ , (2.16)


2(x, y) = −1

8π |x |3 {x ⊗ y − (e3 × x) ⊗ (e3 × y)} + �(x, y),

where �(x, y) is given by (2.15). This combined with (2.10) provides the desired
asymptotic representation (2.4) of u(x).

For the proof of Proposition 2.3, we use the following elementary decay estimate
based on the oscillating terms cos at, sin at .

Lemma 2.1 Let a ∈ R\{0}, m > 2 and c > 0. Given n ∈ N arbitrarily, there is a
constant K = K (n, m, c) > 0 such that

∣∣∣∣∣∣
∞∫

0

(
cos at
sin at

)
t−m/2e−c|x |2/t dt

∣∣∣∣∣∣ ≤ K

|a|n|x |2n+m−2 (2.17)

for x ∈ R
3\{0}.
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In the rest of this section, we give the proof of Proposition 2.3 and omit that of
Proposition 2.4 which is much more complicated although the idea is more or less the
same, see [6] for the details.

Proof of Proposition 2.3 We employ the Taylor formula (with respect to y)

e−|O(at)x−y|2/(4t) = e−|x |2/(4t) + e−|x |2/(4t) (O(at)x) · y

2t

+1

2
e−|O(at)x−θy|2/(4t)yT (O(at)x − θy) ⊗ (O(at)x − θy) − 2tI

4t2 y (2.18)

with some θ ∈ (0, 1). We decompose 	0(x, y) as

	0(x, y) = 	01(x, y) + 	02(x, y) + 	03(x, y)

correspondingly to (2.18). By (2.17) (n = 1, m = 3) we find

	01(x, y) = 
0
1(x) + 1

|a| O

(
1

|x |3
)

,

where 
0
1(x) is as in (2.14). Concerning

	02(x, y) =
∞∫

0

O(at)T (4π t)−3/2e−|x |2/(4t) (O(at)x) · y

2t
dt,

we note

(O(at)x) · y = (x ′ · y′) cos at + ((e3 × x) · y) sin at + x3 y3

to find

(O(at)x) · y

2
O(at)T = 1

4
A(x, y) + R(x, y, t)

with

A(x, y) =
⎛
⎝ x ′ · y′ (e3 × x) · y 0

−(e3 × x) · y x ′ · y′ 0
0 0 2x3 y3

⎞
⎠

where the remainder R consists of the oscillating terms cos kat and sin kat ,
k = 1, 2 and its degree is one with respect to x . By (2.17) (n = 1, m = 5) we
are led to
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	02(x, y) = 1

8π |x |3 A(x, y) + 1

|a| O

(
1

|x |4
)

.

Finally, it is easy to see that
∣∣	03(x, y)

∣∣ ≤ C/|x |3 without using (2.17). ��

3 Navier–Stokes flow

By Theorem 2.1 we know what kind of effect on the profile the rotation of the obstacle
causes. For the Stokes flow, the leading term is the third column vector of the usual
Stokes fundamental solution (2.2) and possesses

(i) symmetry about the axis of rotation (x3-axis);
(ii) (−1)-homogeneity.

Furthermore, the important quantity which controls the rate of decay is e3 ·N , where

N =
∫

∂ D

ν · T (u, p) dσ (3.1)

is the net force (case F = 0 in Theorem 2.1) and T (u, p) is given by (2.3). Thus, it is
reasonable to expect that the leading term U of the Navier–Stokes flow for (1.1)–(1.2)
still keeps the properties (i), (ii) above and solves

− �U − (ω × x) · ∇U + ω × U + ∇ P + U · ∇U = (e3 · N ) e3δ, divU = 0

(3.2)

in D′(R3), where δ denotes the Dirac measure at 0.
The present section concludes that this conjecture is correct. Here, we should note

the relation

e3 · N = e3 · Ñ (3.3)

where

Ñ =
∫

∂ D

ν · {T (u, p) − u ⊗ u} dσ ; (3.4)

this is a consequence of u|∂ D = ω × x together with e3 · (ω × x) = 0. Note also that
for all vector fields which are symmetric about the x3-axis

(e3 × x) · ∇U − e3 × U = 0. (3.5)

In fact, because such vector fields must be of the form

U = (V (r, x3) cos θ, V (r, x3) sin θ, U3(r, x3))
T
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in cylindrical coordinates r, θ, x3, we see that (e3 ×x) ·∇U = ∂θU = e3 ×U. Further,
(3.5) holds in D′(R3) when U ∼ 1/|x | around x = 0. Thus the candidate above for
the leading term solves (3.7) with k = e3 · N and, due to [18], it must be a member of
the family of Landau solutions explained below.

Let b ∈ R
3 be a prescribed vector, that we call the Landau parameter. Then, among

nontrivial smooth solutions of (1.3), Landau [17] found an exact solution, called the
Landau solution, which satisfies:

• axisymmetry about Rb;
• the homogeneity

u(x) = 1

|x | u

(
x

|x |
)

, p(x) = 1

|x |2 p

(
x

|x |
)

;

• −�u + ∇ p + u · ∇u = bδ in D′(R3).

When b is parallel to e3, the Landau solution is of the form

⎧⎨
⎩

u1(x) = 2 x1(cx3−|x |)
|x |(c|x |−x3)2 , u2(x) = 2 x2(cx3−|x |)

|x |(c|x |−x3)2 ,

u3(x) = 2
c|x |2−2x3|x |+cx2

3
|x |(c|x |−x3)2 , p(x) = 4 cx3−|x |

|x |(c|x |−x3)2

(3.6)

with parameter c ∈ (−∞,−1) ∪ (1,∞), and it satisfies

− �u + ∇ p + u · ∇u = ke3δ, divu = 0 (3.7)

in D′(R3), where k is given by

k = k(c) = 8πc

3(c2 − 1)

(
2 + 6c2 − 3c(c2 − 1) log

c + 1

c − 1

)
. (3.8)

For this calculation we refer to [3]. Since the function k(·) is monotonically decreasing
on each of (−∞,−1) and (1,∞), and fulfills

k(c) → 0 (|c| → ∞); k(c) → −∞ (c → −1); k(c) → ∞ (c → 1),

for every k̃ ∈ R\{0} there is a unique c ∈ (−∞,−1) ∪ (1,∞) such that k(c) = k̃.
When k̃ = 0, we may understand (u, p) = (0, 0) as the solution (3.6) with |c| → ∞.

Now, given a smooth solution (u, p) of the Navier–Stokes problem (1.1)–(1.2), we
take N and Ñ as in (3.1) and (3.4). Let (U, P) be the Landau solution with the Landau
parameter

b = (e3 · N )e3 = (e3 · Ñ )e3,

see (3.3). Namely, (U, P) is given by (3.6) with c which is determined by k(c) = e3 ·N
with k(·) as in (3.8); it is the trivial solution in case e3 · N = 0. Since U is symmetric
about the x3-axis, we have (3.5) so that (U, P) solves (3.2) in D′(R3). Now we are in
a position to state our main result.
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Theorem 3.1 Let ω = ae3 with a ∈ R\{0}. For each q0 ∈ (3/2, 3) there exists a
constant η = η(q0) > 0 such that if u is a smooth solution to (1.1)–(1.2) and satisfies

sup
x∈D

|x ||u(x)| + |e3 · N | ≤ η, (3.9)

then, for every q ∈ (q0, 3), we have

u − U |D ∈ Lq(D), ‖u − U‖Lq (D) ≤ C(|a|−3/q+1 + 1) (3.10)

with some C = C(q) > 0, where U is the Landau solution as explained above and
satisfies (3.2).

This theorem tells us that the remainder u − U possesses better summability sug-
gesting the pointwise decay 1/|x |2 at infinity; in this sense, the Landau solution U
is the leading term of the small solution u. Because the leading term of the usual
Navier–Stokes flow (ω = 0) found by Korolev-Šverák [15] is different (it is the
Landau solution with b = Ñ ), it is reasonable that the remainder u − U in our case
possesses singular behavior for a → 0 as in (3.10).

To give a sketch of the proof of Theorem 3.1 we take R > 0 so that R3\D ⊂ BR−2 =
{|x | < R − 2} and choose a cut-off function φ ∈ C∞

0 (BR) such that φ(x) = 1 for
|x | ≤ R−1. Given a smooth solution (u, p) of (1.1)–(1.2) satisfying u(x) = O(1/|x |)
for |x | → ∞, we set

ũ = (1 − φ)u + S[u · ∇φ], p̃ = (1 − φ)p;

here S denotes the Bogovskii operator ([1]) in the bounded domain AR = {R −
2 < |x | < R} such that S[u · ∇φ] ∈ C∞

0 (AR). To apply the operator S note that∫
AR

u · ∇φ dx = 0 on account of u|∂ D = ω × x together with
∫
∂ D ν · (ω × x) = 0.

The pair (̃u, p̃) obeys

−�ũ − (ω × x) · ∇ũ + ω × ũ + ∇ p̃ + ũ · ∇ũ = g, divũ = 0 (x ∈ R
3)

with some g ∈ C∞
0 (AR) which satisfies

∫

R3

g(x) dx = Ñ , (3.11)

where Ñ is the net force (3.4). We note that (3.11) follows only from the structure of
the equation; in other words, we don’t need any exact form of g.

Let (U, P) be the Landau solution for b = (e3 · N )e3. To regularize (U, P) around
x = 0, one may follow the same manner using φ and S as above to define the pair
(Ũ , P̃); then, it enjoys

−�Ũ − (ω × x) · ∇Ũ + ω × Ũ + ∇ P̃ + Ũ · ∇Ũ = h, divŨ = 0 (x ∈ R
3)
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with some h ∈ C∞
0 (AR) which satisfies

∫

R3

h(x) dx = (e3 · N )e3. (3.12)

Therefore, (v, π) = (̃u − Ũ , p̃ − P̃) should obey

− �v − (ω × x) · ∇v + ω × v + ∇π + v · ∇ũ + Ũ · ∇v = g − h,

divv = 0, (3.13)

in R
3. For a moment we may regard (3.13) as a linear problem for the unknown v and

get the Propositions 3.1, 3.2 below. In what follows, for 1 < q < ∞, we denote by ‖·‖q

and by ‖ · ‖q,∞ the norms of Lq(R3) and Lq,∞(R3) (weak-Lq space), respectively.
Note that both ũ and Ũ are in L3,∞(R3).

Proposition 3.1 There is a constant γ > 0 such that the solution of the problem (3.13)
in the class v ∈ L3,∞(R3) is unique provided

‖ũ‖3,∞ + ‖Ũ‖3,∞ ≤ γ.

Proposition 3.2 For each q0 ∈ (3/2, 3) there is a constant γ̃ (q0) ∈ (0, γ ] such that
the problem (3.13) possesses a solution

v ∈ Lq0,∞(R3) ∩ L3,∞(R3) (3.14)

subject to

‖v‖q ≤ C(|a|−3/q+1 + 1) for all q ∈ (q0, 3)

with some C = C(q) > 0 provided

‖ũ‖3,∞ + ‖Ũ‖3,∞ ≤ γ̃ (q0). (3.15)

These propositions yield Theorem 3.1. In fact, it is obvious that (3.9) implies (3.15)
when we take a suitable constant η = η(q0) > 0; then, we see that ũ − Ũ is in the
class (3.14) and also enjoys

ũ − Ũ ∈ Lq(R3), ‖ũ − Ũ‖q ≤ C(|a|−q/3+1 + 1)

for all q ∈ (q0, 3) because the only solution is ũ − Ũ by Proposition 3.1. Since
u − U = ũ − Ũ for |x | ≥ R, we obtain (3.10).

Propositions 3.1 and 3.2 are easily obtained by employing the estimate in weak-Lq

spaces (due to [5]) for weak solutions to the linear whole space problem

−�u − (ω × x) · ∇u + ω × u + ∇ p = f, divu = 0 (x ∈ R
3)

and by the expansion (2.13) of the fundamental solution 	(x, y) with (2.16). We omit
the details [7] but mention that the crucial point is the following lemma, which tells us
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the reason why good summability properties at infinity can be deduced in Proposition
3.2.

Lemma 3.1 The function

v0(x) =
∫

R3

	(x, y)(g − h)(y) dy

satisfies

v0(x) = O

(
1

|x |2
)

as |x | → ∞,

‖v0‖q,∞ ≤ C(|a|−3/q+1 + 1) for ∀q ∈ [3/2, 3]
(3.16)

with some C = C(q) > 0.

Proof Let |x | ≥ 2R. Since g − h ∈ C∞
0 (AR), it follows from (2.13) with (2.16) that

v0(x) = e3 ·
∫

R3

(g − h)(y) dy
1

8π

(
e3

|x | + x3x

|x |3
)

+
(

1 + 1

|a|
)

O

(
1

|x |2
)

.

We collect (3.3), (3.11) and (3.12) to find

e3 ·
∫

R3

(g − h)(y) dy = e3 · Ñ − e3 · N = 0,

which proves (3.16) for q = 3/2. This combined with ‖v0‖3,∞ ≤ C completes the
proof. ��
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