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Abstract Under a suitable ellipticity condition, we show that classical SG-pseu-
dodifferential operators of nonnegative order possess complex powers. We show
that the powers are again classical and derive an explicit formula for all homoge-
neous components.
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1 Introduction

In his classic paper [21], Seeley in 1967 showed that a suitably parameter-elliptic
pseudodifferential operator A of order μ > 0 on a smooth closed manifold pos-
sesses complex powers. More precisely, one can define Az for any z ∈ C (essen-
tially by means of a Dunford integral, integrating the resolvent against λ z) and
show that Az is a pseudodifferential operator of order μz. His results on complex
powers were quite important for applications, e.g., for the study of eigenvalue
asymptotics, index theory, or determinants of elliptic operators. Due to their im-
portance, from there on complex powers for various classes of pseudodifferen-
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tial operators have been widely investigated in the literature. Without making any
claim to completeness let us mention [1], [2], [8], [9], [13], [17], and [19].

In the present paper we shall investigate complex powers of a class of operators
on Rn, the so-called SG-pseudodifferential operators. These are operators A =
op(a) with (matrix valued) symbols in Sμ ,m(Rn×Rn), i.e.

|∂ α
ξ ∂ β

x a(x,ξ )| ≤Cαβ [x]
m−|β |[ξ ]μ−|α |,

for all α ,β ∈ Nn
0, where [ · ] denotes a smooth, positive function on Rn that co-

incides with the euclidean norm outside a ball. The investigation of this symbol
class goes back to works of Parenti [16] and Cordes [4]. Based on an approach
of Kumano-go [12], Schrohe in [20] has shown the existence of complex powers
for operators of order μ ,m≥ 0 that are parameter-elliptic in a suitable sense. He
also considers operators on so-called SG-manifolds which are, roughly speaking,
generalizations of manifolds that at infinity have the structure of an opening cone.

A subspace of Sμ ,m(Rn×Rn) is that of all classical (occasionally also called
poly-homogeneous) symbols, which have both in the variable and the covariable
asymptotic expansions into components that are homogeneous of one step de-
creasing order. For details see Section 2, where we give an exposition of the corre-
sponding calculus. Such symbols naturally arise in the parametrix construction of
elliptic differential operators with polynomial coefficients as well as in the study
of pseudodifferential operators on manifolds with singularities, see for example
[7]. In [6] classical SG-Fourier Integral Operators have been considered.

The aim of this article is to show that the complex powers of a classical el-
liptic operator again are classical. This we shall derive in Section 3, giving also
explicit formulas for all homogeneous components of the complex powers. It is
worthwhile to point out that the formulas here obtained could be of some interest
in connection with the study of the asymptotic behavior of eigenvalues of SG-
classical operators in the spirit of [14].

While our approach follows that of Seeley, Kumano-go, Schrohe, let us men-
tion that Guillemin [10] developed another method for the construction of complex
powers for operators in a so-called Weyl algebra. Such an algebra is defined by
certain axioms and comprises a generalization of pseudodifferential algebras on
compact manifolds. Based on his results and those of Bucicovschi [3], Ammann,
Lauter, Nistor, and Vasy in [1] develop an axiomatic approach to complex po-
wers also for operators on noncompact manifolds. Their results on the existence
of complex powers include ours for the special case of positive operators of order
m= 0 and μ ≥ 0.

Our results also extend to operators on certain SG-manifolds. However, to keep
the exposition short, we shall not go into details here.

2 The calculus for SG-pseudodifferential operators

We summarize the calculus for so-called SG-pseudodifferential operators. Besides
the usual estimates in the covariable, the symbols of these operators have an anal-
ogous behaviour also in the variable. This additional control of the growth in the
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variable allows a calculus in weighted Sobolev spaces, including a concept of el-
lipticity which is equivalent to the Fredholm property. For more details we refer
the reader to [11] or [7].

2.1 Symbol classes

In the following we set Ṙn=Rn\{0} and let [·] denote a smoothed norm function,
i.e. x �→ [x] is smooth, positive, and [x] = |x| for |x| ≥ 1.

Definition 2.1 Let μ ,m∈R. The space Sμ ,m= Sμ ,m(Rn×Rn) of symbols of order
(μ ,m) consists of all smooth functions a :Rn×Rn→C (or with values in matrices
in case of systems) satisfying

sup
x∈Rn,ξ∈Rn

|∂ α
ξ ∂ β

x a(x,ξ )|[x]−m+|β |[ξ ]−μ+|α | < ∞ (2.1)

for all multi-indices α ,β ∈ Nn
0. If μ ,m ∈C we set Sμ ,m = SRe μ ,Rem.

The expressions on the left-hand side of (2.1) define a countable system of
semi-norms which give Sμ ,m a Fréchet space structure. Similarly, we have spaces
Sm = Sm(Rn

x) and Sμ = Sμ (Rn
ξ ) of symbols depending only on one variable. Note

that
S−∞,−∞ := ∩

μ ,m∈R
Sμ ,m =S (Rn×Rn),

the space of rapidly decreasing functions on Rn×Rn.
A function b : Ṙn → E with values in a Fréchet space E is called positively

homogeneous of order z ∈ C, if b is smooth and

b(ty) = tz b(y) ∀ t > 0 ∀ y 	= 0.

The space of all such functions will be denoted by S(z)(Ṙn,E). If E = C we drop
E from the notation. The canonical isomorphism with C ∞(Sn−1,E), the smooth
functions on the unit sphere, induces a Fréchet topology on S(z)(Ṙn,E).

A symbol b ∈ Sz will be called classical of order z ∈C if for each j ∈N0 there
exists a function b(z− j) which is positively homogeneous of degree z− j such that,
for any N ∈ N,

bN := b−
N−1

∑
j=0

χb(z− j) ∈ Sz−N .

Here, χ is an arbitrary zero excision function. The functions b(z− j) are uniquely
determined and are called the homogeneous components of b. We will write Sz

cl
for the space of all such symbols b. The maps b �→ b(z− j) : Sz

cl→ S(z− j) and b �→
bN : Sz

cl→ Sz−N induce a Fréchet topology on Sz
cl.

We then define, for m,μ ∈C,

Sμ ,(m)
cl = S(m)(Ṙn

x,S
μ
cl(R

n
ξ )), S(μ),mcl = S(μ)(Ṙn

ξ ,S
m
cl(R

n
x)). (2.2)
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Definition 2.2 Let m,μ ∈ C. The space Sμ ,m
cl = Sμ ,m

cl (R
n ×Rn) consists of all

symbols a ∈ Sμ ,m having the following property: For each j,k ∈ N0 there exist
(uniquely determined) functions

a(m− j) ∈ Sμ ,(m− j)
cl , a(μ−k) ∈ S(μ−k),m

cl ,

such that for each N ∈N

a−
N−1

∑
j=0

χa(m− j) ∈ Sμ ,m−N , a−
N−1

∑
k=0

κa(μ−k) ∈ Sμ−N,m.

Here, χ = χ(x) and κ = κ(ξ ) are arbitrary zero excision functions.

The prototype of such symbols are finite linear combinations of symbols of
the form a1(x)a2(ξ ) where both a1 and a2 are classical. In fact it can be shown
that Sμ ,m

cl = Sμ
cl
̂⊗π Sm

cl (completed projective tensor product).
For each fixed ξ , the functions x �→ a(μ−k)(x,ξ ) belong to Sm

cl. Therefore, they
have homogeneous components

(a(μ−k))(m− j) ∈ S(μ−k),(m− j) := S(m− j)(Ṙn
x ,S
(μ−k)(Ṙn

ξ )).

Analogously, we can fix x and consider the homogeneous components (a(m− j))
(μ−k)

of ξ �→ a(m− j)(x,ξ ). As a matter of fact, the resulting components coincide and it
is well-defined to set

a(μ−k)
(m− j) := (a(μ−k))(m− j) = (a(m− j))

(μ−k) ∈ S(μ−k),(m− j). (2.3)

Lemma 2.1 Let a ∈ Sμ ,m
cl . Then, for any N ≥ 1, a−aN ∈ Sμ−N,m−N

cl with

aN :=
N−1

∑
j=0

(

κa(μ− j) + χa(m− j)

)

−κχ
N−1

∑
j,k=0

a(μ−k)
(m− j).

Proof We first observe that

a−aN = a−
N−1

∑
j=0

κa(μ− j)−
N−1

∑
j=0

χ

(

a(m− j)−κ
N−1

∑
k=0

a(μ−k)
(m− j)

)

belongs to Sμ−N,m and, analogously, a−aN ∈ Sμ ,m−N . This shows that

a−aN ∈ Sμ−N,m∩Sμ ,m−N ⊂ Sμ−N/2,m−N/2.

On the other hand, for every M ≥ 1,

aM+1−aM = κ

(

a(μ−M)− χ
M−1

∑
k=0

a(μ−M)
(m−k)

)

+

+ χ

(

a(m−M)−κ
M−1

∑
k=0

a(μ−k)
(m−M)

)

−κχa(μ−M)
(m−M)

belongs to Sμ−M,m−M . We then can write

a−aN = a−a2N +a2N−a2N−1+ ...+aN+1−aN

and this concludes the proof. �
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In particular, a ∈ Sμ ,m
cl belongs to Sμ−1,m−1

cl if and only if the homogeneous
components a(μ) and a(m) vanish identically.

2.2 Composition and ellipticity

We denote by S (Rn) the rapidly decreasing functions on Rn. For a ∈ Sμ ,m we
define the operator op(a) = a(x,D) :S (Rn)→S (Rn) by

[op(a)u](x) =
∫

eixξ a(x,ξ ) û(ξ ) d̄ξ , x ∈Rn, (d̄ξ = (2π)−ndξ ).

The class of SG-operators behaves well under composition:

Theorem 2.1 Let a ∈ Sμ0,m0 and b ∈ Sμ1,m1 be given. Then there exists a unique
symbol a#b ∈ Sμ0+μ1,m0+m1 such that

op(a)op(b) = op(a#b).

a#b is called the Leibniz product of a and b. Explicitly, for each N ∈ N,

a#b(x,ξ ) =
N−1

∑
|α |=0

1
α !

∂ α
ξ a(x,ξ )Dα

x b(x,ξ ) + rN(x,ξ )

with a remainder rN ∈ Sμ0+μ1−N,m0+m1−N given by the expression

N ∑
|α |=N

∫ 1

0

(1−θ)N−1

α !

∫∫

eiyη∂ α
ξ a(x,ξ +θη)Dα

x b(x+ y,ξ )dyd̄ηdθ

where the double integral is understood as an oscillatory integral.

Clearly, if both a and b are classical then so is a#b. The homogeneous compo-
nents are calculated according to the rule

(a#b)(μ0+μ1−k) = ∑
k0+k1+|α |=k

1
α !

∂ α
ξ a(μ0−k0)Dα

x b(μ1−k1)

and similarly for the x-components. For the mixed components we have

(a#b)(μ0+μ1−k)
(m0+m1− j) = ∑

k0+k1+|α |=k
j0+ j1+|α |= j

1
α !

∂ α
ξ a(μ0−k0)
(m0− j0)

Dα
x b(μ1−k1)
(m1− j1)

.

Definition 2.3 A symbol a ∈ Sμ ,m is called elliptic, if there exist constants R≥ 0
and C> 0 such that a(x,ξ ) is invertible for all |(x,ξ )| ≥ R and

|a(x,ξ )−1| ≤C [x]−Rem[ξ ]−Re μ ∀ |(x,ξ )| ≥ R.

Setting b0(x,ξ ) = χ(x,ξ )a(x,ξ )−1 with an elliptic symbol a ∈ Sμ ,m and a
suitable zero excision function χ , we get a symbol b0 ∈ S−μ ,−m such that both
a#b0−1 and b0#a−1 belong to S−1,−1. Proceeding by the standard von Neumann
series argument one obtains the following:
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Theorem 2.2 a ∈ Sμ ,m is elliptic if and only if there exists a symbol b ∈ S−μ ,−m

such that both rL := b#a−1 and rR := a#b−1 belong to S−∞,−∞ . If a is classical,
then b ∈ S−μ ,−m

cl . The symbol b is called a parametrix of a.

Note also that the operators with symbol from S−∞,−∞ are exactly the inte-
gral operators with respect to Lebesgue measure on Rn whose kernel belongs to
S (Rn×Rn).

Remark 2.1 If a ∈ Sμ ,m is classical, then a is elliptic if and only if

a) a(μ)(x,ξ ) is invertible for all x ∈ Rn and all ξ 	= 0,
b) a(m)(x,ξ ) is invertible for all x 	= 0 and all ξ ∈ Rn, and

c) a(μ)
(m)(x,ξ ) is invertible for all x 	= 0 and all ξ 	= 0.

2.3 Sobolev spaces and Fredholm property

We define weighted Sobolev spaces

Hs,δ (Rn) = {u ∈S ′(Rn) | [·]δu ∈Hs(Rn)}, s,δ ∈ R,
and equip them with the norm ‖u‖Hs,δ (Rn) = ‖ [·]δ u‖Hs(Rn). The standard properties
of Sobolev spaces carry over to the weighted spaces. For example:
Hs′,δ ′(Rn) ↪→Hs,δ (Rn) for s′ ≥ s and δ ′ ≥ δ (this embedding is compact provided
s′ > s and δ ′ > δ ); the dual space of Hs,δ (Rn) can be identified with H−s,−δ (Rn)

using the standard L2-pairing. Note also that ∩
s,δ∈R

Hs,δ (Rn) =S (Rn).

Theorem 2.3 Let a ∈ Sμ ,m and s,δ ∈ R. Then op(a) has a continuous extension
to

op(a) : Hs,δ(Rn)−→ Hs−Re μ ,δ−Rem(Rn).

From the existence of the parametrix one obtains the standard results of elliptic
regularity and Fredholm property:

Theorem 2.4 Let a ∈ Sμ ,m be elliptic. Then

a) op(a) : Hs,δ (Rn)→ Hs−Re μ ,δ−Rem(Rn) is a Fredholm operator for any given
s,δ ∈R.

b) If u is in a weighted Sobolev space and op(a)u ∈ Hs,δ (Rn), then
u ∈Hs+Re μ ,δ+Rem(Rn).

In fact, also the converse of a) holds true: If a ∈ Sμ ,m and op(a) : Hs,δ (Rn)→
Hs−Re μ ,δ−Rem(Rn) is a Fredholm operator for some given s,δ ∈ R, then a is el-
liptic. Using this, it is easy to derive the spectral invariance of pseudodifferential
operators:

Proposition 2.1 Let a ∈ Sμ ,m
(cl) and suppose that op(a) : Hs,δ (Rn) →

Hs−Re μ ,δ−Rem(Rn) is invertible for some given s,δ ∈ R. Then
op(a)−1 = op(c) for some c ∈ S−μ ,−m

(cl) .
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Proof By the preceding comment, a is elliptic and thus has a parametrix b ∈
S−μ ,−m
(cl) . Then, with notation from Theorem 2.2,

op(a)−1 = op(b)−op(rL#b)+op(rL)op(a)−1op(rR). (2.4)

The third operator on the right-hand side maps each weighted Sobolev space into
S (Rn). This is also true for its L2-adjoint. Hence it has a Schwartz kernel in
S (Rn×Rn), and thus belongs to S−∞,−∞. Therefore the right-hand side of (2.4)
is an operator with symbol in S−μ ,−m

(cl) . �

Another easy consequence of the existence of a parametrix is the following:

Proposition 2.2 Let μ ,m ≥ 0 and a ∈ Sμ ,m be elliptic. The closure of the un-
bounded operator

op(a) :S (Rn)⊂Hs,δ (Rn)−→ Hs,δ (Rn)

is given by op(a) acting on Hs+μ ,δ+m(Rn).

3 Complex powers of classical operators

In [20] it is shown, in particular, that under a suitable ellipticity assumption SG-
pseudodifferential operators have complex powers. The aim of this section is to
show that if the operators additionally are classical then so are the complex pow-
ers.

From now on let μ and m be fixed nonnegative reals and let Λ be a closed
subsector of the complex plane with corner in the origin. We denote by C any
positive constant independent of λ ∈ Λ , x ∈Rn, and ξ ∈ Rn.

3.1 Λ -ellipticity

We recall the standard parameter-ellipticity condition for global symbols and then
characterize it for classical symbols purely in terms of the principal homogeneous
components.

Definition 3.1 a ∈ Sμ ,m is called Λ -elliptic if there exist constants C > 0, R ≥ 0
such that

spec(a(x,ξ ))∩Λ = /0 ∀ |(x,ξ )| ≥ R

and
|(λ −a(x,ξ ))−1| ≤C[x]−m[ξ ]−μ ∀ λ ∈Λ ∀ |(x,ξ )| ≥ R.

Lemma 3.1 A classical symbol a ∈ Sμ ,m
cl is Λ -elliptic if and only if there exists a

constant C ≥ 0 such that the following hold:

a) spec(a(μ)(x,ω))∩Λ = /0 for all x ∈ Rn, |ω |= 1, and

|(λ −a(μ)(x,ω))−1| ≤C[x]−m ∀ x ∈ Rn ∀ |ω |= 1 ∀ λ ∈ Λ ,
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b) spec(a(m)(θ ,ξ ))∩Λ = /0 for all ξ ∈ Rn, |θ |= 1, and

|(λ −a(m)(θ ,ξ ))−1| ≤C[ξ ]−μ ∀ ξ ∈ Rn ∀ |θ |= 1 ∀ λ ∈Λ .

Proof First assume that a is Λ -elliptic. Then, for |(x,ξ )| ≥ R and λ ∈ Λ ,

λ−a(μ)(x,ξ ) = (λ −a(x,ξ ))
(

1+(λ −a(x,ξ ))−1(a(x,ξ )−a(μ)(x,ξ ))
)

=: (λ −a(x,ξ ))(1+ r(x,ξ ,λ)).

For |ξ | large enough, we have |r(x,ξ ,λ)|< 1
2 uniformly in x∈Rn and λ ∈Λ . This

together with the ξ -homogeneity of a(μ) implies the first property in a). Moreover,
for |ξ | large,

|(λ −a(μ)(x,ξ ))−1| ≤ 2|(λ −a(x,ξ ))−1| ≤C[x]−m|ξ |−μ

uniformly in x and λ . Again by homogeneity, this is equivalent to the second
condition in a). In the same way one shows b).

Now assume the validity of a) and b). By homogeneity, a) is equivalent, for
every x ∈ Rn, ξ 	= 0 and λ ∈Λ , to

|(λ −a(μ)(x,ξ ))−1| ≤C[x]−m|ξ |−μ . (3.1)

Writing

λ −a(x,ξ )=(λ −a(μ)(x,ξ ))
(

1− (λ −a(μ)(x,ξ ))−1(a(x,ξ )−a(μ)(x,ξ ))
)

one deduces similarly as above the existence of an R ≥ 0 such that a(x,ξ ) has no
spectrum in Λ for all x ∈ Rn and |ξ | ≥ R and that

|(λ −a(x,ξ ))−1| ≤C[x]−m[ξ ]−μ ∀ λ ∈ Λ ∀ x ∈ Rn ∀ |ξ | ≥ R.

Using property b) one obtains the same estimate but uniformly in λ ∈ Λ , ξ ∈Rn,
and |x| large enough. Thus a is Λ -elliptic. �

Proposition 3.1 A classical symbol a ∈ Sμ ,m

cl is Λ -elliptic if and only if

a) spec(a(μ)(x,ω))∩Λ = /0 for all x ∈ Rn and |ω |= 1,
b) spec(a(m)(θ ,ξ ))∩Λ = /0 for all ξ ∈ Rn and |θ |= 1 and

c) spec(a(μ)(m)(θ ,ω))∩Λ = /0 for all |θ |= 1 and |ω |= 1.

Proof Let us first assume that a)–c) are valid. By c) we have

M := sup
λ∈Λ ,

|θ |=|ω|=1

|(λ −a(μ)
(m)(θ ,ω))

−1|< ∞.

Thus, by homogeneity,

|(λ −a(μ)
(m)(x,ω))

−1| ≤M|x|−m ∀ λ ∈ Λ ∀ x 	= 0 ∀ |ω |= 1.
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Therefore, by writing

λ −a(μ)(x,ω) =

= (λ −a(μ)
(m)(x,ω))

(

1− (λ −a(μ)
(m)(x,ω))

−1(a(μ)(x,ω)−a(μ)
(m)(x,ω))

)

,

we obtain the existence of C,R≥ 0 such that

|(λ −a(μ)(x,ω))−1| ≤C[x]−m ∀ λ ∈Λ ∀ |x| ≥ R ∀ |ω |= 1.

For small |x| this estimate holds anyway by a). This shows that a satisfies a) of
Lemma 3.1, and analogously we deduce b) of Lemma 3.1 by b) and c).

Assume, vice versa, that a is Λ -elliptic, i.e. a) and b) of Lemma 3.1 are satis-
fied. We obviously only have to show c). However this works as before by writing

λ −a(μ)
(m)(x,ω) =

= (λ −a(μ)(x,ω))
(

1+(λ −a(μ)(x,ω))−1(a(μ)(x,ω)−a(μ)
(m)(x,ω))

)

,

and using the homogeneity in x of a(μ)
(m). �


Remark 3.1 If a ∈ Sμ ,m is Λ -elliptic we can always find ã ∈ Sμ ,m that is Λ -elliptic
with constant R = 0 and such that a− ã ∈ S−∞,−∞ . For example, in case Λ is
centered around the negative real half axis, one can choose ã := a+ (L+ 1)χ
where χ is a zero excision function with χ(x,ξ ) = 1 for |(x,ξ )| ≤ R, and L =
max|(x,ξ)|≤R |a(x,ξ )|.

3.2 A parametrix construction and complex powers

Let us summarize a parametrix construction for parameter-elliptic symbols. It
may be found in [12] for symbols having uniform bounds in the x-variable and
in [20] for SG-symbols. We assume, without loss of generality (see Remark 3.1
and Corollary 3.1.1, below), that a ∈ Sμ ,m is Λ -elliptic with constant R= 0.

Lemma 3.2 There exists a constant c0 ≥ 1 such that, for every (x,ξ ),

spec(a(x,ξ )) ⊂Ω[x],[ξ ] := {z ∈ C \Λ | 1
c0
[x]m[ξ ]μ < |z|< c0[x]m[ξ ]μ}

and

|(λ −a(x,ξ ))−1| ≤C(|λ |+[x]m[ξ ]μ)−1 ∀(x,ξ ), λ ∈ C \Ω[x],[ξ ]

uniformly in x, ξ , and λ .

Proof According to the Λ -ellipticity assumption,we have

|a(x,ξ )−1| ≤C[x]−m[ξ ]−μ
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uniformly in x and ξ . Thus, when |λ | ≤ 1
2C [x]

m[ξ ]μ ,

|(λ −a(x,ξ ))−1| = |a(x,ξ )−1(1−a(x,ξ )−1λ)−1|
≤ 2C[x]−m[ξ ]−μ ≤ (1+2C)(|λ |+[x]m[ξ ]μ)−1.

As a is a symbol, |a(x,ξ )| ≤C1[x]m[ξ ]μ uniformly in x and ξ . Writing

|(λ −a)−1|= |λ |−1|(1−a/λ)−1| for |λ | ≥ 2C1[x]m[ξ ]μ

as well as
|(λ −a)−1|= |λ |−1|1+a(λ −a)−1|

for λ ∈ Λ ∩{z ∈C | 1
2C [x]

m[ξ ]μ < |λ | < 2C1[x]m[ξ ]μ}, we conclude the proof by
setting c0 = 2max{C,C1}. �


Note that there exists an ε > 0 such that

Λε :=Λ ∪{z | |z| ≤ ε}⊂ C \Ω[x],[ξ ] ∀ x,ξ ∈ Rn. (3.2)

Let us now define symbols b−k, k ∈N0, recursively by

b0(x,ξ ,λ) = (λ −a(x,ξ ))−1,

and, for k ≥ 1,

b−k(x,ξ ,λ)= ∑
j+|α |=k

j<k

1
α !
(∂ α

ξ b− j)(x,ξ ,λ)(Dα
x a)(x,ξ )b0(x,ξ ,λ). (3.3)

By induction, each ∂ α
ξ ∂ β

x b−k is a finite linear combination of terms b0(∂ α1
ξ ∂ β1

x a) ·
. . . ·b0(∂ αl

ξ ∂ βl
x a)b0 with |α1|+ . . .+ |αl|= |α |+ k, |β1|+ . . .+ |βl| = |β |+ k, and

l ≥ 2 if k ≥ 1. Therefore, when k ≥ 0, one gets

|∂ α
ξ ∂ β

x b−k(x,ξ ,λ)| ≤C (|λ |+[x]m[ξ ]μ)−1[x]−k−|β |[ξ ]−k−|α |, (3.4)

while, when k≥ 1, one gets

|∂ α
ξ ∂ β

x b−k(x,ξ ,λ)| ≤C (|λ |+[x]m[ξ ]μ )−3[x]2m−k−|β |[ξ ]2μ−k−|α |,

uniformly in x,ξ ∈ Rn and λ ∈ C \Ω[x],[ξ ]. In particular, b−k(λ) ∈ S−μ−k,−m−k

uniformly for λ ∈ Λε . Arguing as in the proof of the asymptotic summation for
standard pseudodifferential symbols, we find a null sequence εk such that

b(x,ξ ,λ) = b0(x,ξ ,λ)+
∞
∑

k=1
χ(εkx,εkξ )b−k(x,ξ ,λ) (3.5)

defines a function satisfying estimates as (3.4) for k= 0 and, for any N ∈ N,

∣

∣

∣∂ α
ξ ∂ β

x

(

b(x,ξ ,λ)−
N−1

∑
k=0

b−k(x,ξ ,λ)
)∣

∣

∣≤

≤C (|λ |+[x]m[ξ ]μ)−3[x]2m−N−|β |[ξ ]2μ−N−|α |
(3.6)

uniformly in x,ξ ∈ Rn and λ ∈C \Ω[x],[ξ ].
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Theorem 3.1 Let b(λ) as above. Then both [λ ]
(

(λ − a)#b(λ) − 1
)

and
[λ ]
(

b(λ)#(λ − a)− 1
)

belong to S−∞,−∞ uniformly in λ ∈ Λε , cf. (3.2). In par-
ticular, the resolvent set of the unbounded operator

A := op(a) : Hμ ,m(Rn)⊂ L2(R
n)−→ L2(R

n)

contains all λ ∈ Λε of sufficiently large absolute value. Moreover, uniformly for
large λ ∈Λε ,

[λ ]2
(

(λ −A)−1−op(b(λ)
) ∈ S−∞,−∞ .

Proof By construction of b(λ) and (3.6), for each N ∈ N,

b(λ)#(λ −a)≡
N−1

∑
k=0

b−k(λ)#(λ −a)

modulo a remainder which is O([λ ]−1) in S2μ−N,2m−N. Then, by Theorem 2.1,

b(λ)#(λ −a)≡ ∑
|α |≤N−1

N−1

∑
k=0

1
α !
(∂ α

ξ b−k)(λ)Dα
x (λ −a)

modulo a remainder of the same quality as above. Now we split the summation
into two parts: One over those α and k with |α |+ k ≤ N− 1 and the other over
those with N−1< |α |+k≤ 2(N−1) and |α |,k≤ N−1. The first summand then
equals 1 by construction of the bk. The second again is a remainder as before.
Since N was arbitrary, it follows that b(λ) is a left-parametrix. Similarly one can
show that b(λ) is a right-parametrix. Thus, writing B(λ) = op(b)(λ),

(λ −A)B(λ) = 1−R1(λ), B(λ)(λ −A) = 1−R2(λ),

with [λ ]R j(λ) ∈ S−∞,−∞ uniformly in λ ∈ Λε . Clearly, this induces the existence
of the resolvent of A for large λ . Moreover, solving both equations for (λ −A)−1,
we obtain

(λ −A)−1 = B(λ)+B(λ)R1(λ)+R2(λ)(λ −A)−1R1(λ).

From this the final statement of the theorem follows. �

Corollary 3.1.1 Let a, ã ∈ Sμ ,m such that ã is Λ -elliptic with constant R= 0 and
a− ã∈ S−∞,−∞ , cf. Remark 3.1. Let ˜b(λ) be the parametrix of (λ − ã) constructed
as above. Then ˜b(λ) is a parametrix of (λ − a). In particular, the resolvent set
of op(a) contains all λ ∈ Λε of sufficiently large absolute value and the resolvent
differs from ˜b(λ) by a remainder which is O([λ ]−2) in S−∞,−∞.

Proof That ˜b(λ) is a parametrix of (λ −a) follows from the identity

[λ ]
(

(λ −a)#˜b(λ)−1
)

= [λ ]
(

(λ − ã)#˜b(λ)−1
)

+[λ ]
(

(ã−a)#˜b(λ)
)

and the fact that [λ ]˜b(λ) ∈ Sμ ,m uniformly in λ ∈ Λε which tell us that
[λ ]
(

(λ − a)#˜b(λ)− 1
) ∈ S−∞,−∞ . The remaining statements then follow as in

Theorem 3.1. �
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The existence of the resolvent for large |λ | in the sector is still not enough
to define complex powers. In order to do this we need a stronger assumption.
Namely, we assume that a ∈ Sμ ,m (with μ , m nonnegative) is Λ -elliptic and that
A= op(a) satisfies the following condition:

λ −A is invertible for all 0 	= λ ∈Λ and

λ = 0 is at most an isolated spectral point.
(A)

To consider an example, suppose that a ∈ Sμ ,m with μ ,m > 0 is Λ -elliptic. Then
A has compact resolvent due to the compact embedding of Hμ ,m(Rn) in L2(Rn),
hence the spectrum of A is discrete, consisting only of eigenvalues with corre-
sponding eigenfunctions in S (Rn). This means that only finitely many spectral
points lie in Λ . One thus can find a subsector of Λ such that (A) holds for this new
sector.

Remark 3.2 Under assumption (A), Theorem 3.1 is valid on the whole keyhole
region Λε with an arbitrarily small neighborhood of zero removed.

Let us define

Az =
1

2πi

∫

∂Λε
λ z(λ −A)−1 dλ , Rez< 0, (3.7)

where ∂Λε is a parametrization of the boundary of Λε , the circular part being
traversed clockwise. The power λ z = ez logλ is determined by taking the main
branch of the logarithm on the plane with the symmetry axis of Λ removed. We
can use Theorem 3.1 to show that Az, for Rez< 0, is a pseudodifferential operator
in Sμz,mz with symbol a(x,ξ , z) satisfying

a(x,ξ , z)≡ 1
2πi

∫

∂Ω[x],[ξ ]
λ zb(x,ξ ,λ)dλ (3.8)

(for the definition of Ω[x],[ξ ] see Lemma 3.2) modulo a remainder in S−∞,−∞ de-
pending holomorphically on z with Rez < 0. The definition of Az is extended to
arbitrary z ∈ C by Az := AkAz−k for any choice of a k ∈ N0 such that Rez− k < 0.
By using the composition formula for pseudodifferential operators we conclude
that Az is a pseudodifferential operator with symbol a(x,ξ , z) ∈ Sμz,mz for any
z ∈ C. The symbol a(x,ξ , z) depends smoothly on x,ξ and holomorphically on z.
For arbitrary s ∈ R, it satisfies the estimates

|∂ k
z ∂ α

ξ ∂ β
x a(x,ξ , z)| ≤C [x]sm−|β |[ξ ]sμ−|α | ∀ k ∈ N0, ∀ α ,β ∈ Nn

0,

uniformly in x,ξ ∈ Rn and uniformly in {z ∈ C | Re z≤ s−σ} for any σ > 0.
If A is invertible, the complex powers A1, A0, and A−1 coincide with A, the

identity operator, and the inverse of A, respectively.
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3.3 Classical symbols

Besides Λ -ellipticity and condition (A) we now assume additionally that a ∈ Sμ ,m

is a classical symbol. Inequality (3.1) can be used to prove an analog of Lemma
3.2 with a replaced by the the homogeneous component a(μ), Ω[x],[ξ ] replaced by
Ω[x],|ξ | and valid for (x,ξ ) ∈Rn× (Rn \0).

Proposition 3.2 For every i≥ 0 there exist b(−μ−i) such that

|∂ α
ξ ∂ β

x b(−μ−i)(x,ξ ,λ)| ≤C(|λ |+[x]m|ξ |μ)−1[x]−|β ||ξ |−i−|α | (3.9)

uniformly in x ∈ Rn, ξ 	= 0, and λ ∈ C \Ω[x],|ξ |,

b(−μ−i)(x, tξ , tμλ) = t−μ−ib(−μ−i)(x,ξ ,λ), ∀ t > 0, (3.10)

and, for each N ∈N,

∣

∣

∣∂ α
ξ ∂ β

x

(

b−
N−1

∑
i=0

b(−μ−i))(x,ξ ,λ)
∣

∣

∣ ≤C(|λ |+[x]m|ξ |μ )−1[x]−|β ||ξ |−N−|α | (3.11)

uniformly in x ∈Rn, |ξ | ≥ 1, and λ ∈C\Ω[x],|ξ |. Explicitly, these components are
given by

b(−μ)(x,ξ ,λ) = (λ −a(μ)(x,ξ ))−1, (3.12)

and, for i≥ 1,

b(−μ−i) = ∑
j+l+|α |=i

j<i

1
α !
(∂ α

ξ b(−μ− j))(Dα
x a(μ−l))b(−μ). (3.13)

Proof Writing (λ −a)−1 = (λ −a(μ))−1
(

1− (λ −a(μ))−1(a−a(μ))
)−1

and ap-

plying the formula (1−q)−1 =
N−1
∑

k=0
qk+qN(1−q)−1 to the second factor, one can

derive that to b0 = (λ − a)−1 there exist components b(−μ−i)
0 , i ≥ 0, that satisfy

an analog of (3.9), (3.10), and (3.11). Using expressions (3.3) and induction one
can show that also each b−k, with k ≥ 1, has components b(−μ−k−i)

−k with the same
properties. From this follows, by means of (3.5), the existence of the components
b(−μ−i) to b(λ) that satisfy (3.9), (3.10), and (3.11). It remains to show that the
components b(−μ−i) are really given by the recursion (3.12) and (3.13). However,
this follows from Theorem 3.1, the composition formula stated in Theorem 2.1
and the homogeneity properties of a(μ− j) and of b(−μ−i). �


Replacing a(μ−l) in (3.12), (3.13) by a(m−l), we obtain a sequence b(−m− j) of
functions that are homogeneous of degree −m− j in (x,λ) and a result analogous
to Proposition 3.2 holds true (with the roles of x and ξ interchanged). The Λ -
ellipticity assumption allows also the definition

b(−μ)
(−m)(x,ξ ,λ) = (λ −a(μ)

(m)(x,ξ ))
−1, x 	= 0, ξ 	= 0, λ ∈ C \Ω|x|,|ξ |.
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If we then define recursively for j+ k ≥ 1

b(−μ−k)
(−m− j) = ∑

j0+ j1+|α |= j
k0+k1+|α |=k
j0< j or k0<k

1
α !
(∂ α

ξ b(−μ−k0)
(−m− j0)

)(Dα
x a(μ−k1)
(m− j1)

)b(−μ)
(−m),

we can iterate the above procedure to show that, for each N ∈N,
∣

∣

∣∂ α
ξ ∂ β

x

(

b(−μ−i)−
N−1

∑
j=0

b(−μ−i)
(−m− j)

)

∣

∣

∣ ≤C(|λ |+ |x|m|ξ |μ )−1|x|−N−|β ||ξ |−i−|α |,

and
∣

∣

∣∂ α
ξ ∂ β

x

(

b(−m− j)−
N−1

∑
i=0

b(−μ−i)
(−m− j)

)

∣

∣

∣≤C(|λ |+ |x|m|ξ |μ )−1|x|− j−|β ||ξ |−N−|α |,

for every i≥, j ≥ 1 and uniformly in |x| ≥ 1, |ξ | ≥ 1, λ ∈ C \Ω|x|,|ξ |. Proceeding
as in the proof of Lemma 2.1 it is then straightforward to derive the following:

Proposition 3.3 For each N ∈ N and any choice of zero excision functions χ =
χ(ξ ) and κ = κ(x) ,

∣

∣

∣∂ α
ξ ∂ β

x

(

b−
N−1

∑
i=0

χb(−μ−i)−
N−1

∑
j=0

κb(−m− j) +
N−1

∑
j,k=0

κχb(−μ−k)
(−m− j)

)

(x,ξ ,λ)
∣

∣

∣

≤C (|λ |+[x]m[ξ ]μ)−1[x]−N−|β |[ξ ]−N−|α |

uniformly in λ ∈C \Ω[x],[ξ ].
The following theorem is then an immediate consequence of the previous es-

timates.

Theorem 3.2 If a is classical then Az ∈ Sμz,mz
cl for any z ∈C. If Az = op(a)(z) and

Re z< 0, then

a(μz−k) =
1

2πi

∫

∂Ω[x],|ξ |
λ zb(−μ−k)(x,ξ ,λ)dλ ∈ S(μz−k),m, (3.14)

a(mz− j) =
1

2πi

∫

∂Ω|x|,[ξ ]
λ zb(−m− j)dλ ∈ Sμ ,(mz− j),

a(μz−k)
(mz− j) =

1
2πi

∫

∂Ω|x|,|ξ |
λ zb(−μ−k)

(−m− j)(x,ξ ,λ)dλ ∈ S(μz−k),(mz− j). (3.15)

For the homogeneity of a(μz−k)(x,ξ , z) observe that
∫

∂Ω[x],|tξ |
f (λ)dλ = tμ

∫

∂Ω[x],|ξ |
f (tμ λ)dλ

for any t > 0 (analogously for the other homogeneous components).

Corollary 3.2.1 For any z ∈ C we have

a(μz)(x,ξ , z) = (a(μ)(x,ξ ))z, a(mz)(x,ξ , z) = (a(m)(x,ξ ))z,
and

a(μz)
(mz)(x,ξ , z) = (a

(μ)
(m)(x,ξ ))

z.
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3.4 The case of commuting homogeneous components

As already observed in [21], the formulas for the homogeneous components of
the complex powers become simpler, if one assumes that a(μ) and a(m) commute
with all the other homogeneous components a(μ−k) and a(m− j), respectively. Note

that then automatically a(μ)
(m) commutes with any a(μ−k)

(m− j). This clearly holds for

scalar valued symbols and, in case of systems, for example if a≡ diag(a0, . . .,a0)

modulo Sμ−1,m−1
cl for a scalar valued symbol a0 ∈ Sμ ,m

cl .
By induction we can derive from (3.13) that, for k ≥ 1,

b(−μ−k)(x,ξ ,λ) =
2k

∑
l=1

γk;l(x,ξ )(λ −a(μ)(x,ξ ))−(l+1), (3.16)

where each γk;l is a linear combination of terms of the form

(∂ α1
ξ ∂ β1

x a(μ−ν1)) · . . . · (∂ αl
ξ ∂ βl

x a(μ−νl ))

with |α1|+ . . .+ |αl|+ ν1+ . . .+ νl = k and |β1|+ . . .+ |βl|+ ν1+ . . .+ νl = k.

Note also that γk;l ∈ S(μ l−k)
ml . Similarly, we have

b(−m− j)(x,ξ ,λ) =
2 j

∑
l=1

γ j;l(x,ξ )(λ −a(m)(x,ξ ))−(l+1). (3.17)

Using the above recursion formula for the mixed homogeneous components one
gets, for j+ k ≥ 1,

b(−μ−k)
(−m− j)(x,ξ ,λ) =

2( j+k)

∑
l=1

γk
j;l(x,ξ )(λ −a(μ)(m)(x,ξ ))

−(l+1), (3.18)

where each γk
j;l is a linear combination of terms of the form

(∂ α1
ξ ∂ β1

x a(μ−ν1)
(m−n1)

) · . . . · (∂ αl
ξ ∂ βl

x a(μ−nl)
(m−nl )

)

with |α1|+ . . .+ |αl|+ν1+ . . .+νl = k and |β1|+ . . .+ |βl|+n1+ . . .+nl = j. Then

γk
j;l ∈ S(μ l−k)

(ml− j). Inserting these formulas in (3.14) and (3.15) yields the following:

Corollary 3.2.2 Assume Re z< 0. If k≥ 1, j≥ 1, and j+k≥ 1, respectively, then

a(μz−k) =
2k

∑
l=1

1
l!

γk;l(x,ξ )z(z−1) · . . . · (z− l+1)(a(μ)(x,ξ ))z−l

a(mz− j) =
2 j

∑
l=1

1
l!

γ j;l(x,ξ )z(z−1) · . . . · (z− l+1)(a(m)(x,ξ ))z−l

a(μz−k)
(mz− j) =

2( j+k)

∑
l=1

1
l!

γk
j;l(x,ξ )z(z−1) · . . . · (z− l+1)(a(μ)

(m)(x,ξ ))
z−l .
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3.5 Holomorphic families

Let b = b(ξ , z) be defined on Rn ×C, smooth in ξ ∈ Rn and holomorphic in
z ∈C. We call b a holomorphic family of zero order symbols if b(z) ∈ S0

cl(R
n) for

each z, all homogeneous components b(−k)(ξ , z) depend smoothly on ξ 	= 0 and
holomorphically on z ∈ C, and, for each N ∈ N0 and ε > 0,

∂ p
z

(

b−
N−1

∑
k=0

χ b(−k)
)

(·, z) ∈ S−N+ε ∀z ∈ C, p ∈ N0.

Similarly, we can define families that depend on more parameters, say (z,τ) with
holomorphy in z and smoothness in τ .

Definition 3.2 Let b = b(x,ξ , z) be defined on Rn ×Rn×C, smooth in (x,ξ )
and holomorphic in z ∈ C. Then we call b(z) a holomorphic family of zero order
symbols if b(z) ∈ S0,0(Rn×Rn) for each z ∈ C and

a) b(−k)(x,ξ , z) is a family of symbols in S0
cl(R

n
x) depending smoothly on ξ 	= 0

and holomorphically on z ∈ C,
b) b(− j)(x,ξ , z) is a family of symbols in S0

cl(R
n
ξ ) depending smoothly on x 	= 0

and holomorphically on z ∈ C,
c) for each N ∈N0 and ε > 0

∂ p
z

(

b−
N−1

∑
k=0

χb(−k)−
N−1

∑
j=0

κb(− j) +
N−1

∑
j,k=0

κχb(−k)
(− j)

)

(·, ·, z) ∈ S−N+ε ,−N+ε

for all z ∈ C and p ∈ N0. Here, χ = χ(ξ ) and κ = κ(x) are arbitrary zero
excision functions.

A holomorphic symbol family is a map a : C→ ∪μ ,m∈RSμ ,m such that there exist

entire functions μ(·) and m(·) with a(z) ∈ Sμ(z),m(z)
cl for all z ∈C, and b(x,ξ , z) :=

[x]−m(z)[ξ ]−μ(z)a(x,ξ , z) is a holomorphic family of zero order symbols in the
above sense.

Theorem 3.3 If a(x,ξ , z) is the symbol of the complex power Az associated with
a ∈ Sμ ,m

cl , then a(z) ∈ Sμz,mz
cl is a holomorphic family.

In fact, all the requested properties hold in view of what we proved in Sec-
tions 3.2 and 3.3, in particular, part c) of Definition 3.2 is a direct consequence of
Proposition 3.3.
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