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Abstract Next generation sequencing (NGS) technologies
generate huge amounts of sequencing data. Several microbial
genome projects, in particular for fungal whole genome se-
quencing, have used NGS techniques because of their cost
efficiency. However, NGS techniques also require computa-
tional tools able to process and analyze huge datasets. Data
processing steps, including quality and length filters, often
lead to a remarkable improvement in the accuracy and quality
of data analyses. Choosing appropriate parameters for this
purpose is not always straightforward, as these will vary with
the dataset. In this study we present the FastQFS (Fastq Qual-
ity Filtering and Statistics) tool, which can be used for both an
assessment of filtering parameters and read filtering. There are
several tools available, but an important asset of FastQFS is
that it provides the information of filtering parameters that fit
best to the raw dataset, prior to computationally expensive

filtering. It generates statistics of reads meeting different
quality and length thresholds, and also the expected cover-
age depth of the genome which would be achieved after
applying different filtering parameters. Thus, the FastQFS
tool will help researchers to make informed decisions on an
NGS read filtering parameters, and avoiding time-
consuming optimization of filtering criteria after initial
analyses. The source code of the tool and related files are
available from 10.12761/SGN.2015.4.

Keywords Computational biology . Data processing .

Genome coverage . Next generation sequencing data analysis

Introduction

Next generation sequencing (NGS) technologies have revolu-
tionized genomics and transcriptomics, with a wide range of
applications in biological and medical sciences. Massive par-
allel sequencing technologies generate sequence data in short
time frames and with low sequencing costs, compared to tra-
ditional sequencing methods. Thus, several whole genome
and/or transcriptome sequencing projects have considered
the benefits of NGS technologies for sequencing novel species
(Kemen et al. 2011; Laurie et al. 2012; Quinn et al. 2013;
Levesque et al. 2010; Jiang et al. 2013). An example for this
is the 1000 Fungal Genomes project (http://1000.
fungalgenomes.org/), which has the aim to sequence more
than 1000 fungal genomes using NGS technologies. In
addition to sequencing new genomes, NGS techniques have
also been implemented to study the fungal communities in
environmental samples (Meiser et al. 2013; Schmidt et al.
2013).

With the advent of NGS, many computational tools have
been developed to analyze the huge amounts of sequencing
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data generated by NGS methods. Sequence read filtering is an
important step before starting any analyses based on the read
files. However, to perform and optimize these data filtering
steps, several data processing parameters need to be consid-
ered, and the decision-making regarding the choice of values
for these parameters is often not straightforward and will also
depend on data availability and downstream analyses. Many
tools have been developed to view the basic statistics of data
reading and to perform filtering steps; these include FASTQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/),
the Fastx-toolkit (http://hannonlab.cshl.edu/fastx_toolkit/),
the NGS QC toolkit (Patel and Jain 2012), Trimmomatic
(Bolger et al. 2014), RobiNA (Lohse et al. 2012), PRINSEQ
(Schmieder and Edwards 2011), HTQC (Yang et al. 2013),
NGSQC (Dai et al. 2010), RSeQC (Wang et al. 2012) and
Sickle (https://github.com/najoshi/sickle). But not all of
these packages consider the features of both reads of mate-
pair or paired-end data simultaneously while generating the
read quality/length statistics. Moreover, they do not provide
any data read characteristics information prior to filtering, to
evaluate the effect of changes in filtering parameters.

Often, it is very difficult to guess howmuch coverage depth
could be achieved using certain filtering thresholds. More-
over, many tools do not consider the phred quality of individ-
ual bases, they rather consider the average quality of the whole
read or an average quality within a certain window size. It has
become a rule of thumb to first choose standard filtering pa-
rameters for data processing and to optimize these iteratively
after evaluating the filtered reads and initial analyses, which is
very time-consuming. There is always a subtle balance be-
tween keeping the coverage high enough for good assemblies
and to remove data of suboptimal quality, which is not easily
achieved by an iterative method.

Thus, a next-generation sequencing data filtering tool
called “FastQFS” is presented here. This tool first provides
the user an evaluation of the variation of data with different
quality and length cutoff parameters. Afterwards, it gener-
ates coverage depth variation statistics for different filter-
ing thresholds. FastQFS also performs data filtering steps,
considering the following parameters: Reads containing
Ns, reads which contain at least one base having a quality
below a certain threshold, reads having an average read
quality below a certain threshold and reads of a length
below specified threshold values. Since the majority of
sequenced fungal genomes is small in size compared to
animal and plant genomes, fungal genome sequencing pro-
jects thus generate comparatively less data, which makes it
easier to optimize read filtering. FastQFS has been suc-
cessfully applied on plant and oomycete genomic data,
but has been developed and extensively tested only for
fungal genomic and community barcoding datasets. It is
probably comparatively slow in handling huge datasets
for mammalian sized genomes.

Implementation

FastQFS takes raw input files in fastq format for both forward
and reverse reads. First, it parses the fastq format and calcu-
lates various parameters including lengths of both the forward
and the reverse read, the average base quality of both read
pairs, the lowest quality score of a single base within sequence
of both mates and whether the read sequence contains ambig-
uous bases (Ns) or not.While running this tool, it asks whether
the user wants to perform filtering or plotting the filtering
statistics of data. The plotting of data statistics is useful to
make a decision on the data filtering parameters. From the
plots, the percentage of reads which would be passing the
different filtering parameters discussed above can be obtained.
Moreover, FastQFS generates a plot representing the variation
of the expected coverage depth with different quality filtering
parameters. These plots provide users information about
which parameters can be applied to their dataset for retaining
sufficient coverage, enabling an informed decision before
performing time consuming data filtering steps.

If only the filtering option is chosen (e.g., for data that has
been plotted previously), data filtering is done without gener-
ating data statistics plots.

While processing a raw dataset, FastQFS considers features
of both read pairs. If at least one read fails tomeet the specified
thresholds, then the whole read pair will be dropped out from
the paired end file. This dropped pair is again scanned if any
individual read matches the provided cutoffs, in which case
the read is listed in a singleton file. The workflow of the tool is
shown in Fig. 1.

The FastQFS.pl (Supplementary file 1) script can be used
for plotting and filtering paired-end data. The two main fea-
tures of FastQFS, plotting and filtering, can be used simulta-
neously or one after the other. The following commands dem-
onstrate the usage of these modules.

Plotting variation of data/coverage depth
with filtering parameters

perl FastQFS.pl -plotting Yes -fw demoR1.fq
-rw demoR2.fq -prefix Prefix -sc 33 -gsize 20
-l 100

The above command will generate two different files,
“P r e f i x _F i l e _ f o r _ p l o t t i n g _ c o v e r a g e . t x t ” a n d
“Prefix_File_for_plotting_reads_percentages.txt”, containing
the information regarding variation of read coverage depth
and percentages of reads retained after applying the filtering
parameters, respectively. These output files can further be
imported to the R scripts “Plotting_Coverage_depth.R”
(Supplementary file 2) and “Plotting_read_Percentages.R”
(Supplementary file 3) for plotting coverage depth and
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percentage variations, respectively. All input parameters are
briefly explained in the help section of the FastQFS script.

Plotting coverage depth variation

Rscript Plotting_Coverage_depth.R
Prefix_File_for_plotting_coverage.txt

Plotting read percentage variation

Rscript Plotting_read_Percentages.R
Prefix_File_for_plotting_reads_percenta-
ges.txt

Performing read filtering

perl FastQFS.pl -filtering Yes -fw demoR1.fq
-rw demoR2.fq -prefix Prefix -sc 33 -mq 10 -q
26 -l 100

Forward and reverse filtered reads will be written in files
“Prefix_R1.fq” and “Prefix_R2.fq”, respectively. Singletons
will be written in file “Prefix_Singltons.fq”.

Performing read filtering and plotting

perl FastQFS.pl -filtering Yes -fw demoR1.fq
-rw demoR2.fq -prefix Prefix -sc 33 -mq 10 -q
26 -l 100 -plotting Yes -gsize 20

Running the FastQFS script without any input parameter
will generate a help message, this help message explains all
input parameters required for this script in detail.

Results

For demonstration purpose, FastQFS was used on a fungal
genomic dataset. This dataset had three different insert size
libraries. Figure 2 shows the percentage of reads from the 3
kbp insert size library meeting different length and quality
cutoffs. The dataset was tested with various average read qual-
ity cutoffs from phred scores of 18 to 30 (Fig. 2a–d), with an

Fig. 1 Flowchart representing
the workflow of FastQFS
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increment of 4, length cutoffs from 50 to 100 bp with an
increment of 10 bp and phred quality cutoffs of individual
bases from 3 to 18 with an increment of 5. It was revealed
that the read filtering output is highly influenced by length
cutoffs exerted on both of the reads, i.e., that a filtering pa-
rameter which might seem applicable when considering only
the aggregate statistics of either read is potentially not useful
when both reads are considered. The average phred score
quality cutoff does not show much impact on filtering paired
reads, but as expected, the impact of individual base quality
cutoffs in read filtering was higher. A plot showing the varia-
tion of coverage depths of the 3 kbp library according to
different filtering parameters is shown in Fig. 3.

Similar plots using the 250 bp insert library (Supplementa-
ry Figs. 1–2) and the 8 kbp library were generated (Supple-
mentary Figs. 3–4). It became apparent that the long distance
libraries are more influenced by changes in data filtering pa-
rameters than the shorter insert libraries. Figure 4 illustrates
the percentage of data left after applying different length cut-
offs to three different libraries.

The runtime of the script was calculated by performing data
filtering of the three libraries differing in insert size. The three
libraries, with insert sizes of 250 bp, 3 kbp and 8 kbp, were
represented by around 123, 17 and 18 million raw reads, re-
spectively. Filtering the three libraries using different length
cutoffs required 7 h and 5 min, 49 min and 53 min,
respectively.

For evaluating the variation of genome assembly quality
parameters according to different filtering thresholds, i.e. the

N50 scaffold size, the size of the largest scaffold, and the
number of scaffolds, were compared after generating genome
assemblies derived from different filtering thresholds. The
three libraries of the test dataset were assembled using the
velvet (Zerbino and Birney 2008) short read genome assem-
bler. In these comparisons, a k-mer of size 45 was used to
generate 6 different assemblies derived from the 6 filtered
reads datasets, by using length thresholds from 50 to 100 bp.
As expected, all parameters varied according to changes in
length cutoffs (data not shown).

Discussion

Using NGS technologies, sequencing even a mammalian ge-
nome is a matter of a few weeks at sequencing costs that are
affordable to many laboratories (Schatz et al. 2010). Due to
these advantages, NGS technologies have quickly been im-
plemented in various fields of life sciences (Metzker 2010),
including de novo sequencing of whole genomes (Schatz et al.
2010; Sharma et al. 2015), genome re-sequencing (Stratton
2008), cDNA sequencing (Martin and Wang 2011; Ozsolak
and Milos 2011; Wang et al. 2009), genotyping (Davey et al.
2011; Sharma et al. 2014; Yoshida et al. 2013), and commu-
nity genomics analyses (Qin et al. 2010). Also, several fila-
mentous organisms, including fungi and oomycetes have been
sequenced over the last decade (Raffaele and Kamoun 2012).
Due to the small genome sizes of most filamentous organisms,
several studies in fungi and oomycetes have taken advantage
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Fig. 2 Exemplary plots for the
percentage of data left after
applying different read filtering
parameters to reads from a 3 kbp
library. Plots have been generated
using average read quality cutoffs
of 18, 22, 26, and 30, in A, B, C,
and D, respectively, and using
length cutoffs from 100 to 150 bp
for both reads, with an increment
of 10 bp. Minimum base quality
(MBQ) was set to phred scores of
3 to 18 with an increment of 5
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of NGS technologies for whole genome sequencing (Quinn
et al. 2013; Levesque et al. 2010; Laurie et al. 2012; Kemen
et al. 2011; Jiang et al. 2013; Sharma et al. 2014).

Before starting any analysis on NGS data, it is im-
portant to perform data filtering, so the analyses do not
suffer from low quality reads (Dai et al. 2010). Over the
past few years, many filtering tools have been devel-
oped, which can process NGS data considering quality

and length thresholds (Bolger et al. 2014; Schmieder
and Edwards 2011). Applying different filtering param-
eters has a significant impact on downstream analyses,
depending on the filtering method used (Del Fabbro
et al. 2013). Filtering also has a pronounced impact
on the amount of reads available for downstream anal-
yses, as a too low coverage can have similar detrimental
effects on downstream analyses as including data with
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Fig. 3 Coverage depth variation
with different quality filtering
parameters applied to reads from
a 3 kbp library. Plots have been
generated using average read
quality cutoffs of 18, 22, 26, and
30, in A, B, C and D, respectively,
using length cutoffs from 100 to
150 bp for both reads, with an
increment of 10 bp. Minimum
base quality (MBQ) was set to
phred scores of 3 to 18 with an
increment of 5
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Fig. 4 Percentage of data left comparing three different insert size libraries using different length cutoffs. The short insert library (250 bp insert size)
shows less variation depending on the filtering parameter than the long insert libraries (3 and 8 kbp insert size)

Mycol Progress (2015) 14: 60 Page 5 of 7 60



low quality scores. Often, especially if funds are limit-
ed, a balance has to be sought between a quality filter-
ing that will filter out reads of suboptimal quality and
length on the one hand and the coverage retained on the
other hand. To our knowledge, there is currently no tool
which provides information about the coverage depth
variation with different quality cutoffs prior to read fil-
tering, providing straightforward way of choosing qual-
ity and length thresholds for filtering. Features of cur-
rent NGS data processing tools, including FastQFS, are
given in Supplementary Table 1.

An alternative or addition to filtering bad quality reads,
which can be useful depending on the kind of analyses to be
done, are error-correcting tools that help in correcting bad
quality bases originating from wrong base-calls (Lim et al.
2014; Kelley et al. 2010). Such tools can help in correcting
some bases that are generally trimmed out by the filtering
tools. However, care should be taken while using error-
correcting tools in studies where a major part of the study
depends on the accuracy of a single base, for example studies
including SNP detection or community barcoding. Otherwise,
it can also be useful to employ error correcting tools prior to
read filtering.

FastQFS generates estimated coverage depth plots after the
filtering of reads with different quality and length cutoffs,
using a user-provided estimated genome size. In case of
RNA-Seq data this size could be the total length of protein
coding genes. This information can be used to select the most
stringent filtering parameters which generate a filtered dataset
of the desired minimum coverage depth. Considering the
quality of individual bases as available in FastQFS might be
important, as in average-based filters, some reads will be
retained that are having many bases with very high scores
and some bases with very low quality scores. However, these
low quality bases might be problematic in some downstream
analyses, like variant detection, single nucleotide polymor-
phism (SNP) mining or genome assemblies.

FastQFS has been written in the Perl programming lan-
guage (https://www.perl.org/), which is platform-
independent and can be run on any Perl-supporting operating
system. FastQFS does not depend on other Perl libraries or
modules, which makes it user friendly also for biologists with
limited bioinformatics knowledge.

Thus, we hope that FastQFS will prove useful for data
filtering, especially with the aim to achieve an optimised bal-
ance between quality filtering and coverage.
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