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Abstract We study the system of equations describing a stationary thermocon-
vective flow of a non-Newtonian fluid. We assume that the stress tensor S has the
form

S= −PI+
(

μ(θ)+ τ(θ)|D(u)|p(θ )−2
)

D(u),

where u is the vector velocity, P is the pressure, θ is the temperature and μ , p
and τ are the given coefficients depending on the temperature. D and I are re-
spectively the rate of strain tensor and the unit tensor. We prove the existence of
a weak solution under general assumptions and the uniqueness under smallness
conditions.

Keywords Non-Newtonian fluids · Nonlinear thermal diffusion equations · Heat
and mass transfer
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1 Introduction

In recent years various nonlinear constitutive relations for the stress tensor extend-
ing the classical Navier-Stokes problem have been proposed in the mathematical
literature. In [17], Rajagopal and Ru̇žička have discussed mathematical models of
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electro-rheological fluids where in a growth condition the exponent depends on
the electromagnetic field. These models lead to new interesting mathematical is-
sues concerning existence, uniqueness and stability of flows that take into account
also electrodynamical effects. First interesting results can be found in [18] and in
[10].

For stationary solutions, where the problem is essentially uncoupled, the elec-
tromagnetic field being known, the growth exponent dependence became a given
variable function p(x), which under smoothness conditions yields regularity re-
sults for the respective weak solutions (see [1], [4]), similarly to the generalized
Newtonian fluids [14] and [5].

Here we are interested on the analysis of steady flows of fluids with shear-
dependent viscosity that are strongly influenced by the temperature field, rather
than by an external electromagnetic field, the so-called thermo-rheological flu-
ids. The two dimensional Stokes problem has been considered by Zhikov [22],
where the coupling in the temperature equation was given by an energy dissipa-
tion term with a small parameter and was controlled by a Meyer’s type estimate.
Recently, a steady-state Boussinesq problem with a non-standard force in a non-
linear feedback form evolving the temperature in the exponent of the velocity has
been considered in [2].

In this work we consider two and three dimensional thermoconvective sta-
tionary flows. In Section 2, we introduce the temperature-velocity coupled prob-
lem and we recall some useful results on the generalized Orlicz-Lebesgue spaces
L p(x)(Ω ) and Orlicz-Sobolev spaces W 1, p(x)(Ω ). Exploiting the Hölder continu-
ity of the temperature and the maximum principle, as in [19], [20], we prove in
Section 3 the existence of at least one weak solution under general assumptions on
the data, for the classical integrability condition p(x) ≥ p∗ > 3N/(N+ 2), (N =
2,3) on the convection terms. An interesting open question is to improve this
lower bound to 2N/(N+2) as it was done recently for the case of constant expo-
nents [13]. In Section 4, we show that weak solutions with a small amplitude in
temperature and subject to sufficiently small external forces are in fact unique.

2 Governing equations and auxiliary results

2.1 Statement of the problem

Let Ω be a bounded open subset of RN, N = 2,3, with Lipschitz boundary Γ .
We consider in Ω the following boundary value problem: find the functions θ(x),
u(x)= (u1, ...,uN), P(x) satisfying the equations

(u ·∇)b(θ) = Δθ +g(x), (2.1)

θ(x) = θ1(x), x ∈ Γ = ∂Ω . (2.2)

(u ·∇)u= div
(

μ(θ)+ τ(θ)|D(u)|p(θ )−2
)

D(u)−∇P+ f(x), (2.3)

div u=0, (2.4)

u(x) = 0, x ∈ Γ = ∂Ω . (2.5)
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In these equations u, P and θ are respectively the velocity field, the pressure and
the temperature of the fluid,

D(u) :=
1
2
(∇u+∇uT )

is the tensor of rate of deformation, f(x) is the prescribed mass force. The coeffi-
cients p, μ and τ depend on the temperature θ . We assume that the given functions
satisfy:

1< p∗ ≤ p(θ), (2.6)

0≤ μ∗ ≤ μ(θ), 0≤ τ∗ ≤ τ(θ), (2.7)

θ1 ∈ H1
0 (Ω )∩Cα (Ω), α > 0; g ∈ Ls(Ω ), s>

N
2

; f ∈W−1,p′∗(Ω ), (2.8)

b, μ , τ ∈C0(R), p ∈C1(R). (2.9)

2.2 Classical functional spaces

We use the classical spaces of continuous functions in Ω , Cα(Ω ),
0 ≤ α ≤ 1, with the Hölder property for 0 < α < 1 and continuous differen-
tiability for α = 1.

The classical Sobolev spaces W 1,p(Ω ) and W 1,p
0 (Ω ), for constant exponent

1 ≤ p < ∞, are defined as usual withW 1,p(Ω ) = H1(Ω ) and
W 1,p

0 (Ω ) = H1
0 (Ω ).

In addition, for vector valued functions we shall also use the notation

Jr(Ω ) = {v ∈ Lr(Ω )N :
∫

Ω
v ·∇φdx= 0,∀φ : ∇φ ∈ Lr(Ω )N}, (2.10)

1≤ r <∞, for the generalized solenoidal vector fields.
For integrable functions we shall use the inverse Hölder’s inequality

(∫
Ω
|g| q

q−1 dx

) q−1
q
(∫

Ω
| f |qdx

) 1
q

≤
∫

Ω
| f ||g|dx (2.11)

which is valid for any q constant, such that 0< q< 1.

2.3 Generalized Lebesgue spaces

We use the notations from [9]. Let Ω be a bounded open set of RN and p(x) be a
measurable function on Ω such that

1< p∗ ≤ p(x) ≤ p∗ < ∞, x ∈ Ω , (2.12)

(p∗ and p∗ are some constants). By Lp(·)(Ω ) we denote the space of measurable
functions f (x) on Ω such that

Ap( f ) =
∫

Ω
| f (x)|p(x)dx < ∞. (2.13)
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This is a Banach space with respect to the norm

‖ f‖p(·) = ‖ f‖Lp(·) = in f

{
λ > 0 : Ap

(
f
λ

)
≤ 1

}
. (2.14)

(see e.g.[8],[9],[11]). The following properties hold [12]:

i)
‖ f‖p(·) < 1 (= 1;> 1)⇔ Ap( f )< 1 (= 1;> 1); (2.15)

ii)
‖ f‖p(·) > 1>‖ f‖p∗

p(·) ≤ Ap( f )≤ ‖ f‖p∗
p(·) ; (2.16)

iii)
‖ f‖p(·) < 1>‖ f‖p∗

p(·) ≤ Ap( f )≤ ‖ f‖p∗
p(·) ; (2.17)

iv)

‖ f‖p(·)→ 0⇔ Ap( f )→ 0, ‖ f‖p(·)→∞⇔ Ap( f )→ ∞. (2.18)

2.4 Hölder, Sobolev and Korn’s inequalities

The space
(

Lp(·)(Ω ), ‖·‖p(·)
)

is a separable, uniform convex Banach space and

its conjugate space is Lq(·)(Ω ), where 1/q(x)+1/p(x) = 1. For any f ∈ Lp(·)(Ω )
and g ∈ Lq(·)(Ω ) the following Hölder’s inequality is valid ([8], [9], [12] ) :

∫

Ω
| f (x)g(x)| dx≤Cp‖ f‖p(·) ‖g‖q(·) , Cp = (1/p∗+1/q∗) . (2.19)

The space W 1, p(·)(Ω ) is defined by

W 1, p(·)(Ω ) =
{

f (x) ∈ Lp(·)(Ω ) : |∇ f (x)| ∈ Lp(·)(Ω )
}

and W 1, p(·)
0 (Ω ) is the closure of the set C∞

0 (Ω ) with respect to the norm of
W 1, p(·)(Ω ) [23], [21], provided we assume p is a uniformly continuous function
on Ω , such that:

|p(x1)− p(x2)| ≤ C

ln| 1
x1−x2

| , f or |x1− x2| ≤ 1
2
, ∀ x1,x2 ∈ Ω , (2.20)

with some constant C> 0.
In [23], [21], was proved that condition (2.20) guarantee that C∞(Ω ) is dense

in W 1, p(·)(Ω ). It means that Lavrentiev phenomenon is absent.
If p(x) satisfies to (2.20), then the Sobolev embedding inequality [6], [9],[11]

‖ f‖p∗,Ω ≤C‖∇ f‖p,Ω , p∗(x) = p(x)N/(N− p(x)) (2.21)

holds for any f ∈W 1,p(·)
0 (Ω ) with a some constant C=C(N, sup

Ω
p(x)). If p1, p2

satisfy (2.20) then Lp2(·)(Ω )⊂ Lp1(·)(Ω ), and the imbedding is continuous.
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An important tool is the generalization of Korn’s inequality for
p= p(x) [7], in a bounded domain Ω ⊂RN with Lipschitz boundary. Let p(x)>
1 be a bounded exponent such that p and its conjugate exponent q satisfy (2.20).

Then there exists K > 0, such that for all v ∈
(

W 1,p(·)
0 (Ω )

)N
,

div v= 0, there holds

||∇v‖Lp(·)(Ω ) ≤ K‖D(v)‖Lp(·) (Ω ). (2.22)

In particular, the inequalities depending on the uniform condition (2.20) also
hold for an exponent that is Hölder continuous in Ω .

3 Existence theorem

3.1 Definition of weak solution

Definition 3.1 The pair (u,θ) is said to be a weak solution of (2.1)-(2.5) if:
(i)

u ∈W 1, p̃
0 (Ω )∩ J1(Ω ), θ −θ1 ∈ H1

0 (Ω )∩Cα (Ω), α > 0,

p̃= max(2, p∗), i f μ∗ > 0, τ∗ ≥ 0; p̃= p∗, i f μ = 0, τ∗ > 0,
∫

Ω

(
μ(θ)|D(u)|2+ τ(θ)|D(u)|p(θ )

)
dx< ∞; (3.1)

(ii) and for any test functions ζ ∈ H1
0 (Ω )

∫

Ω
(∇θ −b(θ)u) ·∇ζdx =

∫

Ω
gζdx; (3.2)

(iii) and for any test vector function w ∈C1
0(Ω )∩ J1(Ω )

∫

Ω

((
μ(θ)+ τ(θ)|D(u)|p(θ )−2

)
D(u) : D(w)− (u⊗u) : D(w)

)
dx (3.3)

=

∫

Ω
fwdx.

Theorem 3.1 Let us assume that conditions (2.8)-(2.9) hold with
N = 2,3 and, additionally, that one of the conditions

μ = 0, 0< τ∗,
3N

N+2
< p∗ ≤ 2, (3.4)

0< μ∗, 0< τ∗, 1< p∗ < ∞, (3.5)

τ∗ = 0, 0< μ∗, 1< p∗ < p∗ = max
[θ∗,θ∗]

p(θ) ≤ 2, (3.6)

is fulfilled. Then the problem (2.1)-(2.5) has at last one weak solution (u,θ).

Proof We will prove this theorem into several steps.
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3.2 The auxiliary thermoconvective problem

For a given fixed v ∈ Jq(Ω ), with q> N we consider first the auxiliary problem

(v ·∇)b(θ) = Δθ +g(x), (3.7)

θ(x) = θ1(x), x ∈ Γ = ∂Ω . (3.8)

where b is supposed to be Lipschitz continuous.
The convective term for w∈ Jq(Ω ) does not changes the weak maximum prin-

ciple for (3.7), (3.8) in the form [16]

θ∗ ≤ θ(x)≤ θ ∗, x ∈ Ω , (3.9)

θ∗ = min
Γ

θ1(x)− γ ||g||s,Ω , θ ∗ = max
Γ

θ1(x)+ γ ||g||s,Ω , (3.10)

which yields an a priori estimate of θ in L∞(Ω ), since the constant
γ > 0 depends only on Ω and s> N/2.

Then, using Schauder’s fixed point theorem (for instance in L2(Ω )), we show
the existence of a solution θ , such that

θ −θ1 ∈ H1
0 (Ω ) :

∫

Ω
(∇θ −b(θ)v) ·∇ζdx =

∫

Ω
gζdx, ∀ζ ∈H1

0 (Ω ). (3.11)

The uniqueness follows by a well known comparison argument, since b is Lips-
chitz continuous, and (2.8) implies (see [16]) that θ is Hölder continuous in Ω and
satisfies the estimate

‖θ‖Cα′ (Ω ) +‖θ‖H1(Ω ) ≤C
(
‖v‖Lq(Ω ) , ‖θ1‖H1(Ω )∩Cα (Ω ) , ||g||Ls(Ω )

)
, (3.12)

for some 0< α ′ < α , provided q> N and s> N/2.
Hence, by a standard continuous dependence argument, it is easy to conclude

that if vn→ v in Jq(Ω ) weakly (respectively strongly) then the corresponding so-
lution θn= θ(vn)→ θ = θ(v)weakly (respectively strongly) and in Cλ (Ω ) strongly
for any 0≤ λ < α ′ < 1 (see for instance [19]).

Then and we have the following proposition:

Proposition 3.1 For any v ∈Jq(Ω ), with q> N, there exists a unique solution θ
to (3.11), that, in addition, satisfies the estimates (3.9) and (3.12). Moreover the
operator

Λ : Jq(Ω ) � v→ θ ∈Cλ (Ω ) (3.13)

is continuous for some λ > 0.
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3.3 The auxiliary flow problem

Now for a fixed θ ∈ Cλ (Ω ), 0 < λ < 1, and v ∈Jr(Ω ) with
r ≥ max(2, 2p̃

N p̃−p̃−2N ), we consider the auxiliary problem of finding

u ∈ W 1,p̃
0 (Ω ) ∩ J1(Ω ) satisfying (3.1) and for any test vector function

w ∈C1
0(Ω )∩ J1(Ω )
∫

Ω

(
μ(θ)+ τ(θ)|D(u)|p(θ )−2

)
D(u) : D(w) − (u⊗v) : ∇w dx (3.14)

=

∫

Ω
fwdx.

Here μ = μ(θ), τ = τ(θ) and p = p(θ) are known functions of x ∈ Ω and p ∈
Cλ (Ω ).

Now we derive energy estimates for the velocity u. Using definition (3.1), after
some standard calculations we come to the energy relation

∫

Ω

(
μ(θ) |D(u)|2+ τ(θ)|D(u)|p(θ )

)
dx =

∫

Ω
f u dx ≡ I. (3.15)

Assuming μ∗ > 0, τ ≥ 0 and applying (2.22), (2.21) with p= 2, we can estimate
the therm I in the following form

|I| ≤C‖ f‖W−1,2(Ω ) ‖D(u)‖2,Ω ≤
∫

Ω
μ |D(u)|2 dx+

C
μ∗
‖ f‖2

W−1,2(Ω ) , (3.16)

and obtain the standard estimate
∫

Ω

(
μ∗ |D(u)|2+ τ∗|D(u)|p(θ )

)
dx ≤ C

μ∗
‖ f‖2

W−1,2(Ω ) ≡ K0. (3.17)

It implies that

||u||q≤C||D(u)||2 ≤C(K0), q=
2N

N−2
> N = 2,3, (3.18)

if μ∗ > 0, τ ≥ 0 and N = 2,3. If μ∗ > 0, τ∗ > 0 the estimate (3.17) implies that
u ∈W1,p∗(Ω ).

In the case μ = 0, we evaluate the term I in the following form

|I| ≤C‖ f‖W−1,β (Ω ) ‖D(u)‖p(θ ) , β =
p∗

p∗ −1
. (3.19)

Applying inequalities [12]:

‖D(u)‖p(θ ) ≤
(∫

Ω
|D(u)|p(θ )dx

) 1
p∗
, i f ‖D(u)‖p(θ ) < 1, (3.20)

‖D(u)‖p(θ ) ≤
(∫

Ω
|D(u)|p(θ )dx

) 1
p∗
, i f ‖D(u)‖p(θ ) > 1, (3.21)
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and Young inequality we can to write

|I| ≤

⎧⎪⎨
⎪⎩

∫
Ω τ |D(u)|p(θ )dx+ C

τ∗ ‖ f‖
p∗

p∗−1

W−1,β (Ω ) , i f ‖D(u)‖p(θ ) < 1
∫

Ω τ |D(u)|p(θ )dx+ C
τ∗ ‖ f‖

p∗
p∗−1

W−1,β (Ω )
i f ‖D(u)‖p(θ ) > 1

. (3.22)

Finally we obtain the estimate

τ∗
∫

Ω
|D(u)|p(θ )dx ≤ C

τ∗

(
‖ f‖

p∗
p∗−1

W−1,β (Ω ) +‖ f‖
p∗

p∗−1

W−1,β (Ω )

)
≡ K1. (3.23)

Since by the assumption of Theorem 3.1 μ∗ > 0 or τ∗ > 0, the left hand side of
(3.14) defines a strictly monotone and coercive operator on W 1,p̃

0 (Ω )∩J1(Ω ), (p̃=
2 if μ∗ > 0 or p̃= p∗ if μ∗ = 0), the unique solvability of problem (3.14) follows
from standard results (see [22] for the case v≡ 0, μ = 0 and [12] for the scalar
case). We consider now the continuous dependence of the operator

N : Jr(Ω )×Cλ (Ω ) � (v,θ)→ u ∈W 1,p̃
0 (Ω )∩ Js(Ω ) (3.24)

where u is the solution to (3.14).

Proposition 3.2 Let un = u(vn, θn) and u = u(v, θ) denote the respective solu-
tion to (3.14) associated with the converging data vn→ vn in Jr(Ω )−weakly, r≥
max(2, 2p̃

N p̃−p̃−2N ) and θn→ θ in Cλ (Ω ).
Then we have

un→ u in W 1,p̃
0 (Ω ) weak and in Js(Ω ) strongly (3.25)

for any s< N p̃/(N− p̃) if p̃< N or any s< ∞ if p̃≥ N, N = 2,3.

Proof It is simple extension of Proposition 1 of [20] (and Lemma 3.1 of [22]).
From the previous estimates, we have

∫

Ω

(
μ∗ |D(un)|2+ τ∗|D(un)|p̃

)
dx ≤C (3.26)

for a positive constant C > 0 depending on ‖ f‖
W−1,p′∗(Ω ) and 1

μ∗ , if

μ∗ > 0, or 1
τ∗ , if τ∗ > 0, but independent of vn and θn.

By Korn’s inequality and Sobolev embeddings, (3.26) implies

‖un‖Ls(Ω ) ≤C‖D(un)‖Lp̃(Ω ) ≤ R, (3.27)

for s < N p̃/(N − p̃) if p̃ < N or any s < ∞ if p̃ ≥ N, where R > 0 is a constant
independent of vn and θn.

Since p(θn)→ p(θ) in Cλ (Ω ) and μ(θn)→ μ(θ) and τ(θn)→ τ(θ) uniformly
on Ω , as in Lemma 3.1 of of [22] our problem is regular and

un→ u in W 1,p̃
0 (Ω ) weakly (3.28)



On stationary thermo-rheological viscous flows 27

(
μ(θn) |D(un)|2+ τ(θn)|D(un)|p̃

)
→
(

μ(θ) |D(u0)|2+ τ(θ)|D(u0)|p̃
)

(3.29)
in L1(Ω ) weakly.

By Minty’s Lemma, u0 solves the limit problem (3.14) and , by uniqueness
u0 = u= u(v, θ).

The strong convergence in Js(Ω ) follows by Rellich-Kondratchev compact-
ness theorem. ��

3.4 The proof of Theorem 3.1 and complements

We apply Schauder fixed point theorem in the following convex, closed, bounded
subset of Js(Ω ) :

BR =
{

v ∈Jr(Ω ) : ‖v‖Lr(Ω ) ≤ R
}

(3.30)

with r= 6 if N = 2 or r= 9/2 if N = 3, where the constant R> 0 is given by the a
priori estimate (3.27). We define Ñ : BR→ BR by u= Ñ(v) = N(v,Λv), being N
defined by (3.24) and Λ by (3.13). From Propositions (3.1) and (3.2), Ñ is a well
defined and completely continuous operator in Jr(Ω ) and its fixed point

u=Ñ(u) with θ =Λu (3.31)

yields a solution to Theorem (3.1) in the case of b Lipschitz continuous.
Since the estimates (3.9) and (3.12) do not depend on the Lipschitz regularity

of b, by uniform approximation of this function we obtain a solution (u, θ) for
b only continuous, concluding the proof of Theorem (3.1). ��
Remark 3.1 The result of Theorem (3.1) may be extended to more general flows
with constitutive laws of power type as in [20] for the Boussinesq-Stefan prob-
lem For instance, we could replace the Laplacian in (2.1) by the q-Laplacian
Δqv = ∇(|∇v|q−2 ∇v), with q > n/p∗, or consider a two-phase Stefan problem
with convection, and replace the Dirichlet boundary condition (2.2) for the tem-
perature by a mixed boundary condition.

Remark 3.2 We may apply the Meyer’s type estimate of [22] for the velocity in
the following way. Consider the equation (2.3) in he form

div
((

μ(θ)+ τ(θ)|D(u)|p(θ )−2
)

D(u)−PI+Z
)
= 0, (3.32)

with the tensor Z given by

Z=∇F−(u⊗u), and ΔF = −f in Ω , F |∂Ω = 0. (3.33)

Since p̃ > 3N/(N + 2), (N = 2,3) we have u⊗u∈ Lr (Ω ) for

r < 3N/2(N − 1), and if we assume f ∈ W−1,p
′
∗+δ1 (Ω ), for some
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δ1 ≥ p̃−3N/(N+2)≡ δ0 > 0 , it is not difficult to conclude that Z ∈ Lq(Ω ) for
some q> p′∗+δ0. By Theorem 3.1 of [22], if τ∗ > 0 we derive the estimate

∫

Ω
|D(u)|p(θ )+δ dx ≤C f or some δ > 0, (3.34)

and if μ∗ > 0 we also obtain the Meyer’s estimate
∫

Ω
|D(u)|2+δ dx ≤C f or some δ > 0. (3.35)

In particular, it is possible to extend Zhikov’s existence result for N = 2 to the
convective case with an additional coupling term in the temperature equation (2.1)
by inserting the dissipation energy of the type

g= λ
(

μ(θ) |D(u)|2+ τ(θ)|D(u)|p(θ )
)

for sufficiently small λ > 0.

4 Uniqueness of weak solution

Let (θ1,u1) and (θ2,u2) be two different solutions to problem (2.1), (2.2), (2.3),
(2.4), (2.5) and

θ = (θ1−θ2), u= (u1−u2). (4.1)

The functions (θ ,u) satisfy to the following problem
∫

Ω
(∇θ − (b(θ1)−b(θ2))u1−b(θ2)u)∇ζdx = 0, (4.2)

∫

Ω
((u1∇)u1− (u2∇)u2)wdx=− (4.3)

∫

Ω

(
μD(u)+τ

(
|D(u1)|p(θ1)−2D(u1)−|D(u2)|p(θ2)−2D(u2)

)
: D(w)

)
dx.

We will prove the uniqueness result only for close solutions. According to (3.9)
and (3.10), we have

|θ |= |(θ1−θ2)| ≤ λ = θ ∗ −θ∗. (4.4)

We assume that
|p(θ1)− p(θ2)| ≤ max

[θ∗,θ∗]
|p′(θ)|λ ≤ δ0, (4.5)

with δ0 given in (3.34). We use the notations

p∗ = min
[θ∗,θ∗]

p(θ), p∗ = max
[θ∗,θ∗]

p(θ),

assuming that
p∗ − p∗ ≤ δ = max

[θ∗,θ∗]
|p′(θ)| λ ≤ δ0. (4.6)
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The Meyer’s type estimate (3.34) guarantee that

D(u1),D(u2),D(w) ∈ Lp∗+δ0 ,

with δ0 given in (3.34). Moreover all integrals in (4.3) will be bounded if p∗, p∗
satisfy to (4.6). We only show how to prove the boundedness of the last integral,
which is the main one. Using Hölder’s inequality, we have

∣∣∣∣
∫

Ω
|D(u j)|p(θ j)−2D(u1) : D(w) dx

∣∣∣∣

≤
(∫

Ω
|D(u j)|

(p(θ j)−1)(p∗+δ0)

p∗+δ0−1 dx

) p∗+δ0−1
p∗+δ0−1 (∫

Ω
|D(w)|p∗+δ0 dx

) 1
p∗+δ0 ≤C,

j = 1,2, because

(p(θ j)−1)(p∗+δ0)

p∗+δ0−1
≤ (p

∗ −1)(p∗+δ0)

p∗+δ0−1
≤ p∗+δ0.

Let vh be an average of the function v such that ||D(vh)−D(v)||q → 0 as h→
0, (q = p∗ + δ0). Putting ζ = (θ1 − θ2), w = (u1−u2)h, to (4.3), after some
standard calculations and a passage to the limit with respect to h→ 0, we get the
relations

∫

Ω
|∇θ |2dx=

∫

Ω
((b(θ1)−b(θ2))u1−b(θ2)u)∇θdx, (4.7)

I0 ≡
∫

Ω
((u1∇)u1− (u2∇)u2)udx=− (4.8)

∫

Ω

(
μD(u)+τ

(
|D(u1)|p(θ1)−2D(u1)−|D(u2)|p(θ2)−2D(u2)

))
: D(u)dx

≡ I1+ I2+ I3,

where

I1 =

∫

Ω
τ
[
|D(u2)|p(θ2)−2D(u2)−|D(u1)|p(θ2)−2D(u1)

]
: D(u)dx, (4.9)

I2 =
∫

Ω
τ
[
|D(u1)|p(θ2)−2D(u1)−|D(u1)|p(θ1)−2D(u1)

]
: D(u)dx, (4.10)

I3 =

∫

Ω
μ |D(u)|2dx. (4.11)

First we consider the case μ = const, τ = const.
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Theorem 4.1 Under conditions of Theorem (3.1) there exist positive constants
ε∗ > 0, δ ∗ > 0, (generally small), such that, the problem (2.1)-(2.5) has a unique
weak solution (u,θ) provided

θ ∗ −θ∗ ≤ ε∗, ||f||W−1,r(Ω ) ≤ δ ∗,

μ = const > 0, τ = const > 0, and r > p′∗+ p̃−3N/(N+2).

If μ = 0 and p∗ ≤ 2, this assertion is valid if, in addition,

p∗ − p∗ ≤ 2− p∗ ≤ δ ∗.

Proof First we consider the case μ and τ = const > 0, 2≤ p∗.
Applying the inequality [12] for ∀ξ ,η ∈RN , 2≤ p< ∞,

(
1
2

)p

|ξ −η |p ≤
[(
|ξ |p−2 ξ −|η |p−2 η

)
(ξ −η)

]
,

we obtain ∫

Ω
τ2
−p∗ |D(u)|p2(·)dx≤ I1, p2 = p(θ2), (4.12)

therefore
∫

Ω

(
μ |D(u)|2+ τ2

−p∗ |D(u)|p2(·)
)

dx ≤ I1+ I3 = I0− I2. (4.13)

Using the inequality for 0≤ η ≤∞, p∗ ∈ [p1, p2],
∣∣η p2−1−η p1−1

∣∣ ≤ η p∗−1| lnη | |p2− p1| , (4.14)

and the Young inequality, we evaluate I2 in the following way

|I2| ≤
∫

Ω
τ |D(u1)|p

∗−1|ln|D(u1)|| |D(u)| |p1− p2|dx (4.15)

≤ 1
2

∫

Ω
τ2
−p∗ |D(u)|p2(·)dx+Cδ

p∗
p∗−1 I4,

I4 =

∫

Ω

(
|D(u1)|p

∗(·)−1|ln|D(u1)|
)p′2(·)

dx.

with δ ≥ |p1− p2| given in (4.6) and some C = C(p∗, p∗,τ). Next we use the
inequality

| lny| ≤ 1
ε
(yε + y−ε), 0< y< ∞, 0< ε < ∞,

and evaluate I4 in the following way

|I4| ≤
∫

Ω

(
|D(u1)|p

∗(·)−1+ε + |D(u1)|p
∗−1−ε

)p′2(·)
dx. (4.16)

We choose ε and δ , such that,

(p∗ −1± ε)p2

p2−1
≤ (p

∗ −1± ε)p∗
p∗ −1

≤ p∗+δ0, (4.17)
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p∗ − p∗+ ε ≤ δ + ε ≤ δ0(
p∗ −1

p∗
). (4.18)

Later on we fix some ε and δ satisfying to

δ + ε = max
[θ∗,θ∗]

|p′(θ)| λ + ε ≤ δ0(
p∗ −1

p∗
).

Finally, taking into consideration inequality (3.34), we obtain the estimate

|I4| ≤C, (4.19)

where the constant C does not depend on δ . From (4.13), (4.15) and (4.19), it
follows ∫

Ω

(
μ |D(u)|2+ τ

2
2
−p∗ |D(u)|p2(·)

)
dx ≤ |I0|+Cδ

p∗
p∗−1 . (4.20)

As usual, following [15], the term I0 can be transformed into the form

I0 =

∫

Ω
uku1·uxkdx

and evaluated in the standard way

|I0 | ≤C‖u1‖W 1,2 ‖D(u)‖2
2 ≤C‖f‖W−1,2 ‖D(u)‖2

2 . (4.21)

Applying (3.17) and assuming C‖f‖W−1,2 ≤ μ/2 , ( ‖f‖W−1,2 is small), we obtain

|I0 | ≤ μ
2
‖D(u)‖2

2 . (4.22)

Joining (4.20), (4.22) we find
∫

Ω

(
μ |D(u)|2+ τ |D(u)|p2

)
dx≤Cδ

p∗
p∗−1 . (4.23)

Returning to (4.2) we can write the estimate

‖θ‖Cα
(Ω ) ≤C

(||u1||q,Ω max |θ |+ ||u||q,Ω
)
, (N = 2< q< ∞). (4.24)

Using (3.17) and assuming that

2= N < q≤ p∗, C||u1||q,Ω ≤CK0 < 1, (4.25)

(to derive the last inequality we used the smallness of ‖f‖W−1,2) we obtain from
(4.23), (4.24)

‖θ‖Cα (Ω ) ≤Cδ
p∗

p∗−1 ≤C (max |θ |)
p∗

p∗−1 . (4.26)

The last inequality implies that max |θ |= 0.
Now we consider the case 0< μ , 0< τ , p∗ ≤ 2.
We use the following inequality [12] for ∀ξ ,η ∈RN , 1< p< 2,

(p−1) |ξ −η |2 (|ξ |p+ |η |p) p−2
p ≤

[(
|ξ |p−2 ξ −|η |p−2 η

)
(ξ −η)

]
.
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Then the term I1 given by (4.9) can be estimated below in the following way
(compare with (4.12))

Ξ 2 ≡ (p∗ −1)
∫

Ω
τ |D(u)|2 (|D(u1)|p2 + |D(u2)|p2)

p2−2
p2 dx≤ I1. (4.27)

Therefore we obtain the estimate
∫

Ω
μ |D(u)|2dx+Ξ 2 ≤ |I0|+ |I2|. (4.28)

Repeating (4.15), (4.16) with

(p∗ −1± ε)p2

p2−1
≤ (p

∗ −1± ε)p∗
p∗ −1

≤ 2, (4.29)

and using (4.21), (4.22), we obtain analogously to (4.23)
∫

Ω
μ |D(u)|2dx+Ξ 2 ≤Cδ

p∗
p∗−1 . (4.30)

This completes the proof.
Now we consider the case μ = 0, N/2 < 3N/(N + 2) < p∗ ,

N < 4. In this case the relations (4.13), (4.27), (4.28) yield

(p∗ −1)
∫

Ω
τ |D(u)|2 (|D(u1)|p2 + |D(u2)|p2)

p2−2
p2 dx ≤ I1 ≤ |I0|+ |I2|. (4.31)

Using the inverse Hölder’s inequality [3]

(∫
Ω
|g| q

q−1 dx

) q−1
q
(∫

Ω
| f |qdx

) 1
q

≤
∫

Ω
| f ||g|dx, 0< q= const < 1,

we get the estimate

(p∗ −1)
(∫

Ω
|D(u)|2q

) 1
q
(∫

Ω
(|D(u1)|p2+ |D(u2)|p2)

(2−p2)q
p2(1−q) dx

) q−1
q

≤ I1.

(4.32)
Choosing q, such that,

(2− p2)q
(1−q)

≤ p∗+δ0→ q≤ p∗+δ0

2+δ0
< 1, (4.33)

and taking into consideration the inequalities (3.34), (4.31), (4.32), we have

(∫
Ω
|D(u)|2q

) 1
q

≤CI1 ≤C(|I0|+ |I2|). (4.34)

The term I0 and I2 were already estimated previously (with p∗ ≤ 2). To estimate
I0 (with 2 ≥ p∗) we use the Korn’s (2.22) and Sobolev embedding inequalities
(2.21). We evaluate I0 in the following way (compare with (4.21))

|I0 | ≤
∫

Ω
|uku1·uxk |dx ≤C‖u1‖λ1

‖u‖λ2
‖D(u)‖2q , (4.35)
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with
1
λ1
+

1
λ2
+

1
2q
≤ 1, λ2 =

Nqp2

N−qp2
, λ1 =

N(p∗+δ0)

N− (p∗+δ0)
,

and q= (p∗+δ0)/(2+δ0) (see 4.33). The last inequality leads to

1
p∗+δ0

− 2
N
+

1
q
≤ 1

p∗+δ0
− 2

N
+

2(2+δ0)

(p∗+δ0)p∗
≤ 1.

Assuming ‖D(u)‖2q < 1 and applying (3.20), (3.21) we obtain the inequality

|I0 | ≤C‖(D(u)1)‖p∗ ‖D(u)‖
2
2q ≤C‖D(u1)‖p∗

(∫
Ω
|D(u)|q

) 2
qp∗
,

or taking into consideration (4.34)

(∫
Ω
|D(u)|2q

) 1
q

≤CI1 ≤C(‖(D(u)1)‖p∗

(∫
Ω
|D(u)|2q

) 2
qp∗
+ |I2|).

It follows (∫
Ω
|D(u)|2q

) 1
q

≤C|I2|, (4.36)

if ‖D(u1)‖p∗ and ‖D(u)‖p∗ are sufficiently small and p∗ ≤ 2. To evaluate I2 we
use an argument similar to (4.13), (4.15) and the Hölder’s inequality (2.19). Then
we obtain

|I2| ≤ δ
ε

C‖D(u)‖2q

(∥∥∥|D(u1)|p∗−1+ε
∥∥∥

β
+
∥∥∥|D(u1)|p∗−1−ε

∥∥∥
β

)
, (4.37)

with q and β , such that,

β =
2q

2q−1
,
(p∗ −1+ ε)2q

2q
≤ p∗+δ0. (4.38)

The last inequality will be valid if

(p∗ −1+ ε)p∗q
qp∗ −1

≤ p∗+δ0, (4.39)

or
p∗+δ0

p∗(p∗ − p∗+1− ε+δ0)
≤ q. (4.40)

The conditions (4.33), (4.40) are compatible if p∗ − p∗ and ε are sufficiently small
and

2
1+δ0

< p∗ ≤ 2. (4.41)

¿From now on we assume ε fixed. Then we have the inequality

(∫
Ω
|D(u)|2qdx

) 1
q

≤Cδ ‖D(u)‖2q .
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Hence assuming that ‖D(u)‖qp2
< 1 and applying inequality (3.20) and Young

inequality, we obtain

(∫
Ω
|D(u)|2qdx

) 1
q

≤ 1
2

(∫
Ω
|D(u)|2qdx

) 1
q

+Cδ
p∗

p∗−1 .

Then, repeat the arguments (4.24)-(4.26), we may complete the proof of the theo-
rem. ��

Now we consider a general case in which μ(θ),τ(θ) are given functions, as-
suming the derivatives are bounded

|μ ′, τ ′, b′, p′| ≤ γ . (4.42)

In this case relation, (4.8) takes the form

I0 ≡
∫

Ω
((u1∇)u1− (u2∇)u2)udx (4.43)

= −
∫

Ω
(μ1D(u1)−μ2D(u2)) : Dudx

−
∫

Ω

(
τ1|D(u1)|p2−2D(u1)−τ2|D(u2)|p2−2D(u2)

)
: Dudx

≡ I11+ I21+ I22+ I31+ I32,

where

I11 =

∫

Ω
τ1

[
|D(u2)|p2−2D(u2)−|D(u1)|p2−2D(u1)

]
: Dudx,

I21 =

∫

Ω
τ1

[
|D(u1)|p2−2D(u1)−|D(u1)|p2−2D(u1)

]
: Dudx,

I22 =

∫

Ω
(τ2− τ1)|D(u2)|p2−2D(u2) : Dudx,

I31 =

∫

Ω
μ1|D(u)|2dx, I32 =

∫

Ω
(μ2−μ1)D(u2) : D(u)dx,

and μi = μ(θi),τi = τ(θi), pi = p(θi), i= 1,2. Here the terms I11, I31 are positive
and (4.43) will be written like

I11+ I31 =−(I0+ I21+ I22+ I32).

The new terms I22, I32 (in comparison with (4.13)) can be evaluated in the follow-
ing way

|I22| ≤ γ max|θ | ||Du||p2||D(u2)||p2
,

|I32| ≤ γ max|θ | ||D(u2)||2||D(u)||2, (i f μ∗ > 0).

Remark that ||D(u2)||p2
, ||D(u2)||2 are small. By repeating the previous argu-

ments, we can finally formulate our uniqueness theorem in the following form:
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Theorem 4.2 Under conditions of Theorem (3.1) there exist positive constants
ε∗ > 0, δ ∗ > 0, such that, the problem (2.1)-(2.5) has a unique weak solution
(u,θ) provided

γ , θ ∗ −θ∗ ≤ ε∗, ||f||W−1,r(Ω ) ≤ δ ∗,

0< μ∗,τ∗, , and r > p′∗+ p̃−3N/(N+2)

(γ > 0 given in (4.42)). If μ = 0 and p∗ ≤ 2, this assertion is valid if, in addition,

p∗ − p∗ ≤ 2− p∗ ≤ δ ∗.
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