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Abstract In the recent years, lattice modelling proved to be a topic of renewed
interest. Indeed, fields as distant as chemical modelling and biological tissue modelling
use network models that appeal to similar equilibrium laws. In both cases, obtaining an
equivalent continuous model allows to simplify numerical procedures. We define the
basic properties of lattices: elasticity, frame-indifference, hyperelasticity. We deter-
mine rigorously the form that constitutive laws undertake under frame-indifference
and hyperelasticity assumptions. Finally, we describe an homogenization technique
designed for discrete structures that provides a limit continuum mechanics model and,
in the special case of hexagonal lattices, we investigate the symmetry properties of the
limit constitutive law.
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1 Introduction

We gather in this manuscript some of the concepts in lattice modelling we described
during our talk at the ApplMath07 Conference, Brijuni Island, July 2007. In Sect. 2,
we spend some time on the axiomatics of lattice modelling. In particular, we prove that
the classical form of a moment law that gives the moment as a vector colinear to the
wedge product of the unit bars with a factor that only depends on the inner product of
the unit bars can be derived from frame-indifference and hyperelasticity hypotheses.
In Sect. 3, we summarize the discrete homogenization procedure: A complete version
of the results given in this section can be found in [2,3] and [5]. In Sects. 4 and 5, we
investigate the symmetry properties of the limit constitutive law both in the nonlinear
and in the linear regimes.

2 Lattice modelling

We consider lattices that may be one-dimensional, two-dimensional or three-
dimensional and that can deform into R

3. In the context of large deformation mecha-
nics, we consider that they consist of bars labelled by b ∈ B that are supposed to
remain straight and of nodes labelled by n ∈ N . Nodes and bars are the lattice
material elements. In the context of atomic networks, nodes are replaced by atoms
and bars are replaced by bonds. Both sets B and N are finite sets. Bars and nodes
of a one-dimensional lattice are conveniently numbered by subsets of N or Z. In the
simplest example of a two-dimensional lattice which is obtained by the repetition of a
reference pattern consisting of one node and of two bars, one can choose to number the
nodes and the bars by subsets of Z

2. More refined numbering systems are necessary
to take into account the structure repetivity, in particular for two-dimensional (resp.
three-dimensional) lattices when the reference pattern contains more than one node,
or contains one node and more than two (resp. three) bars. Such a numbering will be
seen in Sect. 3.

2.1 Lattice balance equations

It follows from the assumption that bars remain straight that once the actual position
ϕ : N �→ R

3 of nodes is known, the placement of the overall structure is known as
well. The actual (or deformed) position results from external loads f ϕ : N �→ R

3

that are applied on the nodes. The exponent ϕ recalls that loads are applied in the
actual configuration and that they may be live loads. Let us derive the equilibrium
equations of the structure from basic concepts in mechanics. Each bar goes from an
origin node O(b) ∈ N to an end node E(b) ∈ N . Following usual axioms in basic
mechanics, we postulate that, when in the deformed position given by ϕ, each bar b is
submitted to a force Fϕ(b) ∈ R

3 exerted by its end node and to a force Gϕ(b) ∈ R
3

exerted by its origin node. Conversely, by the action–reaction principle, a node n that
is the origin node of some bar b is submitted to the force −Gϕ(b) and, if it is the end
node of some bar b, it is submitted to −Fϕ(b). Therefore, the equilibrium of node n
reads
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−
∑

{b|O(b)=n}
Gϕ(b)−

∑

{b|E(b)=n}
Fϕ(b)+ f ϕ(n) = 0. (2.1)

Similarly, we admit from basic mechanics that two bars that meet in a lattice node
interact by moments. We number the set of bar interactions by a finite set I . In each
interaction i ∈ I , that occurs at node n(i), we distinguish an origin bar O(i) and an
end bar E(i) where, with no risk of confusion, we keep the same notation O and E as
for origins and ends of bars. The end bar E(i) exerts, in the actual position ϕ(n(i)) of
n(i), a moment Mϕ(i) on the origin bar O(i), and conversely the action of the origin
bar onto the end bar is the moment −Mϕ(i). The equilibrium of bar b consists of both
the balance of forces and the balance of moments. The force balance reads

Gϕ(b)+ Fϕ(b) = 0, (2.2)

and the moment balance expressed in the deformed position of the origin node of b
reads

∑

{i |O(i)=b}
Mϕ(i)−

∑

{i |E(i)=b}
Mϕ(i)+ [ϕ(E(b))− ϕ(O(b))] ∧ Fϕ(b) = 0. (2.3)

Equation (2.2) gives Gϕ(b) = −Fϕ(b), and the set of above balance equations
becomes equivalent to the set of equations in R

3 given by

∀n ∈ N ,
∑

{b|O(b)=n}
Fϕ(b)−

∑

{b|E(b)=n}
Fϕ(b)+ f ϕ(n) = 0, (2.4)

∀b ∈ B,
∑

{i |O(i)=b}
Mϕ(i)−

∑

{i |E(i)=b}
Mϕ(i)+ [ϕ(E(b))− ϕ(O(b))] ∧ Fϕ(b) = 0.

(2.5)

We decompose Fϕ(b) into the sum of its component T ϕ(b) along the deformed position
of b and of the orthogonal component T ϕ⊥(b). The letter T in T ϕ(b) reminds that it
is a tension vector. As it is required that points O(b) and E(b) cannot be mapped
on a single point in R

3—otherwise the bar length would be set to 0—equation (2.5)
shows that if the deformation ϕ and the moments are known, so are the transverse
components T ϕ⊥ (b). Actually, they are given by

T ϕ⊥ (b) =
⎛

⎝
∑

{i |E(i)=b}
Mϕ(i)−

∑

{i |O(i)=b}
Mϕ(i)

⎞

⎠ ∧ ∆ϕ(b)

|∆ϕ(b)|2 , (2.6)

where we have set∆ϕ(b) = ϕ(E(b))−ϕ(O(b)) and where | · | denotes the Euclidean
norm in R

3. To be precise, equation (2.5) is equivalent to equation (2.6) and to the fact
that

∑
{O(i)=b} Mϕ(i)− ∑

{E(i)=b} Mϕ(i) is orthogonal to ∆ϕ(b). Finally, the lattice
equilibrium is characterized by the set of equations containing the unknowns ϕ, T ϕ(b)
and Mϕ(i) that reads
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∀n ∈ N ,
∑

{b|O(b)=n}
T ϕ(b)−

∑

{b|E(b)=n}
T ϕ(b)

+
∑

{b|O(b)=n}
T ϕ⊥(b)−

∑

{b|E(b)=n}
T ϕ⊥(b)+ f ϕ(n) = 0, (2.7)

where T ϕ⊥ (b) expresses in terms of ϕ and of Mϕ(i) by Eqs. (2.6) and where
∑

{O(i)=b}
Mϕ(i)− ∑

{E(i)=b} Mϕ(i) is orthogonal to ∆ϕ(b).
In the above description, we have not dealt with boundary conditions. Suppose the

lattice is fixed in some points n ∈ N0 where N0 is a non empty subset of N . Then, the
deformation ϕ has to be prescribed in these points and the balance of nodes is restricted
to nodes belonging to N \N0. Other boundary conditions can be incorporated in the
model as well.

Variational formulation. Let us momentarily denote by (L H S)(n) the left-hand side
of (2.7) for a given n. Then, the set of all Eqs. (2.7) is equivalent to

∀v : N �→ R
3,

∑

n∈N

(L H S)(n) · v(n) = 0. (2.8)

Vectors v(n), which are arbitrary, are interpreted as virtual velocities in virtual power
formulations of mechanics. By introducing the R

3-vectors

ωϕ(b) = ∆ϕ(b)

|∆ϕ(b)|2 ∧ (v(E(b))− v(O(b))) , (2.9)

that are interpreted as bar angular velocities, and by reordering the sums, Eqs. (2.6)
and (2.7) are equivalent to

∀v : N �→ R
3, −

∑

b∈B

T ϕ(b) · (v(E(b))− v(O(b)))

−
∑

i∈I

Mϕ(i) · (
ωϕ(E(i))− ωϕ(O(i))

)

+
∑

n∈N

f ϕ(n) · v(n) = 0. (2.10)

2.2 Constitutive laws

For any b and for any i , the axial tension T ϕ(b) and the moment Mϕ(i) that act in
the actual position are functions of ϕ. They express the response of the material to
a deformation and their possible dependence on b and i translates a possible non
uniform—or non homogeneous—behavior of the structure. In any case, constitutive
laws which are defined as the mappings that associate a tension or a moment with a
deformation ϕ have to satisfy frame indifference requirements.
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Invariance principles. The action of the external world is balanced in the configu-
ration given by ϕ : N �→ R

3 by forces Fϕ(b) and by moments Mϕ(i). Let O(3) be
the set of orthogonal transformations. Invariance principles state that

∀q ∈ R
3,∀Q ∈ O(3), Fq+Qϕ(b) = QFϕ(b) and Mq+Qϕ(i) = (detQ) QMϕ(i),

(2.11)
which, by (2.6), is equivalent to

∀q ∈ R
3,∀Q ∈ O(3), T q+Qϕ(b) = QT ϕ(b) and Mq+Qϕ(i) = (detQ) QMϕ(i).

(2.12)
It should be noted that, in contrast with the modelling of three-dimensional continuous
media, there is no reason in restricting the set in which Q may vary to the set SO(3)
of rotations.

Elastic laws. The lattice is said to be elastic if, on the one hand, the axial tension in
bar b depends only on b and on the positions ϕ(O(b)) and ϕ(E(b)) of the bar ends
and if, on the other hand, the moment at interaction i depends only on i , and on the
positions ϕ(n(i)), ϕ(nO(i)) and ϕ(nE (i)) of the node n(i)—where the interaction
takes place—and of the two other nodes of the bars involved in the interaction. To
write this in a mathematical way, it is useful to introduce a notation for the unit vectors
of the deformed bars and we let

eϕ(b) = ∆ϕ(b)

|∆ϕ(b)| .

Assumptions on elasticity now read: there exist N̂ b : {(y1, y2) ∈ R
3 × R

3; y1 �=
y2} �→ R and M̂i : {(y1, y2, y3) ∈ (R3)3; yi �= y j , i �= j} �→ R

3 such that

T ϕ(b) = N̂ b (ϕ(O(b)), ϕ(E(b))) eϕ(b) (2.13)

and
Mϕ(i) = M̂i (ϕ(n(i)), ϕ(nO(i)), ϕ(nE (i))) . (2.14)

Let us examine the consequences of the material indifference principles on the
possible forms of the elastic laws.

Proposition 2.1 Tension vectors T ϕ(b) defined in terms of N̂ b by (2.13) satisfy the
identity T q+Qϕ(b) = QT ϕ(b) for all one-to-one ϕ : N �→ R

3, for all q in R
3 and

all Q ∈ SO(3), if and only if the mapping N̂ b reduces to a function of the distance
between its two vector arguments. Then, the constitutive law reads

T ϕ(b) = N̄ b (|ϕ(E(b))− ϕ(O(b))|) eϕ(b) (2.15)

where N̄ b is a mapping from R
+∗ into R, and the invariance through matrices in O(3)

is automatically satisfied.
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Proof The identity T q+Qϕ(b) = QT ϕ(b) is satisfied for all ϕ : N �→ R
3 (one-

to-one), for all q in R
3 and all Q ∈ SO(3), if and only if

∀ϕ,∀q ∈ R
3,∀Q ∈ SO(3), N̂ b (q + Qϕ(O(b)), q + Qϕ(E(b))) eq+Qϕ(b)

= N̂ b (ϕ(O(b)), ϕ(E(b))) Qeϕ(b). (2.16)

Obviously, eq+Qϕ(b) = Qeϕ(b) and the above equality amounts to

N̂ b (q + Qϕ(O(b)), q + Qϕ(E(b))) = N̂ b (ϕ(O(b)), ϕ(E(b))) .

By choosing Q = Id, we see that

∀y1, y2 ∈ R
3, y1 �= y2, N̂ b(y1, y2) = N̂ b(0, y2 − y1).

By choosing q = 0, we obtain

∀y ∈ R
3, y �= 0,∀Q ∈ SO(3), N̂ b(0, Qy) = N̂ b(0, y),

from which it follows that two vectors y and z such that |y| = |z| satisfy N̂ b(0, y) =
N̂ b(0, z). 	

Proposition 2.2 Moment vectors Mϕ(i) defined in terms of M̂i by (2.14) satisfy the
identity Mq+Qϕ(i) = detQ QMϕ(i) for all one-to-one ϕ : N �→ R

3, for all q in R
3

and all Q ∈ O(3), if and only M̂i assumes the following form

∀(y1, y2, y3) ∈ (R3)3 such that yi �= y j , i �= j, M̂i (y1, y2, y3)

= m̄i (|y2 − y1|, |y3 − y1|, (y2 − y1) · (y3 − y1)) y2 − y1 ∧ y3 − y1 (2.17)

where m̄i : {(s, t, c) ∈ (R+∗)2 ×R; |c| ≤ st} �→ R. Equivalently, the moment vectors
can be written under the form

Mϕ(i) = m̄i (|∆ϕ(O(i))|, |∆ϕ(E(i))|,∆ϕ(O(i)) ·∆ϕ(E(i))
∆ϕ(O(i)) ∧∆ϕ(E(i)). (2.18)

Proof The identity Mq+Qϕ(i) = (detQ) QMϕ(i) is satisfied for all one-to-one
ϕ : N �→ R

3, for all q in R
3 and all Q ∈ O(3), if and only if

∀ϕ,∀q ∈ R
3,∀Q ∈ O(3), M̂i (q + Qϕ(n(i)), q + Qϕ(nO(i)), q + Qϕ(nE (i)))

= (detQ) QM̂i (ϕ(n(i)), ϕ(nO(i)), ϕ(nE (i))) (2.19)

or else

∀(y1, y2, y3) ∈ (R3)3 such that yi �= y j , i �= j, ∀Q ∈ O(3),

M̂i (q + Qy1, q + Qy2, q + Qy3) = (detQ) QM̂i (y1, y2, y3). (2.20)
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Obviously, if M̂i satisfies (2.17), then it satisfies (2.20). Let us prove the converse
assumption. By choosing Q = Id in (2.20) and q = −y1, we obtain that

∀(y1, y2, y3) ∈ (R3)3, yi �= y j , i �= j, M̂i (y1, y2, y3) = M̂i (0, y2 − y1, y3 − y1).

(2.21)
Therefore, M̂i can be expressed in terms of a function m̂i of two variables defined on
{(z2, z3) ∈ (R3∗)2); z2 �= z3}; indeed,

∀(y1, y2, y3) ∈ (R3)3, yi �= y j , i �= j, M̂i (y1, y2, y3) = m̂i (y2 − y1, y3 − y1)

(2.22)
where m̂i (z2, z3) = M̂i (0, z2, z3). This function inherits the invariance properties of
M̂i so that

∀(z2, z3) ∈ (R3∗)2, z2 �= z3, ∀Q ∈ O(3),

m̂i (Qz2, Qz3) = (detQ) Qm̂i (z2, z3). (2.23)

Let us first choose Q = −Id in (2.23). We obtain that m̂i (−z2,−z3) = m̂i (z2, z3).
Then, let Q = Rπ be the rotation with angle π around z2 ∧ z3, then (2.23) proves that
m̂i (−z2,−z3) = Rπ m̂i (z2, z3)which by the previous equation gives Rπ m̂i (z2, z3) =
m̂i (z2, z3). Therefore m̂i (z2, z3) is an eigenvector of Rπ associated with the
eigenvalue 1. This means that it is colinear to z2 ∧ z3 from which we deduce that
m̂i can now be written under the form

∀(z2, z3) ∈ (R3∗)2, z2 �= z3, m̂i (z2, z3) = mi (z2, z3) z2 ∧ z3 (2.24)

where mi : {(z2, z3) ∈ (R3∗)2); z2 �= z3} �→ R. Going back to (2.23), we obtain the
invariance property of mi

∀(z2, z3) ∈ (R3∗)2, z2 �= z3,∀Q ∈ O(3), mi (Qz2, Qz3) = mi (z2, z3). (2.25)

Suppose we are given two pairs of vectors z2, z3 and z′
2, z′

3 such that |z2| = |z′
2|,|z3| = |z′

3| and z2 · z3 = z′
2 · z′

3. Then there exists Q ∈ O(3) such that z′
2 = Qz2

and z′
3 = Qz3. Therefore, mi (z′

2, z′
3) = mi (z2, z3). As a consequence, there exists

m̄i : {(s, t, c) ∈ (R+∗)2 × R; |c| ≤ st} �→ R such that

∀(z2, z3) ∈ (R3∗)2, z2 �= z3, mi (z2, z3) = m̄i (|z2|, |z3|, z2 · z3), (2.26)

and the result follows. 	

Remark 2.1 (i) It follows from (2.18) that for a given b,

∑
{O(i)=b} Mϕ(i) =

∆ϕ(b)∧ V ϕ(b) where V ϕ(b) ∈ R
3. Therefore, it is orthogonal to∆ϕ(b). So is

true for
∑

{E(i)=b} Mϕ(i). As a consequence, the mandatory condition stating
that (

∑
{O(i)=b} Mϕ(i) − ∑

{E(i)=b} Mϕ(i)) should be orthogonal to ∆ϕ(b) is
satisfied when the principle of material indifference is.
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(ii) It is worth mentioning that the specific form (2.18) cannot be obtained if, in the
invariance principle (2.12), the orthogonal group O(3) is replaced by SO(3).
Indeed,

Mϕ(i) = m̄i
O ∆ϕ(O(i))+ m̄i

E ∆ϕ(E(i))+ m̄i ∆ϕ(O(i)) ∧∆ϕ(E(i)),
(2.27)

where m̄i
O is short-hand for m̄i

O(|∆ϕ(O(i))|, |∆ϕ(E(i))|,∆ϕ(O(i)) · ∆ϕ
(E(i))) and similar simple writings are used for m̄i

E and m̄i , satisfies (2.12)
with SO(3) in place of O(3).

We conclude this section by writing the complete equilibrium problem of an elastic
network. It reads: Find ϕ : N �→ R

3 such that

∀v : N �→ R
3,−

∑

b∈B

T ϕ(b) · (v(E(b))− v(O(b)))

−
∑

i∈I

Mϕ(i) · (
ωϕ(E(i))− ωϕ(O(i))

) +
∑

n∈N

f ϕ(n) · v(n) = 0 (2.28)

where ωϕ(b) = ∆ϕ(b)
|∆ϕ(b)|2 ∧ (v(E(b))− v(O(b))), and where T ϕ(b) and Mϕ(i) are

known in terms of ϕ by
T ϕ(b) = N̄ b(|∆ϕ(b)|) eϕ(b) (2.29)

and

Mϕ(i) = m̄i (|∆ϕ(O(i))|, |∆ϕ(E(i))|,∆ϕ(O(i)) ·∆ϕ(E(i))
(∆ϕ(O(i)) ∧∆ϕ(E(i))) . (2.30)

Boundary conditions have to be added to this system depending on the mechanical
setting.

2.3 Hyperelasticity

It is of interest to know whether equation (2.28) can be interpreted as the Euler equation
of a minimization problem in which case we will say that the material is hyperelastic.
It turns out that, with no further assumption than material indifference, the first term
in (2.28) is actually the derivative at ϕ taken in v of an energy. This is summarized in
the following statement where

Φ := {ϕ : N �→ R
3, ϕ one-to-one} (2.31)

is the open set of one-to-one mappings.

Proposition 2.3 Let W̄ b be a primitive of N̄ b i.e. a function such that W̄ b′
(s) = N̄ b(s)

for any s ∈ R
+∗. For z ∈ R

3 \{0} let W b(z) = W̄ b(|z|) and for ϕ ∈ Φ let I (ϕ) =∑
b∈B W b(∆ϕ(b)). Then for any ϕ in Φ, the identity
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∀v : N �→ R
3, I ′(ϕ)(v) =

∑

b∈B

T ϕ(b) · (v(E(b))− v(O(b))) (2.32)

holds.

Proof From I (ϕ) = ∑
b∈B W b(∆ϕ(b)), we derive that

∀v : N �→ R
3, I ′(ϕ)(v) =

∑

b∈B

W b′
(∆ϕ(b))(∆v(b)) (2.33)

=
∑

b∈B

W̄ b′
(|∆ϕ(b)|) ∆ϕ(b)|∆ϕ(b)| ·∆v(b). (2.34)

The result follows. 	

Remark 2.2 Conversely let us momentarily consider elastic tension laws that are not
necessarily frame-indifferent and that read

T ϕ(b) = N̂ b (ϕ(E(b))− ϕ(O(b))) eϕ(b)

where we slightly simplified equation (2.13) by reducing the dependence on the end
points of a bar by a dependence on the bar vector. Here, N̂ b is a mapping from
R

3\{0} into R. For an energy I (ϕ) of the form
∑

b∈B W b(∆ϕ(b)) to be such that
I ′(ϕ)(v) = ∑

b∈B T ϕ(b) · (v(E(b))− v(O(b))), it is necessary that

∀z ∈ R
3\{0}, W b′

(z) = N̂ b(z)
z

|z| . (2.35)

We leave it to the reader as an exercise in differential calculus to check that this requires
that N̂ b(z) depends on z through |z| only. To prove this result, it suffices to check that
Schwarz compatibility conditions associated with (2.35) read zi∂ j N̂ = z j ∂̂i N for any
i, j = 1, 2, 3 where we wrote z = (z1, z2, z3). Spherical coordinates help ending the
proof. In other words, hyperelasticity of tension laws requires frame-indifference. With
the above proposition, we can say that hyperelasticity of tension laws is equivalent to
frame-indifference.

Let us turn to the second term in (2.28). We are now looking for a function J :
Φ := {ϕ : N �→ R

3, ϕ one-to-one} �→ R such that

∀ϕ∈Φ, ∀v : N �→ R
3, J ′(ϕ)(v)=

∑

i∈I
Mϕ(i) · (

ωϕ(E(i))−ωϕ(O(i))). (2.36)

If such a function J exists, we say that the moment constitutive laws are hyperelastic.
The main result is the following.

Proposition 2.4 Frame-indifferent moment constitutive laws are hyperelastic if and
only if functions m̄i , i ∈ I , introduced in (2.17) are of the specific form

m̄i (s, t, c) = 1

st
M̄i

( c

st

)
where M̄i : [−1, 1] �→ R. (2.37)
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Let us sketch the proof of this result. We first momentarily drop the frame-
indifference property. We slightly simplify the general elasticity assumption (2.14)
by assuming that

Mϕ(i) = M̂i (∆ϕ(O(i)),∆ϕ(E(i))) where M̂i : R
3\{0}× R

3\{0} �→ R. (2.38)

Lemma 2.1 If there exists a mapping J (ϕ) = ∑
i∈I K i (∆ϕ(O(i)),∆ϕ(E(i)))with

K i : R
3\{0} × R

3\{0} �→ R, K i differentiable, such that (2.36) is satisfied, then

∀(z1, z2) ∈ (R3\{0})2, ∀(t1, t2) ∈ (R3)2,

∂1 M̂i (z1, z2)(t1) ·
(

z2

|z2|2 ∧ t2

)
= −∂2 M̂i (z1, z2)(t2) ·

(
z1

|z1|2 ∧ t1

)
. (2.39)

In particular, for any (z1, z2) ∈ (R3\{0})2, ∂1 M̂i (z1, z2)(z1) is colinear to z2 and
∂2 M̂i (z1, z2)(z2) is colinear to z1.

Proof The derivative of J at ϕ in v is given by

J ′(ϕ)(v) =
∑

i∈I

∂1 K i (∆ϕ(O(i)),∆ϕ(E(i))) (∆v(O(i)))

+
∑

i∈I

∂2 K i (∆ϕ(O(i)),∆ϕ(E(i))) (∆v(E(i))) , (2.40)

where we recall that ∂1 K i (z1, z2) and ∂2 K i (z1, z2) belong to L (R3; R). From (2.36)
and from (2.38), we infer that

∂1 K i (z1, z2)(t1) = −M̂i (z1, z2) ·
(

z1

|z1|2 ∧ t1

)
,

∂2 K i (z1, z2)(t2) = −M̂i (z1, z2) ·
(

z2

|z2|2 ∧ t2

)
.

(2.41)

By using Schwarz theorem, we obtain (2.39). By letting t1 = z1 in this equality, we
derive that

∀t2 ∈ R
3, ∂1 M̂i (z1, z2)(z1) ·

(
z2

|z2|2 ∧ t2

)
= 0,

hence ∂1 M̂i (z1, z2)(z1)∧ z2 = 0, and similarly ∂2 M̂i (z1, z2)(z2)∧ z1 = 0. The result
follows. 	


We now return to frame-indifferent constitutive laws which from Proposition 2.2
means that functions M̂i , i ∈ I , introduced in (2.38) read

∀(z1, z2) ∈ (R3\{0})2, M̂i (z1, z2) = m̄i (|z1|, |z2|, z1 · z2) z1 ∧ z2 (2.42)

where we recall that m̄i : {(s, t, c) ∈ (R+∗)2 × R, |c| ≤ st} �→ R.
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Lemma 2.2 A constitutive function M̂i that undertakes the form (2.42) is such that
the colinearity conditions stated in Lemma 2.1 are satisfied if and only if there exists
a function M̄i : [−1, 1] �→ R such that

∀(s, t, c) ∈ (R+∗)2 × R, |c| ≤ st, m̄i (s, t, c) = 1

st
M̄i

( c

st

)
. (2.43)

Proof Differentiating (2.42), we have for any (z1, z2) ∈ (R3\{0})2 and for any t1 ∈ R
3,

∂1 M̂i (z1, z2)(t1)=
(
∂sm̄i (|z1|, |z2|, z1 · z2)

z1 · t1
|z1| + ∂cm̄i (|z1|, |z2|, z1 · z2)t1 · z2

)

×z1 ∧ z2 + m̄i (|z1|, |z2|, z1 · z2) t1 ∧ z2. (2.44)

Taking t1 = z1, (2.44) reads

∂1 M̂i (z1, z2)(z1) =
(
∂sm̄i (|z1|, |z2|, z1 · z2)|z1| + ∂cm̄i (|z1|, |z2|, z1 · z2)z1 · z2

+m̄i (|z1|, |z2|, z1 · z2)
)

z1 ∧ z2. (2.45)

For all pairs (z1, z2) with z1 and z2 non colinear, this vector is colinear to z2 if and
only if the following identity holds true

∂sm̄i (|z1|, |z2|, z1 · z2)|z1| + ∂cm̄i (|z1|, |z2|, z1 · z2)z1 · z2

+m̄i (|z1|, |z2|, z1 · z2) = 0. (2.46)

Similarly, we need

∂t m̄
i (|z1|, |z2|, z1 · z2)|z2| + ∂cm̄i (|z1|, |z2|, z1 · z2)z1 · z2

+m̄i (|z1|, |z2|, z1 · z2) = 0. (2.47)

Therefore, for any (s, t, c) with |c| < st ,

s ∂sm̄i (s, t, c)+ c ∂cm̄i (s, t, c)+ m̄i (s, t, c) = 0, (2.48)

t ∂t m̄
i (s, t, c)+ c ∂cm̄i (s, t, c)+ m̄i (s, t, c) = 0. (2.49)

Our next step is to check that any solution of this set of two hyperbolic equations
necessarily reads m̄i (s, t, c) = 1

st M̄i ( c
st ) where M̄i :] − 1, 1[�→ R. Define a func-

tion wi by wi (s, t, u) = s t m̄i (s, t, stu) where s �= 0, t �= 0, |u| < 1. Equations
(2.48)-(2.49) prove that ∂sw

i = ∂tw
i = 0. Therefore, there exists M̄i :] − 1, 1[�→ R

such that wi (s, t, u) = M̄i (u). Hence,

∀(s, t, c) ∈ (R+∗)2 × R, |c| < st, m̄i (s, t, c) = 1

st
M̄i

( c

st

)
,

123



308 Ann Univ Ferrara (2008) 54:297–318

and by continuity

∀(s, t, c) ∈ (R+∗)2 × R, |c| ≤ st, m̄i (s, t, c) = 1

st
M̄i

( c

st

)
.

	

Proof of Proposition 2.4 Lemmas 2.1 and 2.2 show that (2.37) is a necessary condition
for hyperelasticity. Conversely, let M̂i be a frame-indifferent constitutive law obeying
(2.37). Define K i by K i (z1, z2) = ki ( z1|z1| · z2|z2| ) where (ki )′ = −M̄i . Then, ∂1 K i and

∂2 K i satisfy Eqs. (2.41) which proves that (2.36) is satisfied. This ends the proof. 	

Remark 2.3 One can check that the colinearity conditions stated in Lemma 2.1 are in
fact trivially satisfied since ∂1 M̂i (z1, z2)(z1) = ∂2 M̂i (z1, z2)(z2) = 0.

Let pϕ(i) = eϕ(O(i)) · eϕ(E(i)) denote the inner product between the deformed
unit bars at interaction i . To conclude this section, we emphasize the fact that we have
proved that the classical form of a constitutive moment law

Mϕ(i) = M̄i (pϕ(i)) eϕ(O(i)) ∧ eϕ(E(i)) (2.50)

is a consequence of frame-indifference and hyperelasticity.

3 Lattice homogenization. Graphene sheets as a model example

The description given in the previous section is valid for any kind of elastic lattice,
large or small, with a large number of nodes or a small number of nodes, whatever the
precise meaning of these terms may be. Of particular interest are the lattices that are
generated by the repetition of a given pattern. For instance, a graphene sheet, which
consists of carbon atoms that in a rest position are located at the vertices of regular
hexagons, can be generated by an elementary pattern comprising two nodes and three
bars, see Fig. 1 where the reference pattern is the bold Y-cell. The node labelling, the
bar labelling and the interaction labelling of these lattices can be made in a periodic
way that has been first explained in [7]. For the graphene sheet, for instance, it suffices
to translate the reference pattern along either ν1 j1 or ν2 j2 with (ν1, ν2) ∈ Z

2 to
generate all nodes and bars. A given node n in the overall lattice is labelled by (m, ν):
ν indicates in which translated pattern the node is located, m = 1, 2 indicates whether
n is the first or the second node in this pattern. In this explanation of the numbering,
we have identified the nodes with their geometrical positions in the rest configuration.
This makes the labelling process easier to explain but this is not mandatory: One can
stay at an abstract level. Similar numberings (a, ν) and ( j, ν) are used for bars and
bar interactions. In the graphene example again, a = 1, 2, 3 numbers the bars locally
(in a pattern) and j = 1, · · · , 6 numbers the interactions a local pattern is involved in.

It is natural to expect that for loadings such that in the actual positions a quasi-
periodic structure can be seen and such that the size of the deformed elementary cells
is small with respect to the size of the overall deformed structure—which means that the
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node1

node 2

bar 3bar 1

bar 2

j
1

j2

Fig. 1 Graphene sheet network. Y-shaped elementary cell in bold

number of nodes is large—the equilibrium problem of the lattice can be approximated
by a continuous model. The words “small” or “large” used in the above sentence
cannot be given a priori a precise meaning: the process is valid or not depending on
the scale the phenomena one wants to describe occur at. Convergence results that—as
far as we know—are not yet available in the case of interactions involving moments
will be useful for validating the method.

The formal homogenization process has been described at length in [2] and in
[5], and particularized to graphenes in [3]. We concentrate on this latter case and
we recall both the assumptions necessary to the asymptotic process and the limit
problem. The graphene equilibrium problem is commonly seen, see [6] for instance,
as the minimization of a global energy I = W − L where L : N �→ R is due to
external loads and where W : N �→ R is the interatomic-interbond energy given by

W (ϕ) =
∑

b∈B

kl

2
[|∆ϕ(b)| − r ]2 +

∑

i∈I

kp

2

[
arccos pϕ(i)− 2π

3

]2

(3.1)

or, more generally, by

W (ϕ) =
∑

b∈B

kl

2
[|∆ϕ(b)| − r ]2 +

∑

i∈I

kp

2

[
h(pϕ(i))− 2π

3

]2

(3.2)

with r the rest length of interatomic bonds, kl and kp positive stiffness coefficients,
and h a mapping from [−1, 1] into R such that h(− 1

2 ) = 0, h′(− 1
2 ) �= 0. Classical

values, see [1], [6], are r = 0.14 × 10−9 which means that the rest length is 0.14 nm,
and kl = 652, kp = 8.76 × 10−19 which means that the values of the respective
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stiffnesses are 652 N m−1 and 8.76 × 10−19 N m. Let h̄ = h h′. The Euler equations
of the minimization problem are nothing but Eqs. (2.28), (2.29) and (2.50) with

N̄ b(|∆ϕ(b)|) = kl [|∆ϕ(b)| − r ] and M̄i (pϕ(i) = −kph̄(pϕ(i)). (3.3)

The discrete homogenization process consists in introducing a sequence of lattices
with geometrical constants εr , kl and ε2kp, with node loadings gε(m, ν) = ε2g(m, νε)
and in letting ε go to 0. Such choices lead to a limit continuous problem which is a
membrane problem. We give hereunder a description of this model where it is worth
being aware at once that the continuous constitutive law is defined in an implicit way.
For a detailed derivation, the interested reader is referred to [3].

The coordinates the limit problem is naturally expressed in are the coordinates λ1
and λ2 corresponding to the oblique basis ( j1, j2) of Fig. 1 given by j1 = √

3 i1, j2 =√
3( 1

2 i1 +
√

3
2 i2) where (i1, i2) is the standard orthonormal basis. In the formal deri-

vation, we assume that, for any m = 1, 2 and for any ν ∈ Z
2, the actual positions of

nodes (m, ν) can be written with νε kept fixed and equal to λ as

ϕε(m, ν) = ψ0(λ)+ ε ψ1
m(λ)+ · · · (3.4)

when ε goes to 0.
The equilibrium continuous limit problem on a subset Ω of R

2 reads

∀v : λ ∈ Ω �→ v(λ) ∈ R
3,

∫

Ω

S0
β · ∂v
∂λβ

dλ−
∫

Ω

g · v dλ = 0 (3.5)

where S0
1 and S0

2 interpret as the first Piola–Kirchhoff stress vectors of the continuous
medium equivalent to the lattices, and the subscript β belongs to {1,2}. Obtaining
a complete limit problem requires being able to express the first Piola–Kirchhoff
stress vectors that appear in (3.5) in terms of the limit deformation ψ0 : λ ∈ Ω �→
ψ0(λ) ∈ R

3. In other words, this means identifying the constitutive law of the equi-
valent medium. Because of the homogenization procedure, this is done in an implicit
way. First, we have an explicit expression of S0

1 and S0
2 in terms of the auxiliary

unknown functions

B0
1 = −∂ψ

0

∂λ1
+ ψ1

2 − ψ1
1 , B0

2 = −∂ψ
0

∂λ2
+ ψ1

2 − ψ1
1 , B0

3 = ψ1
2 − ψ1

1 (3.6)

that contain both the limit deformation ψ0 and the next terms ψ1
1 and ψ1

2 in the
expansions. For ease of notation, let

e0
1 = B0

1

|B0
1 | , e0

2 = B0
2

|B0
2 | , e0

3 = B0
3

|B0
3 | . (3.7)
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Pure formal identification of the leading order terms in the scaled equations (2.28)
provides (3.5) with

S0
1 = −N 0

1 + 2 (M0
3 − M0

2 ) ∧ e0
1

|B0
1 | , S0

2 = −N 0
2 + 2 (M0

1 − M0
3 ) ∧ e0

2

|B0
2 | , (3.8)

where
N 0

a = kl (|B0
a | − r) e0

a, a = 1, 2, 3, (3.9)

and
M0

j = −kp h̄(e0
j+1 · e0

j+2) e0
j ∧ e0

j+1, j = 1, 2, 3. (3.10)

In order to express S0
1 and S0

2 in terms of ψ0 only, we need an expression of ψ1
2 −ψ1

1
in terms of ψ0. This is achieved by choosing test-functions of a specific form in the
scaled equations (2.28): Namely, we take v(1, ν) = εθ(λ) v1, v(2, ν) = εθ(λ) v2
where v1, v2 belong to R

3. This gives rise to the identity

3∑

a=1

N 0
a + 2

3∑

j=1

M0
j ∧

(
e0

j+2

|B0
j+2|

− e0
j+1

|B0
j+1|

)
= 0. (3.11)

This equality means that the sum of several functions with variable λ and values in
R

3 is equal to 0. By Eqs. (3.9) and (3.10) and definition (3.7), this is a nonlinear
equation in B0

1 , B0
2 , B0

3 . Calling to the definition (3.6) of B0
a , a = 1, 2, 3 in terms of

∇λψ0 = (
∂ψ0

∂λ1
,
∂ψ0

∂λ2
) and of ψ1

2 − ψ1
1 , it is considered as an implicit equation that

provides (ψ1
2 − ψ1

1 )(λ) in terms of ∇λψ0(λ) for any λ. This being done, Eqs. (3.9)
and (3.10) provide N 0

a (λ), a = 1, 2, and M0
j (λ), j = 1, 2, 3, in terms of ∇λψ0(λ).

Then Eqs. (3.8) provide in turn S0
β(λ), β = 1, 2, in terms of ∇λψ0(λ). In this way, the

constitutive relationship has been obtained. It is a mapping Ŝ that associates with a set
of two vectors G = (G1,G2) in R

3 × R
3, standing for the derivatives with respect to

λ1 and to λ2 of the position, a set of two vectors Ŝ(G) = (Ŝ1(G), Ŝ2(G)) in R
3 × R

3,
standing for the stress vectors with respect to λ. In particular, we have

S0
1 (λ) = Ŝ1(∇λψ0(λ)), S0

2 (λ) = Ŝ2(∇λψ0(λ)). (3.12)

As it only makes use of the first derivative of ψ0, we can say that the limit continuous
problem is a membrane problem.

Expressions with respect to an orthonormal basis. In the above derivation, we have
worked with the first Piola–Kirchhoff stress tensor S0 associated with the coordi-
nates λ. We can perform a change of variables in order to recover coordinates (x1, x2)

associated with the orthonormal basis (i1, i2). It is easily checked that the change of
coordinates is given by the linear transformation x = (x1, x2) = χ(λ1, λ2) where

χ(λ1, λ2) = (r
√

3λ1 + r
√

3
2 λ2, r

3
2λ2). We denote by Σ0 = (Σ0

1 ,Σ
0
2 ) the first

Piola–Kirchhoff stress tensor associated with x . It is related to S0 by the formula
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Σ0(x) = (det K)−1 S0(λ)KT

where K = r

(√
3

√
3

2
0 3

2

)
, or else by,

Σ0
1 (x) = 1

3r
(2 S0

1 (λ)+ S0
2 (λ)), Σ

0
2 (x) = 1√

3r
S0

2 (λ).

Naturally, Σ0 satisfies the equilibrium equation

−divxΣ
0 = f, (3.13)

where f (x) = (det K)−1 g(λ). Let us now turn to the expression of the position of the
lattice in terms of the x variable. Define ϕ0 by ϕ0(x) = ψ0(λ) where x = χ(λ) and
let ∇xϕ

0(x) = (∂x1ϕ
0(x), ∂x2ϕ

0(x)). Then we have ∇λψ0(λ) = ∇xϕ
0(x)K and by

(3.12)

Σ0
1 (x) = 1

3r
(2 Ŝ1 + Ŝ2)(∇xϕ

0(x) K ), Σ0
2 (x) = 1√

3r
Ŝ2(∇xϕ

0(x) K ).

In other words, the constitutive relationship of the first Piola-Kirchhoff stress tensor
is the mapping that associates with any 3 × 2 matrix F the two vectors

Σ̂1(F) = 1

3r
(2 Ŝ1 + Ŝ2)(F K ), Σ̂2(F) = 1√

3r
Ŝ2(F K ). (3.14)

4 Graphene material symmetries

We recall that for an elastic solid the symmetry group at point P of a reference
configuration is the set of rotations q that do not change the Cauchy stress tensor at
P when applied prior to an arbitrary deformation. When the material is homogeneous
in the reference configuration under consideration—which is actually the case for
graphenes—point P does not matter. By representing a planar rotation q with angle
θ by matrices R in the x coordinates and Q in the λ coordinates, we can express this
property in terms of the constitutive relationship corresponding either to λ or to x . We
obtain the two equivalent conditions

∀F = (F1, F2) ∈ (R3)2, (Σ̂1(F R), Σ̂2(F R)) = (Σ̂1(F), Σ̂2(F)) R, (4.1)

∀G = (G1,G2) ∈ (R3)2, (Ŝ1(G Q), Ŝ2(G Q)) = (Ŝ1(G), Ŝ2(G)) Q−T , (4.2)

where for any two vectors A1, A2 and any 2 × 2 matrix M , the product (A1, A2)M is
defined by (A1, A2)M = (m11 A1 + m21 A2,m12 A1 + m22 A2), and where

R =
(

c −s
s c

)
, Q =

⎛

⎝
c − s√

3
−2s√

3
2s√

3
c + s√

3

⎞

⎠ , (4.3)
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with c = cos θ and s = sin θ . Let us recall the way the constitutive relationships have
been constructed in Sect. 3. For (B1, B2, B3) in (R3∗)3, let

Š1(B1, B2, B3) = −kl(|B1| − r) B1|B1| (4.4)
−2kp

[
h̄

(
B1|B1| · B2|B2|

)
B1|B1| ∧ B2|B2| + h̄

(
B1|B1| · B3|B3|

)
B1|B1| ∧ B3|B3|

]
∧ B1

|B1|2 ,

and let Š2(B1, B2, B3) and Š3(B1, B2, B3) be defined analogously by incrementing
the subscripts. Then, we have seen that

Ŝ1(G) = Š1(−G1 + Z ,−G2 + Z , Z),
Ŝ2(G) = Š2(−G1 + Z ,−G2 + Z , Z),

where Z is given in terms of G1 and G2 by

(Š1 + Š2 + Š3)(−G1 + Z ,−G2 + Z , Z) = 0. (4.5)

Equation (4.5) cannot be solved explicitly which makes the computation of the
stress vectors as well as the verification of their properties uneasy. In order to check
that a given rotation q belongs to the symmetry group we have to check (4.2) where

Ŝ1(G Q) = Š1(−(G Q)1 + Y,−(G Q)2 + Y, Y ),
Ŝ2(G Q) = Š2(−(G Q)1 + Y,−(G Q)2 + Y, Y ),

with
(Š1 + Š2 + Š3)(−(G Q)1 + Y,−(G Q)2 + Y, Y ) = 0. (4.6)

Lemma 4.1 The rotation with angle π belongs to the symmetry group.

Proof In this particular case, Q = −Id. Therefore, G Q = −G for any G. Choose Z
such that (4.5) is satisfied and let Y = −Z . Then, −(G Q)1 +Y = G1 − Z , −(G Q)2 +
Y = G2 − Z . From the trivial identity Š j (−B1,−B2,−B3) = −Š j (B1, B2, B3) for
any (B1, B2, B3), and for any j = 1, 2, 3, it follows that Y satisfies (4.6). Therefore
Ŝ1(G Q) = −Ŝ1(G) and Ŝ2(G Q) = −Ŝ2(G) which means that condition (4.2) is
satisfied. 	

Lemma 4.2 The rotation with angle 2π

3 belongs to the symmetry group.

Proof As c = − 1
2 and s =

√
3

2 , we have

Q =
(−1 −1

1 0

)
. (4.7)

Hence, (G Q)1 = −G1 + G2, (G Q)2 = −G1. We leave it to the reader to check that
Y = Z − G1 allows to satisfy (4.6). Indeed,

−(G Q)1 + Y = −G2 + Z , −(G Q)2 + Y = Z , Y = −G1 + Z
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and the result follows from the symmetry of (Š1 + Š2 + Š3) in terms of its arguments.
Now we have to show that (4.2) is satisfied, which means here that

Ŝ1(G Q) = Ŝ2(G), Ŝ2(G Q) = −Ŝ1(G)− Ŝ2(G). (4.8)

First,

Ŝ1(G Q) = Š1(−(G Q)1 + Y,−(G Q)2 + Y, Y ) = Š1(−G2 + Z , Z ,−G1 + Z).

(4.9)

Upon comparing expressions of Š1 and of Š2, we obtain

Ŝ1(G Q) = Š2(−G1 + Z ,−G2 + Z , Z) = Ŝ2(G)

which is the first assertion in (4.8). For proving the second part of (4.8), on the one
hand, we have

Ŝ2(G Q) = Š2(−(G Q)1 + Y,−(G Q)2 + Y,Y )
= Š2(−G2 + Z , Z ,−G1 + Z) = Š3(−G1 + Z ,−G2 + Z , Z)

and, on the other hand, we have

−Ŝ1(G)− Ŝ2(G) = −(Š1 + Š2)(−G1 + Z ,−G2 + Z , Z)
= Š3(−G1 + Z ,−G2 + Z , Z)

from (4.5). Thus we have shown that (4.8) is satisfied. 	

Proposition 4.1 All rotations the angle of which is a multiple of π

3 belongs to the
symmetry group.

Proof From Lemma 2.2, the rotation with angle 4π
3 belongs to the symmetry group.

Then from Lemma 2.1, by composing with −Id, the rotation with angle π
3 belongs to

the symmetry group, as well. The result follows. 	

The questions arises whether all rotations would actually belong to the symmetry

group in which case the material would be isotropic. Let us restrict our analysis and
our computations to the planar case with the additional assumption that kp = 0.

Proposition 4.2 For the planar model with kp = 0, the symmetry group is the group
generated by the rotation with angle π

3 .

Proof Let G1 and G2 be given by G1 = (2r, 0), G2 = (r, r) in the orthonormal basis
(i1, i2). For those two vectors we are able to solve (4.5). Indeed, the three circles of
the horizontal plane with centers G1, G2 and 0 intersect at Z = (r, 0). Therefore (4.5)
is satisfied and Ŝ1(G) = Ŝ2(G) = 0. For (4.2) to be satisfied by a rotation q, it is
necessary that Ŝ1(G Q) = Ŝ2(G Q) = 0, i.e., that |Y − (G Q)1| = |Y − (G Q)2| = r
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and from (4.6) that |Y | = r as well. Vectors (G Q)1 and (G Q)2 are immediately
computed from the general expression of Q:

(G Q)1 =
(

c − s√
3

)
G1 + 2s√

3
G2 = r

(
2c i1 + 2s√

3
i2

)
,

(G Q)2 = − 2s√
3

G1 + (c + s√
3
)G2 = r

(
(c − s

√
3) i1 +

(
c + s√

3

)
i2

)
.

We search for Y under the form Y = r(y1 i1 + y2 i2). Then

Y − (G Q)1 = r

(
(y1 − 2c) i1 +

(
y2 − 2s√

3

)
i2

)
,

Y − (G Q)2 = r

(
(y1 − c + s

√
3) i1 +

(
y2 − c − s√

3

)
i2

)
.

The set of three conditions on the norms is

y2
1+y2

2 = 1, (y1−2c)2+
(

y2 − 2s√
3

)2

= 1, (y1−c+s
√

3)2+
(

y2 − c − s√
3

)2

= 1

and is equivalent to y2
1 + y2

2 = 1 supplemented by the linear system

cy1 + s√
3

y2 = c2 + 1

3
s2,

(c − s
√

3)y1 + (c + s√
3
)y2 = 1

2

(
(c − s

√
3)2 +

(
c + s√

3

)2
)
,

the solution of which is

y1 = c − 4

3
√

3
s3, y2 = s√

3
+ 4

3
cs2.

Therefore,

y2
1 + y2

2 = 1 − 2

3
s2 + 16

9
s4 − 32

27
s6

and condition y2
1 + y2

2 = 1 cannot be satisfied unless s = 0 or s = ±
√

3
2 . This means

that θ is equal to 0, or to π , π3 , 2π
3 , 4π

3 , 5π
3 . 	


Remark 4.1 (i) It is easily seen that if a vector Z satisfies (4.5) for G1 and G2,
so does Q Z for QG1 and QG2 for any Q in O(3). Therefore, it follows that
Ŝ1(QG) = QŜ1(G), Ŝ2(QG) = QŜ2(G). This can be used to prove directly
Lemma 2.1. Moreover by restricting Q to SO(3), this shows that the homoge-
nized constitutive law is frame-indifferent.
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(ii) It can be proved as well that the homogenized law is hyperelastic, see for
instance [5].

5 Planar linear case

We refer to [3] for a detailed derivation of the linearized models: By linearizing around
a prestressed configuration, we obtain the usual linearly elastic membrane model. If we
restrict the deformations to be planar, we linearize around the identity and we recover
the classical two-dimensional linearized elasticity model with Lamé constants

λ̄ = 1

2
√

3

kl (klr2 − 9a
2 kp)

klr2 + 9a
2 kp

, µ̄ = 3
√

3a

2

kl kp

klr2 + 9a
2 kp

, (5.1)

where a = h̄′(− 1
2 ). A comparison of the homogenized values λ̄ and µ̄ with values

given in the experimental literature is performed in [3].
We remark that the two-dimensional linear Hooke’s model is isotropic although

the two-dimensional nonlinear model is not, since we have proved that its symmetry
group is restricted to rotations whose angle is a π

3 multiple. This leads to proving the
general following result.

Proposition 5.1 Consider a planar hyperelastic frame-indifferent constitutive law
such that the reference configuration is a zero-stress configuration and such that the
symmetry group contains a rotation with angle other than 0, π2 , π or 3π

2 . Then its
linearized law is isotropic.

Proof Let C be the linearized tensor. Because it is linear, its action on 2 × 2 matrices
takes the form

∀H ∈ M
2,∀α, β = 1, 2, Cαβ(H) = cαβγ δ(Hγ δ).

First, by its very definition, C takes values in the set of symmetric matrices.
Second, from [4] for instance, the equality C(H) = C(H T ) holds true because the
frame-indifferent principle is satisfied. This allows to write the well-known formulas

∀α, β, γ, δ = 1, 2, cαβγ δ = cβαγ δ, cαβγ δ = cαβδγ .

Finally, from the hyperelasticity assumption, C is a symmetric operator in the set of
symmetric matrices, which provides

∀α, β, γ, δ = 1, 2, cαβγ δ = cγ δαβ.

Altogether, we are left with six coefficients: c1111, c1112, c1122, c1212, c1222, c2222.Fol-
lowing [4] again, it can be shown that if a rotation with angle θ belongs to the symmetry
group of the nonlinear law, then

∀H ∈ S
2, C(RH RT ) = R C(H) RT , (5.2)
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where R has been defined in (4.3). The remaining part of the proof is devoted to proving

that c1112 = 0, c1222 = 0, c1111 = c2222 = c1122 + 2c1212. Let H =
(

0 0
0 1

)
. Then

RH RT =
(

s2 −cs
−cs c2

)
, and by equating entries of C(RH RT ) and of R C(H) RT

with subscript 22, we obtain

c1122 s2 − 2c1222 c s + c2222 c2 = s2 c1122 + c2 c2222 + 2 c s c1222.

In other words
c s c1222 = 0. (5.3)

As cs �= 0 because θ �= 0, π2 , π,
3π
2 , we have c1222 = 0. Let H =

(
1 0
0 0

)
, then

RH RT =
(

c2 cs

cs s2

)
. By equating all coefficients of C(RH RT ) and of R C(H) RT ,

we obtain

c1111 c2 + 2c1112 c s + c1122 s2 = c2 c1111 + s2 c1122 − 2 c s c1112,

c1112 c2 + 2c1212 c s + c1222 s2 = (c2 − s2) c1112 + c s (c1111 − c1122),

c1122 c2 + 2c1222 c s + c2222 s2 = s2 c1111 + c2 c1122 + 2 c s c1112,

which, taking into account (5.3), implies that

c s c1112 = 0,

s2 c1112 + c s (c1122 − c1111 + 2c1212) = 0,

s2 (c2222 − c1111)− 2c s c1112 = 0.

As cs �= 0 again, we obtain c1112 = 0, then c2222 = c1111 = c1122 + 2c1212, which
are the equalities we aimed at. By letting λ = c1122, µ = c1212, we recover the usual
writing

C11(H) = λ Hγ γ + 2µ H11, C22(H) = λ Hγ γ + 2µ H22,

C12(H) = C12(H) = 2µ H12.
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