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Abstract
In traffic scenarios, the size of targets varies significantly, and there is a limitation on computing power. This poses a 
significant challenge for algorithms to detect traffic targets accurately. This paper proposes a new traffic target detection 
method that balances accuracy and real-time performance—Deep and Filtered You Only Look Once (DF-YOLO). In response 
to the challenges posed by significant differences in target scales within complex scenes, we designed the Deep and Filtered 
Path Aggregation Network (DF-PAN). This module effectively fuses multi-scale features, enhancing the model's capability 
to detect multi-scale targets accurately. In response to the challenge posed by limited computational resources, we design a 
parameter-sharing detection head (PSD) and use Faster Neural Network (FasterNet) as the backbone network. PSD reduces 
computational load by parameter sharing and allows for feature extraction capability sharing across different positions. 
FasterNet enhances memory access efficiency, thereby maximizing computational resource utilization. The experimental 
results on the KITTI dataset show that our method achieves satisfactory balances between real-time and precision and 
reaches 90.9% mean average precision(mAP) with 77 frames/s, and the number of parameters is reduced by 28.1% and the 
detection accuracy is increased by 3% compared to the baseline model. We test it on the challenging BDD100K dataset and 
the SODA10M dataset, and the results show that DF-YOLO has excellent generalization ability.

Keywords DF-YOLO · Traffic target detection · Multi-scale fusion · Parameter sharing

1 Introduction

The continuous development of autonomous driving 
technology has made unmanned driving possible, with 
perception models playing a crucial role in this field. 
Perception is one of the core modules of autonomous driving 
systems, with traffic target detection being a vital component 
of the perception module. Rapid and accurate detection can 
assist drivers or autonomous vehicles in making decisions 
earlier, thereby enhancing safety.

Detection algorithms extract information related to 
objects, behaviors, key points, etc., from images and 
detect objects from the background. Traditional detection 
algorithms often employ sliding windows to identify 
candidate bounding boxes. Subsequently, relevant features 
are extracted from these regions. Common feature 
descriptors encompass Haar features [1], Histogram 
of Oriented Gradients (HOG) features [2], and others. 
Eventually, classifiers such as Support Vector Machines 
(SVM) [3] and AdaBoost [4] are employed to classify 
features, thus discerning the location and type of the object. 
Nevertheless, these conventional methodologies rely on prior 
knowledge and are primarily suited to uncomplicated scenes. 
In complex and evolving environments, their performance is 
deficient, falling short of meeting the demands of practical 
applications. In recent years, deep learning-based detection 
methods have exhibited notable performance in both 
accuracy and real-time processing. These methodologies 
can be divided into two primary categories: one includes 
single-stage detection algorithms like You Only Look 
Once (YOLO) [5–10] and Single Shot MultiBox Detector 
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(SSD) [11], which directly conduct detection on the image, 
achieving efficient real-time performance. Another category 
includes two-stage detection algorithms like Fast R-CNN 
[12] and Faster R-CNN [13]. These algorithms initially 
generate candidate regions and subsequently perform 
classification and localization tasks. These algorithms often 
demonstrate superior accuracy performance.

Target detection based on deep learning has been widely 
used in fields, such as underwater object detection [14], 
driver fatigue detection [15], and small target detection 
[16]. Nonetheless, in complex traffic scenes where there 
are significant differences in target sizes, especially for 
detecting small targets such as pedestrians and distant 
vehicles, the performance is unsatisfactory. In real-world 
scenes, where targets move quickly the time for capturing 
and detecting is short, and computational resources are 
limited. Detecting traffic objects rapidly and accurately 
becomes even more challenging. Di et al. [17] studied target 
detection and tracking in such dynamic scenes and achieved 
good results. The present study proposes an improved 
YOLOV8 algorithm to address the aforementioned issue, 
and significantly enhance the model's capability to detect 
multi-scale targets while balancing detection speed and 
precision. The contributions of this paper are as follows:

1. To address the significant scale differences between 
vehicles and pedestrians, we design a Deep and Filtered 
Path Aggregation Network (DF-PAN), which uses the 
characteristics of deep features and shallow features, and the 
shallow information is filtered through the weights generated 
by the deep features, filtering out redundant semantic 
information, and highlighting the underlying small targets; 
filtering the deep information through the weights generated 
by the shallow features, filtering out redundant positioning 
information and highlight the semantic information of the 
target, and achieving more efficient multi-scale fusion.

2. To address the challenge of limited computational 
resources, we devise a parameter-sharing detection, 
transmitting the feature map to the Conv_share module. 
We incorporate a scaling factor to modulate the feature 
map after its traversal through the Conv_share module, 
yielding three distinct outputs. Implementing parameter 
sharing in the detection component enhances the feature 
classification ability of the model while reducing the number 
of parameters.

3. To tackle the complexity and high computational cost 
of the YOLOV8 network, we use FasterNet[18], a rapid 
neural network, to improve feature extraction speed and 
reduce model complexity.

The DF-YOLO algorithm significantly improves precision 
while reducing the number of model parameters. We test our 
method on the KITTI dataset, which reaches 90.9% mAP 
with 77 frames/s, and the number of parameters is only 
2.3 m. This is a 3% mAP improvement over the baseline 

model (YOLOv8-n) and a 28.1% reduction in the number of 
parameters. In the context of autonomous driving scenes, it 
is essential to consider key factors, such as model precision, 
speed, and the number of parameters to ensure vehicle 
safety during operation. Our method achieves satisfactory 
balances between real time and precision and is suitable for 
autonomous driving scenes.

The paper is structured as follows: Sect. 2 provides a 
detailed review of existing research work. Following that, 
Sect. 3 delves into the improvement details of the algorithm. 
In Sect. 4, a comprehensive description and analysis of 
the experimental procedures are provided. Finally, Sect. 5 
summarizes the work carried out in this study.

2  Related work

In recent years, numerous scholars have conducted extensive 
research on detection tasks in traffic scenes [19–21]. Hu 
et al. [22] proposed a cascaded vehicle detection method 
that integrates multi-feature fusion with Convolutional 
Neural Networks (CNN), demonstrating exceptional 
robustness in complex driving environments. R. Ghosh 
[23] introduced a Faster R-CNN road vehicle detection 
approach employing multiple Region Proposal Networks 
(RPNs) of varying sizes to effectively detect vehicles of 
different scales, achieving promising results. HAN [24] 
proposed a convolutional neural network (CNN) enhanced 
with contextual information, which effectively improves the 
accuracy of detecting small-sized and occluded vehicles 
by progressively integrating shallow-layer information 
into deep-layer networks. Although the aforementioned 
detection models achieve high precision, they fail to meet 
real-time requirements due to the limited computational 
performance of onboard vehicle systems in real-world 
scenes. Single-stage detection networks are more suitable 
for real-time traffic object detection in terms of detection 
speed compared to two-stage networks. Goran Oreski [25] 
proposed a YOLO*C algorithm that incorporates the MCTX 
(Multi-Context) context-aware module, efficiently utilizing 
rich global context information and significantly improving 
the detection accuracy of small targets in complex traffic 
environments. KANG et al. [26] introduced a novel YOLO 
detector called YOLO-FA based on fuzzy attention, which 
utilizes fuzzy entropy to weight features and enables the 
network to focus on targets, thereby effectively enhancing 
the detection accuracy of vehicles. However, these scholars 
did not address the issue of reduced accuracy due to 
differences in target scales.

Scale problem lies at the heart of every object detection, 
and many researchers have made outstanding contributions 
in this area. Li et  al. [27] introduced a depth-based 
segmentation method and a multi-scale detection network 
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aimed at substantially improving small object detection 
in vehicle detection systems, and validate its effectiveness 
through experimental verification. Yuan et  al. [28] 
introduced a multi-scale feature network into the detection 
model to more accurately extract the features of small targets 
in traffic scenes. SD Khan et al. proposed a robust method 
for producing object proposals in a paper [29], encoding 
objects of different sizes at different scales and achieving 
satisfactory results. In another paper [30], they proposed 
addressing the issue of scale variation by utilizing feature 
maps from three dense blocks to construct three Region 
Proposal Networks (RPNs). Each RPN is designed to target 
objects of different sizes, thereby generating multi-scale 
object proposals. This approach enhances the detection 
capability for targets across a range of scales by integrating 
feature maps from different depths with RPNs tailored to 
various scales. Some researchers have also adopted multi-
scale feature fusion methods to solve the scale problem. 
This technique is aimed at fusing deep features with 
shallow features to obtain sufficient semantic information. 
The Feature Pyramid Network (FPN) [31] achieves multi-
scale fusion by upsampling features and adding them to 
bottom-level features, enabling the combination of feature 
maps with strong low-resolution semantic information 
and those with rich high-resolution spatial information 
at minimal computational cost. Building upon FPN, the 
Path Aggregation Network (PANet) [32] incorporates 
bottom–up path enhancement to leverage precise 
localization information for enhancing the entire feature 
set. The Bidirectional Feature Pyramid Network (BiFPN) 
[33] proposes a more efficient bidirectional feature fusion 
to mitigate the issues of information loss and redundancy 
in the traditional feature pyramid networks when extracting 
features of different scales.

Additionally, detection tasks in traffic scenes are 
significantly constrained by the following two challenges:

a. The scene is intricate and constantly changing, with 
small targets often existing alongside surrounding objects. 
When combined with the inherent characteristics of small 
targets, this results in inadequate extraction of feature 
information from these targets by the model.

b. Targets from different categories display significant 
variations in size, and even targets within the same 
category may differ in size due to their positional 
differences.

To tackle the challenges mentioned above, inspired by 
MFDS-DETR [34], we designed a Deep and Filtered Path 
Aggregation Network (DF-PAN) to better suit detection 
tasks in driving scenes. First, the top-level features filter 
the underlying information through weights generated by 
the Feature Coordinate Filtering Module (FCF), filtering 
out redundant semantic information to highlight small 
targets in lower layers; second, the bottom features filter 
the top features through the weights generated by FCF, 
filtering out redundant positioning information to highlight 
the semantic information of the target. DF-PAN aims to 
enhance the model's ability to fuse multi-scale features, 
thereby improving detection efficiency.

3  Method

3.1  The overall architecture of the improved 
algorithm

The DF-YOLO architecture consists primarily of three 
parts: a backbone network, a deep and filtered Path 
Aggregation Network, and a parameter-sharing detection 
head. In the backbone extraction network, we replace the 
original structure with FasterNet, a rapid neural network, 
to reduce redundant computations and improve spatial 
feature extraction. To tackle the multi-scale challenges 
arising from variations in object sizes, we propose the 
Deep Filtering Path Aggregation Network (DF-PAN), 
which effectively fuses deep features with shallow features. 
In addition, we design a parameter-sharing detection head 
(PSD), which reduces the number of parameters and 
improves detection precision. The overall structure of the 
algorithm is shown in Fig. 1.

Fig. 1  The overall structure of 
DF-YOLO
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3.2  Backbone

The backbone network of YOLOv8 is overly large. 
Utilizing FasterNet as the backbone network for feature 
extraction in DF-YOLO aligns more closely with practical 
requirements. FasterNet addresses the issue of redundancy 
in the convolutional neural networks by introducing 
Partial Convolution (PConv). This technique enhances 
spatial feature extraction while reducing unnecessary 
computations and memory access. The overall structure 
is shown in Fig. 2.

The proposed architecture consists of four hierarchical 
stages, each featuring a 4 × 4 regular convolutional layer 
with a stride of 4 for spatial downsampling and a 2 × 2 
regular convolutional layer with a stride of 2 for expanding 
the channel number. Each stage has a FasterNet block, 
which contains a PConv layer. Unlike conventional 
convolution, the PConv layer selectively conducts 
convolution operations on specific channels to extract 
spatial features, while leaving the remaining channels 
unchanged. In the detection task of this paper, the input 
and output feature maps have the same number of channels. 
Therefore, the FLOPs of PConv are: h × � × k2 × c2

p
 , and 

for r = 1∕4 , the FLOPs of PConv are only 1∕16 of standard 
convolution, with memory access being 1∕4 of standard 
convolution. To more effectively utilize information from 
all channels, pointwise convolution (PWConv) has been 
added after PConv. PWConv enables feature information 
to flow through all channels, thereby allowing the model 
to focus more on the central position.

Due to the small size of targets which only occupy a 
small portion of the image, models often overlook the 
spatial information of these targets. The FasterNet feature 
extraction network excels in spatial feature extraction, 
enhancing the model's ability to detect small targets. 

Additionally, FasterNet requires less memory access and 
is better suited for traffic scenes with limited computing 
resources.

3.3  DF‑PAN

In complex traffic scenes, significant size variations exist 
among targets across different categories. Moreover, targets 
within the same category may also vary in size due to their 
distinct spatial locations. This inherent multi-scale diversity 
negatively impacts the model's detection and recognition 
capabilities. Feature Pyramid Networks (FPN) fuse extracted 
multi-scale information in a bottom–up manner, thereby 
enhancing the precision of models. However, this structure 
is less effective in transmitting location information. To 
address this limitation, the PANet introduces a top–down 
pathway, facilitating the transfer of low-level details to 
the upper layers, thereby obtaining a feature map with 
more comprehensive semantic and spatial information, 
consequently enhancing the feature representation capability. 
To better tackle the inherent multi-scale issue in driving 
scenes, we design a Deeper and Filtered Path Aggregation 
Network (DF-PAN). The structure is shown in Fig. 3 and 
consists of two modules:

(a) Feature Coordinate Filtering module (FCF)
(b) Deep Feature Fusion module (DF).

(a) Feature coordinate filtering module (FCF).
The feature coordinate filtering module extracts the 

importance of the feature map in different dimensions, 
thereby selectively filtering unimportant features. This 
process enhances the semantic content of the generated 
features, ultimately improving the model's ability to 
detect targets of various scales. The original channel-
wise attention module only considers dependencies 

Fig. 2  The overall structure of 
FasterNet
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between channels, neglecting the importance of 
positional information in capturing target structures. To 
tackle this issue, FCF breaks down global pooling into 
two parallel feature encoding processes. This approach 
allows for the capture of inter-feature dependencies 
while also preserving accurate positional information. 
Consequently, it significantly enhances the model's ability 
to objects of different scales. As illustrated in Fig. 4, the 
feature coordinate filtering module processes the input 
feature map, where C denotes the number of channels, H 
represents the height of the feature map, and W represents 
its width. For a given input X, we encode each channel 
separately along the horizontal and vertical coordinates 
using pooling kernels with two spatial ranges: (H, 1) or (1, 
W). Then, we combine these encodings to obtain features 
and employ the sigmoid activation function to determine 
the weights for the horizontal and vertical coordinates. 
Next, multiply the obtained weights with the feature maps 
after global average pooling. Finally, multiply them with 
the corresponding proportion of feature maps to obtain the 
output. This transformation allows the module to capture 
long-range dependencies along one spatial direction 
while preserving positional information along another. 

The purpose of average pooling is to evenly obtain all 
data from the feature map and minimize information loss, 
which is particularly crucial for small target detection in 
traffic scenes.

(b) Deep feature fusion module (DF).
In the feature map extracted by the feature extraction 

network, the deep features have rich semantic information, 
but relatively little location information; the shallow features 
have accurate target positioning, but limited semantic 
information. In this regard, we propose a deep feature fusion 
module (Fig. 5), the deep features filter the underlying 
information through weights generated by FCF, filtering 
out redundant semantic information to highlight small 
targets in lower layers; The shallow features filter the deep 
features through the weights generated by FCF, filtering out 
redundant positioning information to highlight the semantic 
information of the target. Establishing connections between 
feature maps at different levels for more effective feature 
fusion, enabling the network to detect objects of various 
scales.

Moreover, smaller objects occupying fewer pixels often 
lead to frequent occurrences of missed and false detections 
during the detection process. To address this issue, we 

Fig. 3  The overall structure of DF-PAN

Fig. 4  The overall structure of FCF
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incorporate deeper upsampling in the feature fusion module 
to enable more profound fusion.

3.4  Parameter sharing detection

The detection head of YOLOv8-n accounts for 40% of the 
computational workload in the model. To make the algorithm 
better match the autonomous driving scenario, we designed 
a lightweight detection head called Parameter Sharing 
Detection (PSD) (Fig. 6), which reduces computational 
effort by sharing parameters. The PSD module takes feature 
maps from different scales obtained from DF-PAN as input 
to the shared convolution module. Moreover, we introduce 
a learnable scaling factor to adjust the feature maps after 
Conv_share, resulting in three distinct outputs from the 
detection layers. This parameter-sharing approach not only 
reduces the number of parameters in the model but also 
enables feature extraction capabilities to be shared across 
different locations, thereby enhancing both the model's 
efficiency and generalization ability. Experimental results 

demonstrate that PSD effectively reduces computational 
workload while maintaining high precision.

4  Experiments and analysis

4.1  Datasets

We conducted experiments on the KITTI dataset [35], 
BDD100K dataset [36], and SODA 10 M dataset [37] to 
comprehensively evaluate the proposed method.

The KITTI dataset is one of the most commonly used 
benchmark datasets internationally for evaluating detection 
algorithms in autonomous driving scenarios. It comprises 
real image data collected from various environments like 
urban, rural, and highway scenes, featuring up to 15 cars 
and 30 pedestrians per image, along with varying degrees of 
occlusion and truncation, posing a significant challenge in the 
field of object detection. The dataset is annotated with nine 

Fig. 5  Deep Fusion block structure diagram. Given two features 
f
1
 and f

2
 , to achieve uniform dimensions, upsampling and 

downsampling are performed on the deep and shallow features 
respectively. Subsequently, weights are generated through the Feature 

Coordinate Filtering (FCF) to filter the corresponding features. 
Finally, the filtered features are fused together, and the output is 
expressed as: fout = f

2
× FCF(f

1�
) + f

1�

Fig. 6  Overall structure of PSD
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primary scene categories (Car, Truck, Van, Tram, Pedestrians, 
Person_sitting, Cyclist, Misc).

The BDD100K dataset is a publicly available driving 
dataset released by the University of California, Berkeley. 
It comprises 100,000 annotated frames collected under 
various weather conditions (sunny, cloudy, overcast, rainy, 
snowy, foggy), different times of the day (daytime, nighttime, 
dawn/dusk), and diverse scenes (residential areas, urban 
streets, highways, etc.). Due to its diverse geographical, 
environmental, and meteorological conditions, the BDD100K 
dataset is an excellent choice for evaluating network reliability.

The SODA10M dataset covers a variety of different road 
scenes, taking into account diverse weather conditions and 
conducting data collection during various periods, including 
daytime, nighttime, early morning, and dusk. The dataset 
is annotated with six primary scene categories (Pedestrian, 
Cyclist, Car, Truck, Tram, Tricycle). The SODA10M dataset 
presents a variety of environmental conditions and can 
approximate the diversity of real driving environments.

4.2  Training equipment and parameters set

Throughout the training process, we optimize training 
parameters using stochastic gradient descent. We set the 
momentum at 0.937 and the learning rate during training to 
0.01. We set the batch size as 64, and the epoch is 300. The 
size of the image in the dataset is 640 × 640 pixels (as shown 
in Table 1).

The loss value reflects the convergence state of the model 
during the training process. The loss functions used in this 
paper include classification loss function and bounding box 
loss function. The classification loss function includes binary 
cross-entropy loss, denoted as LBCE . The bounding box loss 
function includes distribution focal loss (DFL), denoted as 
LDFL and complete IoU (CIoU) loss, represented as LCIoU . 
Thus, the loss Ltotal can be represented as

where �BCE , �DFL , and �CIoU are corresponding coefficients

(1)Ltotal = �DFLLDFL + �CIoULCIoU + �BCELBCE,

(2)LBCE = −
[

yn log xn + (1 − yn) log(1 − xn)
]

,

where xn is the predicted classification of each object. yn is.
the ground truth of each object

where: y is the ground truth of the bounding box coordinate.

where b is the central point of the prediction box, bgt is the 
central point of the ground truth box. � is the Euclidean 
distance between prediction and ground truth points. c is 
the diagonal length of the smallest enclosing rectangle of 
the two boxes. v and � are ratio coefficients. wgt and hgt are 
the width and height of the ground truth box, and w and h 
are the width and height of the prediction box.

4.3  Evaluation metrics

To assess the effectiveness of the model, we utilize mAP, the 
number of Parameters, Floating Point Operations (FLOPs), 
and Frames Per Second (FPS) as evaluation metrics. 
The number of parameters is used to describe the space 
complexity of the network, which reflects the small space 
occupied by the model. FLOPs and FPS are used to describe 
the time complexity of the network. FLOPs represent the 
number of floating-point arithmetic operations performed 
by the network during inference, providing insight into the 
computational workload. On the other hand, FPS indicates 
the rate at which the network processes frames or inputs 
per second, reflecting its real-time performance. mAP is 
primarily employed for evaluating Average Precision (AP), 
Precision (P), and Recall (R) in object detection tasks. 
Equations (5) (6), respectively, represent Precision (P) and 
Recall (R).

where: TP denotes true positives, FP denotes false positives, 
and FN denotes false negatives.

AP denotes the area under the precision–recall curve, 
which provides a comprehensive evaluation of model 
accuracy by considering both precision and recall for 

(3)

LDFL(Si, Si+1) = −((yi+1 − y) log(Si) + (y − yi) log(Si+1))

Si =
yi+1 − y

yi+1 − yi
, Si+1 =

yi − y

yi − yi+1
,

(4)

LCIoU = 1 − IoU +
�2(b, bgt)

c2
+ �v

v =
4

�2
(arctan

wgt

hgt
− arctan

w

h
)2

� =
v

(1 − IoU) + v
,

(5)P =
TP

TP + EP

(6)R =
TP

TP + FN

Table 1  Training environment and hardware platform parameters 
table

Parameters Configuration

Operational platform Ubuntu 18.04
Compilers Python 3.9
Network construction method Pytorch 2.0
CPU Intel(R) Xeon(R) Gold 6348
GPU NVIDIAA30 24 GB
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each class. A higher precision indicates superior model 
performance. Equation  (7) can be used to express AP, 
whereas mAP quantifies the average AP across all classes 
and is represented by Eq. (8)

To provide a more detailed description of the model's 
performance, we use TIDE [38] evaluation indicators and 
categorize errors in the model into six types: Classification 
error (Cls), Localization error (Loc), Classification and 
Localization error (Cls + Loc), Duplicate detection error 
(Duplicate), Background error (Bkgd), and Missed detection 
error (Miss). We use  IoUmax to represent the maximum IoU 
overlap between the predicted bounding box and the Ground 
Truth of the given class. The foreground IoU threshold is 
denoted as tf  , and the background threshold is denoted as tb , 
which are set to 0.5 and 0.1 respectively. Details are shown 
in Fig. 7.

4.4  Performance comparison between DF‑YOLO 
and YOLOv8

We validate our model using the KITTI dataset. To assess 
its performance, we compare the experimental results of 
DF-YOLO and YOLOv8 with those of YOLOv8-n as the 
baseline  (as shown in Table 2). From the experimental 

(7)AP = ∫
1

0

P(R)dr

(8)mAP =

∑N

i=1
APi

N

results, it can be observed that compared to YOLOv8-n, 
DF-YOLO demonstrates a significant performance 
improvement. The mAP increases by 3%, while the number 
of parameters decreases by 28.1%. Moreover, the localization 
error decreases by 1.65%, and the missed detection error 
decreases by 1.1%. When the batch size is set to 1, the 
model achieves an FPS rate of 77, meeting the real-time 
requirements. The experiments confirm that our proposed 
model possesses superior object localization capabilities and 
enhances detection capabilities for small objects. To better 
illustrate the superiority of our proposed model, we conduct 
a visual analysis of the detection results of DF-YOLO on 
the KITTI dataset compared to the original YOLOv8-n 
model (as shown in Fig.  8). According to the figures 
shown, the left column displays the detection results of the 
original model. As shown in the first and third images, the 
model's performance in detecting heavily occluded objects 
is very poor. In addition, as shown in the second picture, 
the model cannot accurately detect long-distance small 
targets, resulting in missed detections and false detections. 
In contrast, the right column presents the detection results 
of DF-YOLO. Our proposed model effectively reduces the 
likelihood of missed and false detections, demonstrating 
strong detection capabilities even for occluded and distant 
small objects. In the third figure, although our method 
reduces the probability of missing and false detections for 
occluded and small objects, there are still occurrences of 
missed detections and false positives. The reason for this is 
that, due to the distance of the targets and occlusion issues, 
the detector is constrained by insufficient resolution, making 
it difficult to distinguish the boundaries and features of each 

Fig. 7  Error type definitions. Red boxes represent false positives, green boxes represent ground truth; and orange boxes represent true positives. 
The IoU with ground truth for each error type is indicated by an orange highlight and shown in the bottom row

Table 2  Performance 
comparison between 
DF-YOLO(n) and YOLOv8-n 
(%)

Method mAP50 Params (M) FPS(bs = 1) Ecls Eloc Eboth EDup Ebkgd Emiss

YOLOV8-n 87.9 3.2 102 0.22 4.29 0.26 1.26 1.43 1.80
DF-YOLO 90.9 2.3 77 0.26 2.64 0.25 0.95 1.23 0.70
Improve 3 0.9 − − 1.65 0.01 0.31 0.2 1.1
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target, resulting in missed detections and false positives. 
Although our method may encounter issues with missed 
detections in certain scenarios, considering the diversity 
of real-world application needs and the comprehensive 
performance of the overall system, the impact of such 
situations on practical applications is relatively minor. The 
visualized results further confirm that DF-YOLO is better 
suited for complex autonomous driving scenes.

4.5  Ablation study

The effectiveness of different modules is validated through 
extensive ablation experiments. Among them, Baseline 
refers to YOLOv8-n, and √ indicates the inclusion of 
the corresponding module in this experiment. From the 
experimental results  (Table  3), it can be observed that 
compared to YOLOv8-n, the addition of FasterNet, DF-PAN, 
and PSD modules results in an increase in mAP by 1.4%, 

1.5%, and 0.5% respectively. Notably, DF-PAN exhibits the 
most significant improvement in model performance. Error 
analysis suggests that the FasterNet module reduces both 
classification and localization errors as well as background 
errors. The DF-PAN module significantly decreases missed 
detections, while the PSD module reduces localization 
errors probability-wise. When combined together with 
FasterNet, DF-PAN and PSD modules lead to a respective 
mAP improvement of 2.1% and 1.8%. Consequently, 
when combined with these modules, mAP reaches 90.9%, 
representing a remarkable 3% enhancement over YOLOv8-
n's performance level. Furthermore, the number of 
parameters is reduced by an impressive 28.1% compared 
to YOLOv8-n while achieving an FPS rate of 77. However, 
during the process of improving accuracy, we observe an 
increase in FLOPs and a slight decrease in FPS. We believe 
that sacrificing some speed to achieve higher accuracy is 
reasonable in the detection task addressed in this paper. 

Fig. 8  Visualization of detection results of YOLOv8-n detector (left) and DF-YOLO detector (right) based on the KITTI dataset. Green, blue, 
and red boxes represent true positives (TP), false positives (FP), and false negatives (FN), respectively. Yellow boxes indicate zoomed-in views

Table 3  Ablation experiments of different modules (%)

FasterNet DF-PAN PSD mAP50 Params (M) FLOPs(G) FPS(bs = 1) Ecls Eloc Eboth EDup Ebkg Emiss

Baseline 87.9 3.2 8.2 102.7 0.22 4.29 0.26 1.26 1.43 1.80
√ 89.3 4.4 10.7 86.3 0.25 4.37 0.14 1.27 1.14 2.20

√ 89.4 2.6 14.9 70.2 0.44 3.33 0.30 0.83 1.22 0.81
√ 88.4 2.5 6.7 112.7 0.29 3.14 0.19 1.98 1.35 2.09

√ √ 90 3.3 16.0 70.5 0.34 3.23 0.29 0.85 1.15 0.75
√ √ 89.7 2.2 11.7 82.8 0.41 3.30 0.29 1.12 1.33 0.76

√ √ √ 90.9 2.3 12.2 77.1 0.26 2.64 0.25 0.95 1.23 0.70
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The above experiments fully demonstrate not only the 
effectiveness but also the suitability of these modules for 
deployment on resource-constrained mobile platforms.

4.6  Compare with mainstream methods

This section compares DF-YOLO with models, such as 
YOLOv5, YOLOP [39], YOLOPv2 [40], A-YOLOM [41], 
CF-YOLOX [42], Faster R-CNN, DINO-Deformable-
DETR [43], and HybridNets [44] on the KITTI dataset, The 
experimental results are shown in Table 4. Among them, 
bs = 1 represents the FPS when the batch size is 1. The 
difference between DF-YOLO(n) and DF-YOLO(l) lies in 
the complexity of the backbone network, where 'n' represents 
a lightweight network. The design of DF-YOLO(n) reduces 
the complexity and is suitable for deployment on edge 
devices with limited computing resources. DF-YOLO(l) 
provides higher precision while increasing computational 
overhead. According to experimental results, DF-YOLO(n) 
achieves the most efficient results. Compared with YOLOP, 
A-YOLOM, and HybridNets, DF-YOLO(n) has fewer 
parameters, higher precision, and higher FPS. Compared 
to yolopv2, DINO-Deformable-DETR, and CF-YOLOX, 
DF-YOLO(n) has significant advantages in terms of 
model parameters and speed. With similar parameters 
and computation costs, our framework outperforms other 
object detectors, achieving a balance between real-time 
performance and accuracy.

4.7  Performance on the SODA 10 M dataset

This section compares DF-YOLO with models such as 
YOLOv5, YOLOP, YOLOPv2, A-YOLOM, TTD-YOLO 
[45], Faster R-CNN, DINO-Deformable-DETR, and 
HybridNets on the SODA10M dataset. The experimental 

results are shown in Table 5, that the DF-YOLO algorithm 
outperforms the other algorithms, has higher detection 
accuracy, and can meet real-time detection. To better 
illustrate the reliability of the proposed framework, we 
conduct a visual analysis (as shown in Fig. 9) of the model's 
detection results under various environmental conditions on 
the SODA10M dataset. Under three different environmental 
conditions (a), (b), and (c), the original model detected 6, 
6, and 0 targets, respectively, while DF-YOLO detected 10, 
9, and 3 targets, respectively. The visualization results show 
that the proposed framework has good generalization ability 
in different environments.

4.8  Performance on the BDD100K dataset

This section compares DF-YOLO with models such as 
YOLOv5, YOLOP, YOLOPv2, A-YOLOM, CF-YOLOX, 
MCS_YOLO [46], Faster R-CNN, DINO-Deformable-
DETR, and HybridNets on the BDD100K dataset. The 
experimental results are shown in Table  6, that the 
DF-YOLO algorithm outperforms the other algorithms, has 
higher detection accuracy, and can meet real-time detection.

5  Conclusion

High-precision and real-time performance are essential 
requirements for detection algorithms in autonomous driving 
systems. This paper proposes a DF-YOLO algorithm that 
can balance real-time performance and accuracy in complex 
scenes with limited computational resources, addressing 
the problem of poor accuracy caused by large differences 
in target scales in traffic scenarios. High-precision real-time 
detection results can aid autonomous vehicles in quickly 
identifying and predicting potentially dangerous situations, 
thereby making timely decisions and plans, reducing the risk 

Table 4  Comparison of detection results of different algorithms on 
the KITTI dataset (%)

Method mAP50 Recall Params (M) FPS(bs = 1)

YOLOv8-n (baseline) 87.9 79.9 3.2 102
Faster R-CNN 79.9 79.1 41.3 8.8
YOLOv5-s 88.2 80.7 7.2 53.4
HybridNets 87.7 86.5 12.8 15.2
A-YOLOM 89.3 83.5 4.43 39.9
YOLOP 86.3 81.3 7.9 26.5
YOLOPv2 92.5 84.9 38.9 48
DINO-Deformable-

DETR
93.5 − 47 5

CF-YOLOX 93.07 − 9.5 33.9
DF-YOLO(n) 90.9 82.6 2.3 77
DF-YOLO(l) 93.9 87.9 31.4 39

Table 5  Comparison of detection results of different algorithms on 
the SODA10M dataset (%)

Method mAP50 Recall FPS

YOLOv8-n(Baseline) 42.6 50.2 100.7
Faster R-CNN 30.1 39.3 11.8
YOLOv5-s 44.5 52.7 52.8
HybridNets 43.1 55.8 13.4
A-YOLOM 45.7 51.4 39.7
YOLOP 44.2 56.8 25.4
YOLOPv2 46.6 61.2 47.6
DINO-Deformable-DETR 55.4 − 4.8
TTD-YOLO 46.5 62 55.9
DF-YOLO(n) 47.3 63.1 76.5
DF-YOLO(l) 59.1 67.7 38.2
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of accidents, and improving safety. DF-YOLO comprises the 
FasterNet feature extraction network, DF-PAN, and PSD. 
FasterNet can extract multi-scale feature information more 
efficiently; DF-PAN can effectively fuse both shallow and 

deep features, significantly improving the model's detection 
capabilities for targets with large-scale differences; PSD 
enables the model to share feature extraction capabilities 
at different locations, thereby reducing the number of 
model parameters while enhancing the efficiency and 
generalization ability of the model. We conducted extensive 
ablation experiments on the proposed modules, and the 
results demonstrate that all three modules contribute to 
improving accuracy. After rigorous ablation experiments 
and comparative analysis, it was found that the mAP 
on the KITTI data set reached 90.9%, representing a 3% 
improvement over the baseline, significantly reducing the 
probability of missed and false detections. Additionally, the 
number of parameters decreased by 28.1%. Experimental 
results prove the effectiveness of DF-YOLO. Overall, this 
study demonstrates the potential application of the model in 
resource-constrained environments, assisting with embedded 
applications. However, exploration in this field remains 
challenging, and future work will focus on optimizing 
the model structure to improve algorithm efficiency and 
precision.

Fig. 9  Comparison of detection 
results of YOLOv8-n detector 
(left) and DF-YOLO detector 
(right) in different traffic 
scenarios

Table 6  Comparison of detection results of different algorithms on 
the BDD100K dataset (%)

Method mAP50 Recall FPS

YOLOv8-n(Baseline) 75.1 82.2 103.5
Faster R-CNN 64.9 81.2 9.4
YOLOv5-s 76.8 86.8 82
HybridNets 77.1 91.3 11.7
A-YOLOM 78.0 85.3 39.7
YOLOP 76.5 88.6 27
YOLOPv2 83.4 91.1 43.2
DINO-Deformable-DETR 82.7 − 5.6
CF-YOLOX 74.7 − 32.8
MCS-YOLO 80.8 − 55
DF-YOLO(n) 78.7 83.7 75.8
DF-YOLO(l) 83.9 91.7 42.1
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