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Abstract Considering time-periodic Stokes flow around a rotating body in R
2 or

R
3 we prove weighted a priori estimates in Lq -spaces for the whole space problem.

After a time-dependent change of coordinates the problem is reduced to a stationary
Stokes equation with the additional term (ω× x) · ∇u in the equation of momentum,
whereω denotes the angular velocity. In cylindrical coordinates attached to the rotating
body we allow for Muckenhoupt weights which may be anisotropic or even depend
on the angular variable and prove weighted Lq -estimates using the weighted theory
of Littlewood-Paley decomposition and of maximal operators.
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1 Introduction

The problem of the motion of a rigid body in a liquid has attracted the attention of
scientists since more than a century. The first systematic study of this subject was
initiated by the pioneering works by Kirchhoff [14] and Lord Kelvin [27], regarding
the motion of one or more bodies in an inviscid liquid. After that many mathemati-
cians have furnished significant contributions to this fascinating field under different
assumptions on the body and on the fluid. We would like to quote the work of Bren-
ner [3] concerning the steady motion of one or more bodies in a linear viscous liquid
in the Stokes approximation as well as Weinberger [28,29], Serre [24] regarding the
fall of a body in an incompressible Navier-Stokes fluid under the action of gravity and
Borchers [2] for the existence of weak solutions. Among more recent articles we refer
to Farwig, Hishida and Müller [8], Farwig [5,6], Galdi [9,10], Gunther, Hudspeth,
Thomann [12], Martin, Starovoitov and Tucsnak [22] and references in these papers.

In this paper we consider a (two- or) three-dimensional rigid body rotating with
angular velocityω = (0, 0, 1)T and assume that the complement is filled with a viscous
incompressible fluid modelled by the Navier-Stokes equations. Given the coefficient
of viscosity ν > 0 and an external force f̃ = f̃ (y, t), we are looking for the velocity
v = v(y, t) and the pressure q = q(y, t) solving the nonlinear system

vt − ν∆v + v · ∇v + ∇q = f̃ in Ω(t), t > 0,

div v = 0 in Ω(t), t > 0,

v(y, t) = ω ∧ y on ∂Ω(t), t > 0,

v(y, t) → 0 as |y| → ∞ .

(1.1)

Here the time-dependent exterior domain Ω(t) is given, due to the rotation with the
angular velocity ω, by

Ω(t) = O(t)Ω,

where Ω ⊂ R
3 is a fixed exterior domain and O(t) denotes the orthogonal matrix

O(t) =
⎛
⎝

cos t − sin t 0
sin t cos t 0

0 0 1

⎞
⎠ . (1.2)

In the two-dimensional case Ω ⊂ R
2 is a fixed exterior planar domain and

O(t) =
(

cos t − sin t
sin t cos t

)
. (1.3)

After the change of variables
x = O(t)T y (1.4)
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and passing to the new functions

u(x, t) = O(t)T v(y, t), p(x, t) = q(y, t), (1.5)

as well as to the force term f (x, t) = O(t)T f̃ (y, t) we arrive at the modified Navier-
Stokes system

ut − ν∆u + u · ∇u − (ω ∧ x) · ∇u + ω ∧ u + ∇ p = f in Ω,

div u = 0 in Ω,

u(x, t) = ω ∧ x on ∂Ω,

u(x, t) → 0 at ∞,

(1.6)

for all t > 0 in the exterior time-independent domain Ω . Note that because of the
new coordinate system attached to the rotating body (1.6) contains two new linear
terms, the classical Coriolis force term ω∧ u (up to a multiplicative constant) and the
term (ω ∧ x) · ∇u which is not subordinate to the Laplacean in unbounded domains.
Linearizing (1.6) in u at u ≡ 0 and considering only the stationary whole space
problem we arrive at the modified Stokes system

−ν∆u − (ω ∧ x) · ∇u + ω ∧ u + ∇ p = f in R
n,

div u = 0 in R
n,

u → 0 as |x | → ∞,

(1.7)

where n = 2 or n = 3; in the two-dimensional case plainly ω ∧ x =̂ (−x2, x1) for
x = (x1, x2) and ω ∧ u =̂ (−u2, u1) for u = (u1, u2).

The linear system (1.7) has been analyzed in Lq -spaces, 1 < q < ∞, in [8], proving
the a priori-estimate

‖ν∇2u‖q + ‖(ω ∧ x) · u − ω ∧ u‖q + ‖∇ p‖q ≤ c‖ f ‖q . (1.8)

Similar results were obtained in the case of a rotating body with constant translational
velocity u∞ parallel toω, leading to an Oseen system like (1.7) in which the additional
term u∞ · ∇u has to be added in the equation of the balance of momentum, see [5,6].
For related results on weak solutions in Lq– and in Lorentz spaces we refer to [7,13],
for the investigation of several auxiliary linear problems to [19,20], and for weak
solutions to an Oseen system of type (1.7) in L2 with anisotropic weights see [16].

The aim of this paper is to generalize the a priori-estimate (1.8) to weighted
Lq -spaces as a first step to pointwise decay estimates of solutions v of the original
nonlinear problem (1.1); see Remark 1.1 below. For this reason we shall consider the
weighted Lebesgue space

Lq
w(R

n) = Lq
w =

⎧⎪⎨
⎪⎩

u ∈ L1
loc(R

n) : ‖u‖q,w =
⎛
⎝

∫

Rn

|u(x)|qw(x) dx

⎞
⎠

1/q

< ∞

⎫⎪⎬
⎪⎭
,
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where w ∈ L1
loc is a nonnegative weight function. In order to apply estimates for

singular integral operators, multiplier operators and maximal operators, the weight
function w will be supposed to satisfy the Muckenhoupt Ap-condition.

Definition 1.1 A weight function 0 ≤ w ∈ L1
loc belongs to the Muckenhoupt class

Aq , 1 ≤ q < ∞, if there exists a constant C > 0 such that

sup
Q

⎛
⎜⎝ 1

|Q|
∫

Q

w(x) dx

⎞
⎟⎠

⎛
⎜⎝ 1

|Q|
∫

Q

w−1/(q−1) dx

⎞
⎟⎠

q−1

≤ C < +∞,

if 1 < q < ∞, and

sup
Q

1

|Q|
∫

Q

w(x) dx ≤ Cw(x0) for a.a. x0 ∈ R
N ,

if q = 1, respectively. In the first case, the supremum is taken over all cubes Q in R
n

with edges parallel to the coordinate axes, in the second case over those of such cubes
which contain x0; here |Q| denotes the n-dimensional Lebesgue measure of Q. The
least constant C above is called the Aq -constant of the weight. We note that in the
second case we may restrict ourselves to cubes Q centered at x . Since the Aq weights
satisfy the doubling property, that is, w(2Q) ≤ cw(Q), where w(Q) = ∫

Q w(x) dx
and 2Q is the cube with the same center as Q but with double side length, one can
consider balls instead of cubes; the observation on centres of cubes applies to balls as
well (see e.g., [11]).

Theorem 1.1 (i) Let w be a weight in R
n, n = 2 or n = 3, and assume that w is

independent of the angular variable θ in a cylindrical coordinate system attached
to the axis of revolution (0, 0, 1)T . Moreover, let w satisfy the following condition
depending on q ∈ (1,∞):

2 ≤ q < ∞ : wτ ∈ Aτq/2 for some τ ∈ [1,∞)

1 < q < 2 : wτ ∈ Aτq/2 for some τ ∈
(

2
q ,

2
2−q

]
.

(1.9)

Given f ∈ Lq
w(R

n)n there exists a solution (u, p) ∈ L1
loc(R

n)n × L1
loc(R

n) of (1.7)
satisfying the estimate

‖ν∇2u‖q,w + ‖(ω ∧ x) · u − ω ∧ u‖q,w + ‖∇ p‖q,w ≤ c‖ f ‖q,w (1.10)

with a constant c = c(q, w) > 0.
(ii) Let f ∈ Lq1

w1(R
n)n ∩ Lq2

w2(R
n)n, n = 2 or n = 3, such that both (q1, w1)

and (q2, w2) satisfy the conditions (1.9), and let u1, u2 ∈ L1
loc(R

n)n together with
corresponding pressure functions p1, p2 ∈ L1

loc(R
n) be solutions of (1.7) satisfying

(1.10) for (q1, w1) and (q2, w2), respectively. Then there are α, β, γ ∈ R such that
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u1 coincides with u2 up to an affine linear field αω + βω ∧ x + γ (x1, x2,−2x3)
T .

For n = 2 obviously u1 = u2 up to the field β(−x2, x1)
T .

As an example we consider power weights of the type |x |α and (1 + |x |)α , α ∈ R,

as well as weights of the type (1 + |x |)α(1 + r)β , α, β ∈ R, where r =
√

x2
1 + x2

2 is
the radial distance of x = (x1, x2, x3) from the axis of revolution.

Corollary 1.1 (i) The a priori estimate (1.10) holds for power weights

w(x) = |x |α and w(x) = (1 + |x |)α,

where

2 ≤ q < ∞ : −n < α <
nq
2

1 < q < 2 : − nq
2 < α < n(q − 1).

(ii) The a priori estimate (1.10) holds for the anisotropic, axially symmetric weight
w(x) = (1 + |x |)α(1 + r)β on R

3 provided that

2 ≤ q < ∞ : −2 < β < q and −3 < α + β <
3q
2

1 < q < 2 : −q < β < 2(q − 1) and − 3q
2 < α + β < 3(q − 1).

Remark 1.1 For q = 2 the conditions on α, β in Corollary 1.1 are optimal, see
Lemma 3.2 (ii). For α close to n and β = 0 the estimate of ∇2u in L2

w(R
n) indicates

that ∇2u(x) could decay as |x |−n when |x | → ∞. In Corollary 1.1 (ii) the estimate∫ |∇u|2(1 + |x |)α(1 + r)β dx < ∞ for β close to 2 and α close to 1 indicates that for
suitable f such that

∫ | f |2(1+|x |)α(1+r)β dx < ∞, but
∫ | f |2(1+|x |)α+β dx = ∞,

the term ∇2u(x) may anisotropically decay as |x |−2(1 + r)−1.

Actually Theorem 1.1 holds also for θ -dependent weights w provided that w(x) =
w(r, x3, θ) satisfies an additional one-dimensional Muckenhoupt condition with
respect to the angular variable θ ∈ [0, 2π) and with an Aq(θ)-constant indepen-
dent of (r, x3), see Corollary 1.2 and its proof in §3 below. As an example we consider
the anisotropic weight functions

w(x) = ηαβ(x) = (1 + |x |)α(1 + s(x))β, s(x) = r − x1,

introduced in [4] to analyze the Oseen equations.

Corollary 1.2 The a priori estimate (1.10) holds for the anisotropic, θ–dependent
weights

w(x) = σαβ (x) = |x |αs(x)β and w(x) = ηαβ(x)
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provided that

2 ≤ q < ∞ : − 1
2 < β <

q
4 and −n < α + β <

nq
2

1 < q < 2 : − q
4 < β <

q−1
2 and − nq

2 < α + β < n(q − 1).

2 Preliminaries

To prove Theorem 1.1 we need several properties of Muckenhoupt weights.

Lemma 2.1 (1) Letµbe a nonnegative regular Borel measure such that the centered
Hardy-Littlewood maximal operator

Mµ(x) = sup
Q�x

1

|Q|
∫

Q

dµ

is finite for almost all x ∈ R
n ; here Q runs through the set of all cubes in R

n

centered at x (with edges parallel to the coordinate axes) and |Q| denotes the
Lebesgue measure of Q. Then (Mµ)γ ∈ A1 for all γ ∈ [0, 1).

(2) Let w1, w2 ∈ A1 and 0 < θ < 1. Then w1−θ
1 wθ2 ∈ A1.

(3) For all 1 < q < τ one has A1 ⊂ Aq ⊂ Aτ .
(4) Let 1 < q < ∞ and w ∈ Aq. Then there are w1, w2 ∈ A1 such that

w = w1

w
q−1
2

.

Conversely, a weight w = w1w
1−q
2 belongs to Aq if w1, w2 ∈ A1.

Proof (1) See [11, Theorem II 3.4].
The claims (2), (3) and the second part of (4) are simple consequences of Hölder’s

inequality. The first part of (4), the factorization of Aq -weights, can be found, e.g., in
[26, V 5.3, Proposition 9]. �

For a rapidly decreasing function u ∈ S (Rn) let

Fu(ξ) = û(ξ) = 1

(2π)n/2

∫

Rn

e−i x ·ξu(x) dx, ξ ∈ R
n,

be the Fourier transform of u. Its inverse will be denoted by F−1. Moreover, we shall
use the centered Hardy-Littlewood maximal operator

M u(x) = sup
Q�x

1

|Q|
∫

Q

|u(y)| dy, x ∈ R
n,

for u ∈ L1
loc(R

n), where again Q runs through the set of all cubes centered at x .
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Theorem 2.1 Let 1 < q < ∞ and w ∈ Aq . Then the following statements hold true:

(i) The operator M , defined, e.g., on S (Rn), can be extended to a bounded operator
from Lq

w to Lq
w.

(ii) Let m ∈ Cn(Rn\{0}) satisfy the pointwise Hörmander-Mikhlin multiplier con-
dition

|ξ ||α| |Dαm(ξ)| ≤ cα for all ξ ∈ R
n\{0}

and all multi-indices α ∈ N
n
0 with |α| ≤ n. Then the multiplier operator u �→

F−1(mû), u ∈ S (Rn), can be extended to a bounded linear operator from Lq
w to

Lq
w.

Proof (i) See [11, Theorem IV 2.8].
(ii) See [11, Theorem IV 3.9] or [17, Theorem 4]. Note that the pointwise condition

on m implies the integral condition in [11,17]. �
Due to the geometry of the problem it is reasonable to introduce (polar or) cylindrical

coordinates (r, x3, θ) ∈ (0,∞)×R×[0, 2π). Then the term (ω∧x)·∇u = −x2∂1u+
x1∂2u may be rewritten in the form

(w ∧ x) · ∇u = ∂θu,

using the angular derivative ∂θ applied to u(r, x3, θ).
Now we will solve (1.7) explicitly using Fourier transforms and multiplier operators.

Working first of all formally or in the space S ′(Rn) of tempered distributions we
apply the Fourier transform F , denoted by ̂ , to (1.7). With the Fourier variable
ξ = (ξ1, ξ2, ξ3) ∈ R

3 and s = |ξ | we get from (1.7)

νs2û − ∂φ û + ω × û + iξ p̂ = f̂ , iξ · û = 0. (2.1)

Here (ω × ξ) · ∇ξ = −ξ2∂/∂ξ1 + ξ1∂/∂ξ2 = ∂φ is the angular derivative in Fourier
space when using (polar or) cylindrical coordinates for ξ ∈ R

n . Since iξ · û = 0
implies iξ · (∂φ û − ω × û

) = 0, the unknown pressure p is given by −|ξ |2 p̂ = iξ · f̂ .
Then the Hörmander-Mikhlin multiplier theorem in weighted Lq -spaces (Theorem
2.1 (ii)) yields for every weight w ∈ Aq(R

n) the estimate

‖∇ p‖q,w ≤ c‖ f ‖q,w , (2.2)

where c = c(q, w) > 0; in particular ∇ p ∈ Lq
w. Hence u may be considered as a

(solenoidal) solution of the reduced problem

−ν∆u − ∂θu + ω ∧ u = F := f − ∇ p in R
n, (2.3)

or – in Fourier space – as a solution of the second order ordinary differential equation

−∂φ û + w ∧ û + νs2û = F̂
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with respect to φ. As deduced in [8] this equation has a unique solution û(φ) which
is 2π -periodic with respect to φ and leads to the solution

û(ξ) =
∞∫

0

e−νs2t O(t)T F̂(O(t)ξ) dt (2.4)

of (2.1). Note that F = f − ∇ p is solenoidal so that the identity iξ · F̂ = 0 implies
that also u is solenoidal. Since e−ν|ξ |2t multiplied by (2π)−n/2 is the Fourier transform
of the heat kernel

Et (x) = 1

(4πνt)n/2
e− |x |2

4νt

we get the formal solution

u(x) =
∞∫

0

O(t)T Et ∗ F(O(t)·)(x) dt

=
∞∫

0

O(t)T (Et ∗ F)(O(t)x) dt.

(2.5)

In other words, u(x) = ∫
R3 Γ (x, y)F(y) dy with the fundamental solution

Γ (x, y) =
∞∫

0

O(t)T Et (O(t)x − y) dt.

To prove Theorem 1.1 note that by virtue of the formula ∂̂ j∂ku(ξ) = −ξ jξk û =
ξ j ξk

|ξ |2
(
−̂∆u(ξ)

)
, 1 ≤ j , k ≤ n, and Theorem 2.1 (ii) it suffices to find an estimate of

‖∆u‖q,w where

−∆u(x) =
∫

R3

K (x, y)F(y) dy, K (x, y) = −∆xΓ (x, y). (2.6)

The main ingredients of the following proof are a weighted version of the Littlewood-
Paley theory and a decomposition of the integral operator

T f (x) =
∞∫

0

(−∆)O(t)T (Et ∗ f )(O(t)x) dt =
∫

Rn

K (x, y) f (y) dy (2.7)
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in Fourier space. Since

F
(
(−∆)O(t)T (Et ∗ f )(O(t)·)

)
(ξ) = O(t)T (t |ξ |2) e−ν|ξ |2t f̂ (O(t)ξ)

1

t
,

we define ψ ∈ S (Rn) by its Fourier transform

ψ̂(ξ) = (2π)−n/2|ξ |2e−ν|ξ |2 = ̂(−∆E1)(ξ)

and for all t > 0,

ψt (x) = t−n/2ψ

(
x√
t

)
, ψ̂t (ξ) = ψ̂(

√
tξ) = (2π)−n/2t |ξ |2eνt |ξ |2 . (2.8)

Thus the kernel K (x, y) in (2.6), (2.7) may be rewritten in the form

K (x, y) =
∞∫

0

O(t)Tψt (O(t)x − y)
dt

t
.

To decompose ψ̂t choose χ̃ ∈ C∞
0 (

1
2 , 2) satisfying 0 ≤ χ̃ ≤ 1 and

∞∑
j=−∞

χ̃ (2− j s) = 1 for all s > 0.

Then define χ j for ξ ∈ R
n and j ∈ Z by its Fourier transform

χ̂ j (ξ) = χ̃ (2− j |ξ |), ξ ∈ R
n,

yielding
∑∞

j=−∞ χ̂ j = 1 on R
n\{0} and

supp χ̂ j ⊂ A(2 j−1, 2 j+1) := {ξ ∈ R
n : 2 j−1 < |ξ | < 2 j+1}.

Using χ j we define for j ∈ Z

ψ j = 1

(2π)n/2
χ j ∗ ψ

(
ψ̂ j = χ̂ j · ψ̂

)
.

Obviously,
∑∞

j=−∞ ψ j = ψ on R
n . Moreover, define the kernel

K j (x, y) =
∞∫

0

O(t)Tψ j
t (O(t)x − y)

dt

t
, j ∈ Z,
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where ψ j
t , t > 0, is defined by ψ j applying the scaling transform as in (2.8). Then

the kernels K j define the linear operators

Tj f (x) =
∫

Rn

K j (x, y) f (y) dy =
∞∫

0

O(t)T (ψ j
t ∗ f )(O(t)x)

dt

t
.

Since formally T = ∑∞
j=−∞ Tj , we wish to prove that this infinite series converges

even in the operator norm on Lq
w.

For later use we recall the following lemma, see [8].

Lemma 2.2 The functions ψ j , ψ
j

t , j ∈ Z, t > 0, have the following properties:

(i) supp ψ̂ j
t ⊂ A

(
2 j−1√

t
, 2 j+1√

t

)
.

(ii) For m > n
2 let h(x) = (1 + |x |2)−m and ht (x) = t−n/2h

(
x√
t

)
, t > 0. Then

there exists a constant c > 0 independent of j ∈ Z such that

|ψ j (x)| ≤ c2−2| j | h2−2 j (x), x ∈ R
n,

‖ψ j‖1 ≤ c2−2| j | .

To obtain a weighted Littlewood-Paley decomposition of Lq
w let us choose φ̃ ∈

C∞
0 (

1
2 , 2) such that 0 ≤ φ̃ ≤ 1 and

∞∫

0

φ̃(s)2
ds

s
= 1

2
.

Then define φ ∈ S (Rn) by its Fourier transform φ̂(ξ) = φ̃(|ξ |) yielding for every
s > 0

φ̂s(ξ) = φ̃(
√

s|ξ |), supp φ̂s ⊂ A

(
1

2
√

2
,

2√
2

)
(2.9)

and the normalization
∫ ∞

0 φ̂s(ξ)
2 ds

s = 1 for all ξ ∈ R
n\{0}.

Theorem 2.2 Let 1 < q < ∞ and w ∈ Aq(R
n). Then there are constants c1, c2 > 0

depending on q, w and φ such that for all f ∈ Lq
w,

c1‖ f ‖q,w ≤

∥∥∥∥∥∥∥

⎛
⎝

∞∫

0

|φs ∗ f (·)|2 ds

s

⎞
⎠

1/2
∥∥∥∥∥∥∥

q,w

≤ c2‖ f ‖q,w,

where φs ∈ S (Rn) is defined by (2.9).

Proof See [21, Proposition 1.9, Theorem 1.10] and also [17,25]. �
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3 Proofs

As a preliminary version of Theorem 1.1 we prove the following proposition. The
extension to more general weights based on complex interpolation of Lq

w-spaces will
be postponed to the end of this section.

Proposition 3.1 Assume that the weight w satisfies

w ∈ Aq/2 if q > 2,

w ∈ A1 or w−1 ∈ A1 if q = 2,

w2/(2−q) ∈ Aq/(2−q) if 1 < q < 2.

(3.1)

Then the linear operator T defined by (2.7) satisfies the estimate

‖T f ‖q,w ≤ c‖ f ‖q,w, f ∈ Lq
w,

with a constant c = c(q, w) > 0 independent of f .

Proof First we consider the case q > 2 and w ∈ Aq/2 ⊂ Aq and define the sublinear
operator M j , a modified maximal operator, by

M j g(x) = sup
s>0

∫

As

(
|ψ j

t | ∗ |g|
)
(O(t)T x)

dt

t
,

where As = [ s
16 , 16s]. Then we will prove the auxiliary estimate

‖Tj f ‖q,w ≤ c‖ψ j‖1/2
1 ‖M j‖1/2

L(q/2)
′

v

‖ f ‖q,w , j ∈ Z, (3.2)

where v denotes the weight

v = w
−( q

2 )
′/
( q

2 ) = w
− 2

q−2 ∈ A(q/2)′ = Aq/(q−2). (3.3)

To prove (3.2) we use the Littlewood-Paley decomposition of Lq
w, see Theorem

2.2, that is,

c2
1‖ f ‖2

q,w ≤
∥∥∥∥∥∥

⎛
⎝

∞∫

0

|φs ∗ f (·)|2 ds

s

⎞
⎠

∥∥∥∥∥∥
q/2,w

≤ c2
2‖ f ‖2

q,w. (3.4)

By a duality argument there exists a function 0 ≤ g ∈ L(q/2)
′

v =
(

L(q/2)w

)∗
with

‖g‖(q/2)′,v = 1 such that

∥∥∥∥∥∥

∞∫

0

|φs ∗ Tj f (·)|2 ds

s

∥∥∥∥∥∥
q/2,w

=
∞∫

0

∫

Rn

|φs ∗ Tj f (x)|2g(x) dx
ds

s
. (3.5)
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To estimate the right-hand side of (3.5) note that

φs ∗ Tj f (x) =
∞∫

0

O(t)T (φs ∗ ψ j
t ∗ f )(O(t)x)

dt

t
,

where φs ∗ ψ j
t = 0 unless t ∈ A(s, j) := [22 j−4s, 22 j+4s]. Since

∫
t∈A(s, j)

dt
t =

log 28 for every j ∈ Z, s > 0, we get by the inequality of Cauchy-Schwarz and the
associativity of convolutions that

|φs ∗ Tj f (x)|2 ≤ c
∫

A(s, j)

∣∣∣
(
ψ

j
t ∗ (φs ∗ f )

)
(O(t)x)

∣∣∣2 dt

t

≤ c‖ψ j‖1

∫

A(s, j)

(
|ψ j

t | ∗ |φs ∗ f |2
)
(O(t)x)

dt

t
;

here we used the estimate |(ψ j
t ∗ (φs ∗ f ))(y)|2 ≤ ‖ψ j

t ‖1(|ψ j
t | ∗ |φs ∗ f |2)(y) and

the identity ‖ψ j
t ‖1 = ‖ψ j‖1, see (2.8). Thus

‖Tj f ‖2
q,w ≤ c‖ψ j‖1

∞∫

0

∫

A(s, j)

∫

Rn

(|ψ j
t | ∗ |φs ∗ f |2)(x)g(O(t)T x) dx

dt

t

ds

s

≤ c‖ψ j‖1

∫

Rn

∞∫

0

|φs ∗ f |2(x)
∫

A(s, j)

(
|ψ j

t | ∗ g
)
(O(t)T x)

dt

t

ds

s
dx,

(3.6)

sinceψ j
t is radially symmetric. By definition of M j the innermost integral is bounded

by M j g(x) uniformly in s > 0. Hence we may proceed in (3.6) using Hölder’s
inequality as follows:

‖Tj f ‖2
q,w ≤ c‖ψ j‖1

∫

Rn

⎛
⎝

∞∫

0

|φs ∗ f |2(x) ds

s

⎞
⎠ M j g(x) dx

≤ c‖ψ j‖1

⎛
⎜⎝

∫

Rn

⎛
⎝

∞∫

0

|φs ∗ f |2(x) ds

s

⎞
⎠

q/2

w(x) dx

⎞
⎟⎠

2/q

‖M j g‖(q/2)′,v.

Now (3.4) and the normalization ‖g‖(q/2)′,v = 1 complete the proof of (3.2).
In the next step we estimate ‖M j g‖(q/2)′,v. Since q

2 ∈ (1,∞) is arbitrary, we have
to consider ‖M j‖L p

ρ
for arbitrary p ∈ (1,∞) and θ -independent weights ρ ∈ Ap.
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For this reason we define the “angular” maximal operator

Mθg(x) = sup
s>0

∫

As

|g(O(t)T x)| dt

t
,

where As = [ s
16 , 16s

]
. Then we claim that

M j g(x) ≤ c2−2| j |M (Mθg)(x) for a.a. x ∈ R
n, (3.7)

‖M j g‖p,ρ ≤ c2−2| j |‖g‖p,ρ for 1 < p < ∞, ρ ∈ Ap. (3.8)

To prove (3.7) invoke the pointwise estimate |ψ j
t (x)| ≤ c2−2| j |ht2−2 j (x), see

Lemma 2.2 (ii) and (2.8). We get

M j g(x) ≤ c2−2| j | sup
s>0

∫

As

(ht2−2 j ∗ |g|)(O(t)T x)
dt

t
.

Moreover, there exists a constant c > 0 independent of s > 0, j ∈ Z, such that
ht2−2 j ≤ chs2−2 j for all t ∈ As . Consequently

M j g(x) ≤ c2−2| j | sup
s>0

hs2−2 j ∗
∫

As

|g|(O(t)T x)
dt

t

≤ c2−2| j | sup
t>0

ht ∗ Mθg(x).

Since h is nonnegative, radially decreasing, and ‖ht‖1 = ‖h‖1 = c0 > 0 for all t > 0,
a well-known convolution estimate, see [26, II §2.1], yields the pointwise estimate
(3.7). Note that up to now we have not used any special properties of the weight
ρ ∈ Ap.

Concerning (3.8) note that for arbitrary but fixed radial distance r = (x2
1 + x2

2 )
1/2,

and x3 ∈ R for n = 3,

Mθg(r, x3, θ) ≤ sup
s>0

16

s

16s∫

−16s

|g|(r, x3, θ − t) dt

≤ cM1g(r, x3, θ) ,

where M1 is the classical maximal operator on L1
loc(R). Since ρ(x) = ρ(r, x3, θ)

is independent of θ , Fubini’s theorem and the boundedness of M1 on L p-spaces of
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2π -periodic functions imply that

‖Mθg‖p
p,ρ ≤ c

∫

R

∞∫

0

‖M1g(r, x3, θ)‖p
Lρ(r,x3,·)(0,2π)

r2 dr dx3

≤ c
∫

R

∞∫

0

‖g(r, x3, θ)‖p
Lρ(r,x3,·)(0,2π)

r2 dr dx3

= c‖g‖p
p,ρ .

Finally, since M is bounded on L p
ρ , see Theorem 2.1 (i), (3.7) yields (3.8).

Summarizing (3.2), Lemma 2.2 (ii) and (3.8) we get that

‖Tj f ‖q,w ≤ c2−2| j |‖ f ‖q,w for q > 2, w ∈ Aq/2.

Hence T = ∑∞
j=−∞ Tj converges on Lq

w and defines a bounded linear operator thus
proving Proposition 3.1 for q > 2.

Now let q = 2 and w ∈ A1. In this case the Littlewood-Paley decomposition (3.4)
in L2

w implies that

‖Tj f ‖2
2,w ≤ c

∞∫

0

∫

Rn

|φs ∗ Tj f |2(x)g(x) dx
ds

s
,

where

g ∈ L∞
v , v = 1

w
and ‖g‖∞,v = ess supRn |g v| = 1,

cf. (3.3)–(3.5). By the same reasoning as before we arrive at (3.2), that is,

‖Tj f ‖2,w ≤ c2−| j |‖M j g‖1/2∞,v‖ f ‖2,w. (3.9)

Since |g(x)| ≤ 1
v(x) = w(x) for a.a. x ∈ R

n andψ j
t is radially symmetric, the operator

M j satisfies the pointwise estimate

M j g(x) ≤ M jw(x) = sup
s>0

∫

As

(
|ψ j

t | ∗ w(O(t)T ·)
)
(x)

dt

t

≤ c2−2| j | sup
t>0

ht ∗ Mθw(x)

≤ c2−2| j |M (M1w) (x).

Exploiting as before that w is θ -independent, we know that M1w(r, x3) = w(r, x3).
Moreover, the assumption w ∈ A1 implies that Mw ≤ cw. Hence M j g(x) ≤

123



Ann Univ Ferrara (2008) 54:61–84 75

c2−2| j |w(x) and consequently

‖M j g(x)‖∞,v ≤ c2−2| j |. (3.10)

Now (3.9) and (3.10) lead to the operator bound ‖Tj‖L2
w

≤ c2−2| j | and the boun-

dedness of T on L2
w.

The remaining estimates are proved by duality arguments. Obviously the dual oper-
ator to T is defined by

T ∗ f (x) =
∞∫

0

(−∆)O(t)Et ∗ f (O(t)T x) dt =
∫

Rn

K ∗(x, y) f (y) dy,

where the kernel K ∗ has the same structure as K . Hence T ∗ is bounded on Lq
w for

q ≥ 2 and w ∈ Aq/2. Now let 1 < q < 2 and w2/(2−q) ∈ Aq/(2−q) = A(q ′/2)′ or
equivalently w′ = w−q ′/q ∈ A(q ′/2). Then

|〈T f, g〉| = |〈 f, T ∗g〉| ≤ ‖ f ‖q,w‖T ∗g‖q ′,w′ ≤ c‖ f ‖q,w‖T g‖q ′,w′

since q ′ > 2 and w′ = w−q ′/q ∈ A(q ′/2).
Finally let q = 2 and 1

w
∈ A1. As before, since 1

w
∈ A1,

|〈T f, g〉| ≤ ‖ f ‖2,w‖T ∗g‖2,1/w ≤ c‖ f ‖2,w‖g‖2,1/w.

Now Proposition 3.1 is completely proved. �
To extend the results of Proposition 3.1 to further weight functions as described in

Theorem 1.1 we recall a well-known theorem on complex interpolation of Lq
w-spaces,

see [1]. Note that we use a different definition of the weighted space Lq
w than in [1].

Lemma 3.1 Let 1 ≤ p1, p2 < ∞, let 0 < w1, w2 be weight functions, δ ∈ (0, 1),
and

1

p
= 1 − δ

p1
+ δ

p2
, w

1
p = w

1−δ
p1

1 · w
δ

p2
2 .

Then

[
L p1
w1
, L p2

w2

]
δ

= L p
w

in the sense of complex interpolation.

Proof (Proof of Theorem 1.1) (i) Let q ∈ (1,∞) and w ∈ Aq such that the Lq
w-

estimate of ∇ p holds, see (2.2). Hence it suffices to consider u defined by (2.3)–(2.5).
Choose arbitrary q1, q2 with

1 < q1 < q < q2 < ∞ and q1 ≤ 2 ≤ q2 (3.11)
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and δ ∈ (0, 1) satisfying
1

q
= 1 − δ

q1
+ δ

q2
(3.12)

as well as weights w1, w2 such that

w
2/(2−q1)
1 ∈ Aq1/(2−q1) and w2 ∈ Aq2/2 ,

cf. (3.1) in Proposition 3.1. By Lemma 2.1 there exist u1, v1, u2, v2 ∈ A1 with

w
2/(2−q1)
1 = u1

v

2(q1−1)
2−q1

1

and w2 = u2

v
q2−2

2
2

.

Since the linear operator T is bounded on both Lq1
w1 and Lq2

w2 , Lemma 3.1 shows that
it is bounded on Lq

w̃ as well, where

w̃ = w

q(1−δ)
q1

1 · w
qδ
q2
2 = u

q(1−δ) 2−q1
2q1

1

v
q(1−δ) q1−1

q1
1

· u
qδ
q2
2

v
qδ

q2−2
2q2

2

.

Note that the sum of the exponents of the numerators equals 1 − q(1−δ)
2 = 2−q(1−δ)

2 .

Therefore, taking the 2−q(1−δ)
2 th root of the previous identity, and choosing

u1 = u2 and v1 = v2, we arrive with an elementary calculation at

w̃
2

2−q(1−δ) = u1

v

q
2−q(1−δ)−1

1

which by Lemma 2.1 is a weight in Aq/(2−q(1−δ)). Since u1, v1 ∈ A1 are arbitrary, we
proved the boundedness of T on Lq

w for arbitrary w = w̃ if

wτ ∈ Aτq/2, τ = 2

2 − q(1 − δ)
.

Now we have to find all admissible τ subject to the restrictions given by (3.11),
(3.12). For this reason consider the easier term

γ = 2

(
1 − 1

τ

)
= q(1 − δ) = q

1
q − 1

q2

1
q1

− 1
q2

.

First Case, 1 < q < 2, in which 1 < q1 < q and q2 ≥ 2. Due to monotonicity
properties of γ as a function of 1

q1
and of 1

q2
it suffices to check γ at the corners of

the rectangle ( 1
q , 1) × (0, 1

2 ]. The corresponding function values are q, 1 and 2 − q.
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Hence the range of γ equals the interval (2−q, q) yielding for τ = 2
2−γ the condition

2

q
< τ <

2

2 − q
.

Note that the limiting value τ = 2
2−q is allowed due to Proposition 3.1. Finally the

condition wτ ∈ Aτq/2, 2
q < τ ≤ 2

2−q , easily implies that w ∈ Aq : by Lemma 2.1
there exist v1, v2 ∈ A1 such that

w = v
1
τ

1 · v
1
τ
− q

2
2 , (3.13)

where v
1
τ

1 ∈ A1 and q
2 − 1

τ
≤ q − 1 yielding v

(
q
2 − 1

τ
)/(q−1)

2 ∈ A1.

Second Case, q > 2, in which 1 < q1 ≤ 2 and q2 > q. In this case the values of

γ at the corners of the rectangle [ 1
2 , 1) × (0, 1

q ) in the
(

1
q1
, 1

q2

)
-plane are 0, 1 and

2. Hence 1 < τ < ∞, and we observe that τ = 1 is admissible due to Proposi-
tion 3.1. Finally note that the condition wτ ∈ Aτq/2 implies also w ∈ Aq : There exist
v1, v2 ∈ A1 such thatw satisfies (3.13), where again q

2 − 1
τ
+1 ≤ q for all τ ∈ (1,∞).

Third Case, q = 2. In this case it suffices to interpolate between L2
w1

and L2
w2

, where
w1 ∈ A1 and 1

w2
∈ A1, see Proposition 3.1. Then T is bounded on L2

w for all

w = w1−δ
1

wδ2
, 0 < δ < 1.

Then w1/(1−δ) = w1/w
δ/(1−δ)
2 , or with τ = 1

1−δ ∈ (1,∞),

wτ = w1

wτ−1
2

∈ Aτ = Aτq/2.

(ii) Note that Lqi
wi (R

n) ⊂ S′(Rn), i = 1, 2; indeed, wi ∈ L1
loc(R

n) and∫
|x |≥1wi (x)|x |−nqi dx < ∞, see [11, IV.3 (3.2)]. Since the equation (1.7) is lin-

ear, it suffices to consider f = 0 and a solution u ∈ S′(Rn)n of (1.7). In the proof of
[8], Theorem 1.1 (2), (3), it was shown that under these assumptions u is a polynomial
and that u(x) = αω+βω∧ x + γ (x1, x2,−2x3)

T , α, β, γ ∈ R (u(x) = β(−x2, x1)

if n = 2). �
Proof (Proof of Corollary 1.1) (i) Let w(x) = |x |α or (1 + |x |)α . As is well-known,
see e.g., [26, p. 218], w ∈ Aq iff −n < α < n(q − 1), 1 < q < ∞, and w ∈ A1
iff −n < α ≤ 0. If q > 2, then the condition wτ ∈ Aτq/2 in (1.9) implies that
−n < ατ < n

( τq
2 − 1

)
, τ ∈ [1,∞), or equivalently that −n < α < nq/2 by

choosing τ = 1 or τ as large as possible. If 1 < q < 2, then wτ ∈ Aτq/2 in (1.9) is
equivalent to −n < ατ < n( τq

2 − 1) for τ ∈ ( 2
q ,

2
2−q ] yielding − nq

2 < α < n(q − 1)
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by choosing τ = 2
2−q or τ → 2

q . Finally, for q = 2, (1.9) immediately admits all
weights w satisfying −n < α < n.

(ii) By Lemma 3.2 beloww(x) = (1+|x |)α(1+|(x1, x2)|)β ∈ Aq , 1 < q < ∞, if
−2 < β < 2(q −1) and −3 < α+β < 3(q −1). If q > 2, the conditionwτ ∈ Aτq/2,
τ ∈ [1,∞), implies that −2 < β < q and −3 < α + β <

3q
2 ; for the proof choose

τ = 1 or τ → ∞. For q < 2 the condition wτ ∈ Aτq/2, τ ∈ ( 2
q ,

2
2−q ], yields the

restrictions −q < β < 2(q − 1) and −3q
2 < α + β < 3(q − 1) for α, β by choosing

τ = 2
2−q or τ → 2

q . For q = 2 we obviously get the bounds −2 < β < 2 and
−3 < α + β < 3. �
Lemma 3.2 Let w be the weight w(x) = (1 + |x |)α(1 + r)β , where r = |x ′| =√

x2
1 + x2

2 denotes the distance of x = (x1, x2, x3) to the axis of revolution. Then the
following statements hold true:

(i) For all β ∈ (−2, 0] and −3 < α + β ≤ 0 we have w ∈ A1.
(ii) Given 1 < q < ∞ the weight w lies in Aq if −2 < β < 2(q − 1) and

−3 < α + β < 3(q − 1).

Proof (i) For b ∈ (−1, 2] define the regular Borel measure

µ(A) =
∫

A∩R

|y3|b dy

on R
3, where A ∩ R stands for A ∩ {(0, 0, y3) ∈ R

3 : y3 ∈ R}; for a similar ansatz
see [4]. We claim that for the maximal operator M , see Lemma 2.1,

Mµ(x) = sup
Q�x

µ(Q)

|Q| ∼ |x |b
r2 . (3.14)

To prove the equivalence in (3.14) we consider an arbitrary x ∈ R
n with x3 > 0; let

R > 0 denote the half of the side length of the cube Q centered at x in the defin-
ition of Mµ(x). For simplicity assume that Q is closed. Then we consider three cases:

First Case, 0 < R < x3
2 . Then y3 ∼ x3 for all (0, 0, y3) ∈ Q ∩ R and

µ(Q)

|Q| = 1

8R3

∫

Q∩R

yb
3 dy3 ∼ xb

3

R2 ≤ xb
3

r2

since r = |x ′| ≤ R such that Q ∩ R �= ∅ is possible.

Second Case, x3
2 ≤ R ≤ x3. Then

µ(Q)

|Q| ∼ 1

R3

x3+R∫

x3−R

|y3|b dy3 ∼ Rb−2 ∼ xb−2
3 .
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Third Case, R > x3. Now

µ(Q)

|Q| ∼ 1

R3

R∫

−R

|y3|b dy3 ∼ Rb−2 ≤ xb−2
3

since b > −1. This case also shows that b ≤ 2 is needed to get Mµ(x) finite for a.a.
x ∈ R

3.
Summarizing the previous three cases we now consider x ∈ R

3 with either r < x3
or r ≥ x3. If r < x3, then x3 ∼ |x | and due to the first case

Mµ(x) ∼ xb
3

r2 ∼ |x |b
r2 .

Finally, if r ≥ x3, then the third case applies with R = r ∼ |x |. Hence

Mµ(x) ∼ rb−2 ∼ |x |b
r2 .

Now (3.14) is proved.

By Lemma 2.1 w(x) = (
|x |b
r2 )

γ , 0 ≤ γ < 1, −1 < b ≤ 2, is an A1-weight.

In other words, w(x) = |x |αrβ ∈ A1 for all β ∈ (−2, 0] and α ∈ (
β
2 ,−β]. This

set of admissible (α, β) defines a half open triangle in the (α, β)-plane with vertices
(0, 0), (−1,−2) and (2,−2). Eventually, since also |x |γ ∈ A1 for −3 < γ ≤ 0,
Lemma 2.1 implies that w ∈ A1 for all (α, β) in the open parallelogram

P : −2 < β < 0, −3 < α + β < 0,

plus the line segments −2 < β ≤ 0, α = −β and β = 0, −3 < α + β ≤ 0.
To prove the same result for nondegenerate weights, note that α = 0 is allowed,

i.e., rβ ∈ A1 for all β ∈ (−2, 0]. Moreover, since the sum of two A1-weights and
also the minimum of two A1-weights is an A1-weight as well, we conclude that
w(x) = (1 + |x |)αrβ ∈ A1 for the same α, β as before. Note that the same result will
hold when the axis of revolution is parallel to the third unit vector, but passes through
(x ′

0, 0), |x ′
0| = r ≤ 1. Obviously the corresponding A1-constant is independent of x ′

0.
Hence for all cubes Q centered at x ∈ R

3,

1

|Q|
∫

Q

⎛
⎜⎝

∫

|x ′
0|≤1

(1 + |y|)α|y′ − x ′
0|β dx ′

0

⎞
⎟⎠ dy

=
∫

|x ′
0|≤1

⎛
⎜⎝ 1

|Q|
∫

Q

(1 + |y|)α|y′ − x ′
0|β dy

⎞
⎟⎠ dx ′

0

≤
∫

|x ′
0|≤1

(1 + |x |)α |x ′ − x ′
0|β dx ′

0.
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Since β > −2, we conclude that

∫

|x ′
0|≤1

(1 + |x |)α |x ′ − x ′
0|β dx ′

0 ∼ (1 + |x |)α(1 + |x ′|)β

is an A1-weight for all β ∈ (−2, 0], −3 < α + β ≤ 0.
(ii) Consider w j (x) = (1 + |x |)α j (1 + r)β j ∈ A1, j = 1, 2, where α j , β j run

through all of the parallelogram P . By Lemma 2.1

w1(x)

w2(x)q−1 = (1 + |x |)α1−(q−1)α2(1 + r)β1−(q−1)β2 ∈ Aq .

Now it can easily be seen that w(x) = (1 + |x |)α(1 + r)β ∈ Aq for all α, β satisfying
−2 < β < 2(q − 1), −3 < α + β < 3(q − 1). �

Proof (Proof of Corollary 1.2) As to the weight w = ηαβ we may proceed as in the
proof of Theorem 1.1 based on Proposition 3.1. Hence the operators Tj satisfy the
estimate (3.9) and the maximal operators M j satisfy the pointwise estimate (3.7) just
as before. However, we have to modify the proof of (3.8) by analyzing Mθ more
carefully.

For the moment let ρ(x) := ρ1(r)ρ2(r, θ) be an Ap-weight on R
2, 1 < p < ∞,

such that ρ2(r, θ) is 2π -periodic with respect to θ and satisfies a modified
Muckenhoupt condition for 2π -periodic weights, i.e.,

sup
r>0

sup
0<|b−a|≤2π

Ia,b(ρ2) < ∞, (3.15)

where

Ia,b(ρ2) =
⎛
⎝ 1

b − a

b∫

a

ρ2(r, θ) dθ

⎞
⎠ ·

⎛
⎝ 1

b − a

b∫

a

ρ2(r, θ)
−1/(p−1) dθ

⎞
⎠

p−1

,

see [18, Corollary 4], without the additional parameter r . Then consider for given
g ∈ L1

loc(R
n) the restriction gr (θ) = g(r, θ). Obviously, Mθ is estimated by the one-

dimensional Hardy-Littlewood maximal operator M
per
1 for 2π -periodic functions, see

[18,23], i.e., for all θ ∈ (0, 2π)

Mθ g(r, θ) ≤ c(M per
1 gr )(θ), r > 0.
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Then by [18, Corollary 4], using polar coordinates and Fubini’s theorem,

||Mθg||p
p,ρ ≤ c

∞∫

0

rρ1(r)||M per
1 gr ||p

L p(0,2π,ρ2(r,·)) dr

≤ c Bp

∞∫

0

rρ1(r)||gr ||p
L p(0,2π,ρ2(r,·)) dr

= c ||g||p
p,ρ .

In the case n = 3 we proceed analogously for a weightρ(x) :=ρ1(r, x3)ρ2(r, x3, θ),
inserting the additional variable x3 in condition (3.15) and by performing an additional
integration with respect to x3 ∈ R in the last estimate.

Applying this general procedure we have to check for which α, β ∈ R the weights
ρ = σαβ and ρ = ηαβ satisfy the condition (3.15). First let ρ(x) = σαβ (x) = rα+β(1 −
cos θ)β yielding ρ2(r, θ) = ρ2(θ) = (1 − cos θ)β . Since ρ2(θ) ∼ θ2β near the origin
and ρ2(θ) ∼ (2kπ − θ)2β near 2kπ, k ∈ Z, we may restrict ourselves to small
|a|, |b|, b > 0, in (3.15). If 0 = a < b, then

I0,b(ρ2) ∼ 1

b

b∫

0

θ2β dθ

⎛
⎝1

b

b∫

0

θ−2β/(p−1) dθ

⎞
⎠

p−1

= cβ

provided − 1
2 < β < 1

2 (p − 1). For 0 < a < b
2 , the term Ia,b(ρ2) may be compared

with I0,b(ρ2), and for 0 < b
2 ≤ a < b both integrands in Ia,b(ρ2) may be compared

with the constants b2β and b−2β/(p−1), respectively. Finally, if a < 0 < b, |a| ≤ b,
then Ia,b(ρ2) ∼ I0,b(ρ2). Hence we proved

ρ = σαβ : sup
0<|b−a|≤2π

r>0

Ia,b(ρ2) < ∞ for − 1

2
< β <

1

2
(p − 1).

Next we consider the weight ρ = ηαβ on R
2. In this case

ρ2(r, θ) = (1 + r(1 − cos θ))β ∼
⎧⎨
⎩
(1 + r)β, θ ∼ (2k + 1)π,

(1 + r(2kπ − θ)2)β, θ ∼ 2kπ,

is r -dependent. Then, if 0 = a < b < π , using the change of variables ϑ = √
rθ and

the notation B = b
√

r ,
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I0,b(ρ2) ∼ 1

b

b∫

0

(1 + rθ2)β dθ

⎛
⎝1

b

b∫

0

(1 + rθ2)−β/(p−1) dθ

⎞
⎠

p−1

∼ 1

B

B∫

0

(1 + ϑ)2β dϑ

⎛
⎝ 1

B

B∫

0

(1 + ϑ)−2β/(p−1) dϑ

⎞
⎠

p−1

∼ 1

B p
((1 + B)2β+1 − 1)

(
1 − (1 + B)1−2β/(p−1)

)p−1
.

(3.16)

Now it is easy to see that the last term is uniformly bounded in B ∈ (0,∞) provided
that − 1

2 < β < 1
2 (p − 1). In this way, omitting further cases, we proved

ρ = ηαβ, n = 2 : sup
0<|b−a|≤2π

r>0

Ia,b(ρ2(r, ·)) < ∞ for − 1

2
< β <

1

2
(p − 1).

Finally we investigate the weight ρ = ηαβ on R
3. Since |x | =

√
r2 + x2

3 , we get
ρ(x) = ρ1(r)ρ2(r, x3, θ), where

ρ2(r, x3, θ) = 1 +
√

r2 + x2
3 − r + r(1 − cos θ)

∼ 1 +
√

r2 + x2
3 − r + r

{
1, θ ∼ (2k + 1)π

(2kπ − θ)2, θ ∼ 2kπ
.

If 0 = a < b < π , we proceed as in the previous case and get with R = 1 +√
r2 + x2

3 − r ≥ 1 and B = b
√

r/R that

I0,b(ρ2) ∼ 1

b
√

r

b
√

r∫

0

(
√

R + θ)2β dθ ·
⎛
⎜⎝ 1

b
√

r

b
√

r∫

0

(
√

R + θ)−2β/(p−1) dθ

⎞
⎟⎠

p−1

= 1

B

B∫

0

(1 + θ)2β dθ

⎛
⎝ 1

B

B∫

0

(1 + θ)−2β/(p−1) dθ

⎞
⎠

p−1

.

Comparing with (3.16) we see that we proved

ρ = ηαβ, n = 3 : sup
0<|b−a|≤2π

r>0, x3∈R

Ia,b(ρ2(r, x3, ·)) < ∞ for − 1

2
< β <

1

2
(p − 1).

Even in this final case (3.15) is satisfied (with an obvious modification for x3 ∈ R).
To complete the proof we look at Proposition 3.1 and its proof. Up to now we

showed that the linear operator T , see (2.7), is bounded if (3.1) is satisfied—with an

123



Ann Univ Ferrara (2008) 54:61–84 83

obvious modification of the class Ap. To be more precise, Ap is replaced by the class
of weights

Ã p =
{
w = σαβ : −n < α + β < n(p − 1), −1

2
< β <

1

2
(p − 1)

}

or

Ã p =
{
w = ηαβ : −n < α + β < n(p − 1), −1

2
< β <

1

2
(p − 1)

}
;

for the bound on α + β we used the well-known result

σαβ , η
α
β ∈ Ap iff − n − 1

2
< β <

n − 1

2
(p − 1), −n < α + β < n(p − 1),

see [4] for the case n = 3, p = 2 and [15] for the general case. If p = 1, then
α + β = 0 and β = 0 are allowed as well in the previous characterizations. Now
we use Lemma 3.1 on interpolation within each class Ã p. Looking at the proof of
Theorem 1.1 we get a result analogous to (1.9), with Ap replaced by Ã p. Finally we
repeat the proof of Corollary 1.1 (ii). The only differences are due to the new upper
and lower bounds on β and on α + β. �
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