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Abstract
In response to the current challenges of numerous background influencing factors and low detection accuracy in the open 
railway foreign object detection, a real-time foreign object detection method based on deep learning for open railways in 
complex environments is proposed. Firstly, the images of foreign objects invading the clearance collected by locomotives 
during long-term operation are used to create a railway foreign object dataset that fits the current situation. Then, to improve 
the performance of the target detection algorithm, certain improvements are made to the YOLOv7-tiny network structure. 
The improved algorithm enhances feature extraction capability and strengthens detection performance. By introducing a 
Simple, parameter-free Attention Module for convolutional neural network (SimAM) attention mechanism, the representa-
tion ability of ConvNets is improved without adding extra parameters. Additionally, drawing on the network structure of the 
weighted Bi-directional Feature Pyramid Network (BiFPN), the backbone network achieves cross-level feature fusion by 
adding edges and neck fusion. Subsequently, the feature fusion layer is improved by introducing the GhostNetV2 module, 
which enhances the fusion capability of different scale features and greatly reduces computational load. Furthermore, the 
original loss function is replaced with the Normalized Wasserstein Distance (NWD) loss function to enhance the recogni-
tion capability of small distant targets. Finally, the proposed algorithm is trained and validated, and compared with other 
mainstream detection algorithms based on the established railway foreign object dataset. Experimental results show that the 
proposed algorithm achieves applicability and real-time performance on embedded devices, with high accuracy, improved 
model performance, and provides precise data support for railway safety assurance.
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1 Introduction

In recent years, railways have remained the primary mode of 
coal transportation [1]. To meet railway transportation goals 
and enhance efficiency, the safety requirements for railway 
transportation have become increasingly stringent. Current 
research mainly focuses on special enclosed environments 
such as high-speed rail and subways. However, research on 
safety warnings for open railways remains a significant and 

challenging issue. This project aims to develop a safe and 
reliable foreign object detection algorithm for open railway 
perimeters to ensure an efficient, safe, and orderly trans-
portation environment for open railways. In recent years, 
the number of railway safety personnel has significantly 
decreased due to a large wave of retirements in mining areas. 
Additionally, the awareness of safety and traffic regulations 
among people living along railway lines is weak. There are 
frequent incidents of people and vehicles rushing through 
nearby crossings, especially during school hours or busy 
farming seasons, leading to conflicts between moving trains 
and pedestrians or social vehicles. These conflicts often 
result in emergency braking and stopping of trains, par-
ticularly in curved sections. The unexpected, irregular, and 
unpredictable issues along the railway lines trigger safety 
incidents that severely affect normal railway operations. 
Moreover, foreign objects such as pedestrians, vehicles, 
animals, and falling rocks infringe upon the railway during 
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locomotive operations. Combined with varying environmen-
tal backgrounds along the tracks and the impact of extreme 
weather conditions over long periods, these factors create a 
complex and dynamic open railway operating environment. 
Real-time detection of foreign objects on railway perimeters 
is key to addressing the frequent conflict incidents in open 
environments. In recent years, railway departments have 
been actively exploring new methods [2] for railway line 
inspection. To ensure the safety of locomotives in mining 
areas, fixed surveillance cameras are deployed at critical 
locations along the railway lines, such as railway-road inter-
sections, bridges, and curves, to monitor railway perimeter 
safety in real-time. Simultaneously, real-time monitoring of 
the front and rear of the train is conducted during locomo-
tive operations to ensure safe passage through unmonitored 
sections. Therefore, both onboard and fixed detection along 
the railway line will be the focus of this paper.

Since the development of target recognition, intelligent 
detection of foreign objects primarily employs two methods: 
traditional object detection algorithms and deep learning 
algorithms. Traditional algorithms have slower computa-
tion and detection speeds and lower accuracy, making them 
unsuitable for practical applications. In contrast, deep learn-
ing-based object detection algorithms can detect foreign 
objects more quickly and accurately, thus gaining increasing 
attention and application. Deep learning-based object detec-
tion algorithms are divided into two-stage and single-stage 
forms. Two-stage detection algorithms offer higher accu-
racy but slower detection speeds, which may not meet the 
need for rapid detection. Single-stage detection algorithms 
produce final results through a single forward pass, offer-
ing faster speeds. Although their accuracy is slightly lower, 
practical applications can meet accuracy requirements by 
improving network structures. Key single-stage algorithms 
include Single Shot multibox Detector (SSD) [3], RetinaNet 
[4], and You Only Look Once (YOLO) series algorithms 
[5, 6].

With the rapid development of deep learning, numerous 
road safety detection methods based on deep learning and 
machine vision techniques have emerged, such as Faster 
R-CNN, SSD, and YOLO algorithms. The focus of rail-
way safety work has increasingly shifted to machine vision 
detection of foreign objects on railways. For example, lit-
erature [7] proposed a Faster R-CNN-based network model 
that replaces the fully connected layer with a global average 
pooling layer, increasing the number of anchors, and intro-
ducing transfer learning concepts, significantly improving 
the detection accuracy of people and vehicles. Literature [8] 
proposed a YOLOv3-based detection model with ResNet-18 
as the backbone network, using a row anchor box segmenta-
tion algorithm and integrating a multi-scale residual mod-
ule based on Octave. This model doubled the detection 
speed while ensuring accuracy, meeting real-time detection 

requirements for foreign objects. Literature [9] improved the 
YOLOv5s model by integrating the DW-Decoupled Head 
to construct hybrid feature channels and applying large 
convolution kernels to increase the receptive field, thereby 
enhancing the model’s localization, classification, and fea-
ture extraction capabilities. Literature [10] also improved 
YOLOv5s by adding the ECA-Net channel attention mecha-
nism, using the SPD-Conv module, and applying the EIOU 
loss function, which focused more on small object targets, 
improved detail extraction capabilities, and enhanced over-
all model accuracy with minimal time cost loss. YOLOv7, 
due to its efficient detection capabilities, has been widely 
used in engineering detection [11–15]. However, significant 
issues remain when directly applying this network to foreign 
object detection along open railway lines. Firstly, the com-
plex open environment of railways increases interference 
in target recognition due to the background. Secondly, the 
long railway lines and varying adverse weather conditions 
during the journey increase the difficulty of feature extrac-
tion. Whether using fixed or mobile monitoring methods, 
cameras are key perception sensors due to their low deploy-
ment cost and large detection range. Therefore, research on 
fixed-end machine vision-based railway perimeter foreign 
object detection has become a hotspot in the field of proac-
tive railway safety.

To address the performance and deployment issues of for-
eign object intrusion detection algorithms in the context of 
open railways, an improved network based on the YOLOv7-
tiny algorithm is proposed, namely the SBG-YOLO network. 
This network adopts three significant improvements. It is 
noteworthy that “SBG-YOLO” is an acronym for SimAM 
Attention Mechanism, BiFPN Network Structure, and 
GhostNetV2 Module, highlighting the unique enhancements 
made to YOLO. The main improvements to the algorithm 
are as follows:

1. The integration of the SimAM attention mechanism 
into the Neck, enhancing the representation capability 
of ConvNet without introducing new parameters.

2. Inspired by the BiFPN structure, connections have been 
added connections between the Backbone and Neck to 
achieve cross-level feature fusion, improving feature 
fusion effects at different scales and enhancing object 
detection performance.

3. Introducing the GhostNetV2 module into the network 
structure significantly reduces the computational load 
of the network, achieving model lightweighting.

The structure of this article is as follows. The second sec-
tion introduces the YOLOv7-tiny network structure used 
for foreign object detection and target recognition. The 
third section proposes the improved SBG-YOLO network 
based on YOLOv7-tiny, detailing the three improvements: 
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incorporating the SimAM attention mechanism, adopting 
cross-region fusion channels, and introducing the Ghost-
NetV2 module. The fourth section describes the experimen-
tal platform and model evaluation metrics. The fifth section 
presents the comparison of experimental results between 
SBG-YOLO and other common models, including model 
parameters, computational load, Frames Per Second (FPS), 
recall rate, and mean Average Precision (mAP@0.5), as well 
as the depth and scale of different versions of the YOLOv7 
model. Finally, the sixth section draws conclusions.

2  Related work

2.1  Current situation of open railway

Open railway foreign object detection encompasses not 
only target detection during locomotive operation but also 
target detection at unmanned crossings along the railway 
lines. These two components are interconnected in real-time 
and can switch seamlessly, enabling real-time detection and 
early prediction of railway obstructions. When a locomotive 
approaches within 2 km of a crossing, the onboard video 
automatically switches to display the target recognition sig-
nal from the nearest crossing in the direction of travel. This 
works in tandem with the locomotive's internal target recog-
nition signals to ensure the safety of railway operations and 
the detection of foreign objects (such as people and animals) 
that may obstruct the railway.

Given the high complexity of foreign objects on railway 
tracks in open environments, there are significant chal-
lenges in deployment, as well as issues with false positives 
and missed detections. To address these problems in open 
railway environments, a novel method for railway foreign 
object detection is proposed. This method is designed to 
better recognize a variety of obstructions in complex open 
environments under embedded conditions. The performance 
of obstruction recognition in open railway environments is 
enhanced through three main approaches:

1. To address the issues of false positives and missed detec-
tions, an attention mechanism is embedded into the tar-
get recognition network, which enhances the representa-
tion capability of the convolutional layers. Additionally, 
the use of the BiFPN structure allows for the fusion of 
multi-level features, thereby improving target detection 
accuracy.

2. Building on railway obstruction image processing, Labe-
lImg software is used to manually label and locate all 
foreign objects on the tracks to ensure the effective train-
ing of the target detection model, particularly for the 
detection of people and animals.

3. Given the limited computing power of embedded real-
time detection systems [16], the smallest possible net-
work structure is selected, significantly reducing compu-
tational requirements and enhancing embedded system 
performance. Improvement and optimization of deep 
learning models are crucial to ensuring detection per-
formance.

By implementing these strategies, the proposed method 
aims to significantly improve the identification and pre-
diction of railway foreign objects, thus enhancing the 
overall safety and efficiency of railway operations in open 
environments.

2.2  YOLOv7‑tiny network structure

YOLOv7-tiny is the most concise model in the YOLOv7 
series, with fewer parameters and faster detection speed. 
It is a network model designed for edge GPUs. YOLOv7-
tiny uses Mosaic data enhancement and adaptive anchor 
frame computation for image preprocessing. Retain the 
model scaling strategy based on cascades and simplify 
the ELAN module, represented by ElAN-S. Backbone 
extracts features based on CBL, ELAN-S and MP struc-
tures. SPPCSPC module refers to the module of Spatial 
Pyramid Pooling (SPP) and Cross Stage Partial Connec-
tions (CSP), which combines the spatial pyramid method 
with the cross-stage partial connections method. It can 
be used to connect Backbone and Neck, and reduce the 
computation by half while maintaining the accuracy of 
the model. Neck uses Feature Pyramid Network (FPN) 
and Path Aggregation Network (PAN) structure for feature 
fusion of objects of different scales. The CBL is composed 
of Convolution, Batch Normalization and Randomized 
LeakyReLU for improved feature fusion. In the Head 
part, standard convolution was used to replace RepConv, 
IDetect test head in YOLOR was introduced, implicit rep-
resentation strategies were used to refine the prediction 
results, and large, medium and small images were classi-
fied according to the fused feature values. The output uses 
the combination of Focal_loss and CIoU_loss as a bound-
ing box loss function, alleviating the class imbalance prob-
lem and better measuring the distance from the target box. 
As a result, YOLOv7-tiny has the ability to identify and 
locate objects and is able to handle many different scales 
and sizes with high precision and robustness. Its original 
structure is shown in Fig. 1.

Firstly, three improvements of YOLOv7-tiny are intro-
duced, and then the overall framework of the improved 
SBG-YOLO is introduced.
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3  SBG‑YOLO

3.1  SimAM attention mechanism

Under the conditions of open railways, the complexity of 
background information and the ease with which railway for-
eign object information can be obscured by redundant infor-
mation are major factors affecting foreign object detection 
performance. To enhance target detection performance, this 
paper tested mainstream attention mechanisms and selected 
the three-dimensional parameter-free attention mechanism. 
As a flexible and effective attention module for convolu-
tional neural networks, SimAM does not add extra param-
eters to the original network. It provides 3D attention [17] 
weights to the feature maps in the detection layer, thereby 
enhancing the representational capability of Convolution 
networks.

SimAM module improves the feature fusion network. 
Compared with one-dimensional [18] and two-dimensional 

attention mechanisms [19], three-dimensional attention mech-
anisms can balance the importance of features more compre-
hensively and efficiently without introducing parameters, thus 
enhancing the feature weights of target regions. Through the 
operation of neurons, neurons with key information are given 
higher weights to improve the recognition and positioning 
accuracy of the network. Figure 2 shows a comparison of the 
different attention mechanisms.

The SimAM module looks for important neurons and 
defines the energy function. It takes a binary label and adds 
regular entries. Therefore, the minimum energy can be 
obtained by the following formula:
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where u
t
 is the average of all neurons, �2

t
 is the variance of 

all neurons, t is the target neuron, x
i
 is the other neurons in 

the input feature channel, � is the regularization coefficient. 
Each channel has M = H ×W  energy function. The lower 
the energy, the more distinct the neuron t  is from the sur-
rounding neurons and the more important it is. Therefore, 
the importance of neurons can be obtained by 1∕e∗

t
.

SimAM can bring good detection performance improve-
ment. In this study, the attention mechanism is added to 
the feature fusion network in front of the detection head, as 
shown in Fig. 3.

3.2  NECK partial improvement

The PANet structure is adopted in YOLOv7-tiny, and a 
simple bidirectional fusion is formed by adding secondary 
fusion to improve the feature fusion capability. However, the 
introduced secondary fusion will interfere with the original 
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)2 feature information and affect the effect of feature fusion. 
Therefore, we first refer to the BiFPN structure that retains 
the original information, and then modify and optimize the 
network structure of PANet. The improved method opti-
mizes the fusion effect of different feature layers, so as to 
achieve the purpose of improving the detection effect with-
out significantly increasing the amount of computation.

Figure 4c shows the improved BiFPN feature fusion net-
work. Bidirectional networks can be simplified by removing 
nodes with only one input edge, as they contribute little to a 
feature network that fuses different features. In addition, an 
additional channel is added between the first and last node 
of each element layer. Retain the original features for bet-
ter fusion without significantly increasing computational 
costs. The blue arrow represents a top-down path that con-
veys high-level semantic feature information; the red arrow 
represents the bottom-up path, conveying the location infor-
mation of the underlying feature; finally, the purple arrow is 
the new edge added between the first and last node of each 
layer. The original BiFPN [20] carries weights in the fusion 
process, and the introduced weights will not only cause the 

Fig. 3  One modified area of 
YOLOv7-tiny with embedded 
SimAM module
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network to be large and complex, but also reduce the recog-
nition accuracy. Therefore, our structure does not introduce 
the weight part, but retains the original idea of building the 
fusion channel. Figure 5 shows our proposed structure. This 
improved approach is more stringent and can improve the 
performance of the network.

3.3  Architecture of GhostNetV2

The lightweight GhostNet [21] module divides the input fea-
ture map into two parts; one part generates the feature map 
through convolution, the other part directly performs linear 
convolution operation, and finally concatenates it. This can 
greatly reduce the computational cost, but some subtle and 
important features may be lost in the process, increasing risk 

of feature distortion. GhostNetV2 proposes the Decoupage 
Fully Connected attention mechanism (DFC attention) [22], 
which has the ability to dynamically calibrate and capture 
the production distance information. It is easier to deploy 
on hardware. Directly connecting DFC attention and Ghost 
module in parallel will introduce additional computing costs. 
But scaling the width and height of the feature to half the 
original reduces the computational effort of DFC attention 
by 75.0%. Then the obtained feature map is restored to the 
original size through the up-sampling operation to match the 
resolution of Ghost branch features. Figure 6 illustrates the 
principle of the GhostNetV2 module. GhostNetV2 adopts 
reverse bottleneck design, using two Ghost Modules to 
increase the feature dimension first and then reduce it. This 
design strategy naturally decoupled the model's performance 

Fig. 5  Improvement of the net-
work structure of the Neck part
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ability and capacity. Parallelizing DFC attention with the 
first Ghost module enhances the features of the extension. 
The enhanced features are input into the Ghost module to 
generate output features, and the long-distance dependence 
between pixels in different spatial locations is captured at 
the same time, which greatly reduces the computational 
complexity and greatly enhances the feature fusion ability 
and the model expression ability. GhostNetV2 parallelizes 
network computing by grouping channels, which can accom-
modate input data of different sizes with less computing 
overhead. In addition, the low-rank decomposition technique 
is used to reduce the number of redundant parameters and 
ensure the accuracy of the model.

Incorporating the Cross Stage Partial Networks (C3, CSP-
Net) ahead of the large feature size detection head, Detect3, 
leverages advanced features provided by the C3 module for 
complex object detection. C3 splits the input feature map 
into two, processes one part through a bottleneck layer, then 
merges them back, enhancing gradient flow and reducing 
information loss, thereby increasing efficiency. This struc-
ture balances performance and speed, enhances feature rep-
resentation, and when combined with GhostNetV2, enriches 
feature extraction while maintaining low resource use. This 
integration is ideal for deployment in resource-limited envi-
ronments, making the model more efficient and powerful for 
real-time object detection.

Considering that the GhostNetV2 module met the model's 
improvement needs and performed excellently when com-
bined with the C3 module, we conducted over 100 experi-
ments, ultimately determining the deployment location of 
the GhostNetV2 module. Figure 7 shows the network struc-
ture of the improved GhostNetV2 module.

3.4  Improved network structure

This paper proposes an algorithm named SBG-YOLO, 
whose network structure is shown in Fig.  8. The algo-
rithm integrates several techniques and methods, including 
SimAM, BiFPN, and GhostNetV2, resulting in more accu-
rate and stable detection outcomes. The inclusion of the 
SimAM attention mechanism in the feature fusion network 
before the detection head increases the weight of critical rail-
way foreign object targets. Inspired by the BiFPN structure, 
the 8th layer and the 22nd layer are concatenated to achieve 
cross-layer feature fusion. Additionally, the ELAN-S mod-
ules in the 6th and 19th layers of the overall network struc-
ture are replaced with GhostNetV2 modules, significantly 
reducing the computational load and effectively enhancing 
algorithm performance. Replacing the ELAN-S module with 
the C3 module before Detect3 enhances feature representa-
tion and gradient flow. The improved network structure not 
only meets the lightweight deployment requirements [23, 24] 
but also enhances target detection performance, fulfilling the 
needs of practical engineering applications.

Fig. 7  GhostNetV2 with 
replacement of ELAN-S
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4  Experimental platform

4.1  Training platform setup

All experiments use pytorch2.0.0 deep learning framework 
to train the model under Win11 system. The CPU and GPU 
of the training platform are Inter i9-13900HX processors, 
NVIDIA GeForce RTX4090 24 g Gpus, Python version 
3.8, Cuda version 11.8. The experiment did not use the 
officially provided pre-training weights for training on the 
COCO dataset. Before training the model, the parameters 
in the Train module need to be adjusted to ensure that the 
parameters of all network models are the same. Table 1 
shows the specific parameters after adjustment.

4.2  Embedded platform setup

To verify the detection effect of the improved algorithm 
in the actual railway environment, improved YOLOv7-tiny 
model was deployed to the Jetson Xavier NX embedded 
terminal for testing. The embedded platform used in this 
paper is the Jeston Xavier NX, which has two DLAs (Deep 

Learning Accelerator) and can reach a maximum arith-
metic power of 21 TOPs to accelerate the inference of the 
model. This device has applications in many areas of deep 
learning. The system is configured with Ubuntu 16.04 for 
ARM and the model running environment is configured 
with JetPack 4.6, Python 3.6, Pytorch 1.8 and Cuda 10.2. 
Its structure is shown in Fig. 9.

4.3  Data set construction

Open railways are often set up in unattended suburbs, and 
the railway perimeter environment is very complicated. In 
order to ensure the high precision detection of the intrusion 
target in the complex railway environment, the experiment 
needs to collect a sufficient number of railway foreign object 
data sets for training. Since there is no public railway foreign 
body data set, this project constructs a self-built railway for-
eign body data set based on Pscal VOC2007 data set.

In the open railway environment [25], the scene of rail-
way foreign body encroachment is simulated. Different kinds 
of foreign objects are placed on the railway track and video 
is captured by high-definition cameras. A total of 2152 pic-
tures of railway foreign body intrusion were obtained by 
video collection at 3 s interval. In order to avoid insufficient 
data sets and single scenes affecting the training effect, this 
paper captures different types of railway foreign body intru-
sion images through the network, and extends the self-built 
data set by combining part of the Pscal VOC2007 data set. 
By combining the images collected in the suburban railway 
environment with the images collected on the Internet, a 
self-built railway foreign body data set consisting of 18,323 
images was constructed, including images under different 
weather conditions, jitter and blur images, and images of dif-
ferent angles and sizes. The self-built data set was manually 
annotated using the Labelimg tool, which contained 12 types 

Fig. 8  Network structure of 
SBG-YOLO

Conv

Conv

ELAN-S

MP

MP

MP

SPPCSPC

ELAN-S

ELAN-S

Conv

Conv

Conv

Concat

Concat

UP

ELAN-S

Conv

UP

Concat

Conv

Conv

Concat

ELAN-S Conv

Conv

Conv

Detect3

Detect2

Detect1

SimAM

Conv

C3GhostV2

Backbone Neck

C3GhostV2

C3

Input

Table 1  Training platform setup

Development environment Version

Batch size 128
Image size 640*640*3
Epoch 150
Weight 0
Lr0 0.01
Learning rate decay strategy Cos



Journal of Real-Time Image Processing          (2024) 21:166  Page 9 of 17   166 

of intruders, including people, vehicles, animals, etc. The 
data set is divided into training set, test set and verification 
set according to the ratio of 7:1:2. The number of intrusions 
in the training set is shown in Table 2.

In order to avoid overfitting caused by slight changes in 
the target size of the dataset, images of railway intrusion 
objects of different sizes were selected as the dataset, and the 
target size of the railway intrusion test set was statistically 
analyzed according to the definition standard of target size 
in the MS COCO dataset. Specific data are shown in Table 3. 
The bounding box size less than 32 × 32 is defined as a small 
target, the bounding box size between 32 × 32 and 96 × 96 
is defined as a medium target, and the bounding box size of 
other sizes is defined as a large target.

4.4  Model evaluation index

In the experiments of this paper, Precision, Recall, Aver-
age Precision (AP), mAP@0.5, Floating point Operations 
Per Second (FLOPS) and detection speed are used to 
comprehensively evaluate the precision performance and 
deployment performance of the object detection algorithm. 
When the model performs target detection, four detection 
results are obtained: TP, FP, TN and FN. Where TP is the 
true value, representing the number of correctly detected 
objects. FP represents the false-positive value of the num-
ber of incorrectly detected objects, and FN represents the 
false-negative value of the number of undetected objects. 
Therefore, Precision and Recall can be expressed as:

AP can be obtained by calculating the area under the 
PR curve formed by Precision and Recall. The AP values 
for all categories are averaged to get the mAP. The AP and 
mAP of a class of objects can be represented as:

By combining Precision and Recall, F1 can more effec-
tively reflect the accuracy performance of the network 
model. F1 score can be expressed as:

(4)Precision =
TP

TP + FP

(5)Recall =
TP

TP + FN

(6)AP = ∫
1

0

P(R)dr

(7)mAP =
1

n

n
∑

i=1

AP
i

Fig. 9  Structure of Jeston 
Xavier NX

USB interface *4

HDMI interface

DP interface

Power Connector

CSI camera

interface

Ethernet interface OTG interface

40pin GPIO interface

Intergrated radiator

Table 2  Number of foreign 
objects in training set

Type Number

Person 6124
Bus 2528
Bicycle 2320
Motorbike 1017
Train 2427
Stone 2227
Dog 2632
Cat 2152
Sheep 1039
Cow 1257
Horse 1052
Car 6728

Table 3  Number of foreign 
objects in training set

Size Number

Small target 12,851
Middle target 10,570
Big target 8482
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In addition, according to the application requirements 
of railway perimeter foreign body intrusion detection, 
FLOPS and detection speed are used to verify the deploy-
ment performance of the network model. Parameters are 
the total number of parameters that need to be trained 
in model training. FLOPS refers to model computation, 
which is a parameter to measure algorithm complexity. 
The detection speed represents the number of frames of 
image or video detected.

In this study, the deployment performance of the model 
is evaluated based on three indicators: parameters, Float-
ing point Operations (FLOPs), and detection speed. The 
parameters in the model represent the number of param-
eters involved in the model, which is closely related to 
the depth and width of the network. Reducing the num-
ber of parameters can improve the deployment perfor-
mance of the model, especially in resource-constrained 
environments such as embedded systems and mobile 
devices. FLOPs indicate the computational load of the 
model and are a parameter for measuring algorithm com-
plexity. Lower FLOPs mean less computational resource 
and memory usage, making the model more suitable for 
deployment on embedded devices with limited arithmetic 
capabilities. Detection speed is measured in FPS, with a 
higher frame rate indicating that the model can process 
image frames faster, reflecting faster detection speed. A 
faster detection speed demonstrates the superior detec-
tion performance of the algorithm model under the same 
hardware conditions.

(8)F1 = 2 ×
P × R

P + R

5  Experimental results and analysis

5.1  Analysis of experimental results

The preprocessed images are input into the YOLOv7-tiny 
network model, and the model is trained according to pre-
set parameters. The loss function is one of the most criti-
cal evaluation metrics in machine learning. The faster the 
loss function converges, the stronger the model's feature 
extraction ability and the better the model's performance. 
To demonstrate the effectiveness of the NWD loss func-
tion [26], the loss function of the improved YOLOv7-tiny 
algorithm is compared with that of the original algorithm, 
as shown in Fig. 10a. The training includes 150 iterations. 
During the first 20 rounds of training, the loss function value 
drops sharply and gradually stabilizes in subsequent train-
ing, achieving convergence by the 140th iteration. Compared 
to the original network, the improved YOLOv7-tiny's loss 
function converges faster and more smoothly, with lower 
loss function values, bringing the predicted frames closer to 
the actual targets and enhancing the model's target localiza-
tion performance and detection accuracy. The model detec-
tion results are shown in Fig. 10b. The mAP@0.5 value rises 
rapidly in the initial stage and stabilizes after approximately 
100 iterations of training. Compared to the original network, 
the improved YOLOv7-tiny algorithm converges faster and 
more smoothly, indicating more stable detection perfor-
mance. Additionally, the detection accuracy of the model 
is improved by 3.3%, ultimately maintaining at 77.5%. This 
result underscores the model's excellent performance in 
terms of accuracy.

The results are shown in Fig. 11. Figure 11a illustrates the 
relationship between this model accuracy and the confidence 

Fig. 10  Improved YOLOv7-tiny training results
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threshold. The results show that the accuracy of the fitting 
results increases with the increase of the confidence thresh-
old, and the recovery rate is up to 96.6%. This phenomenon 
indicates that this model is able to achieve a low false alarm 
detection rate of a higher confidence threshold. The curve 
in Fig. 11b reflects that the recall rate decreases with the 
increase of confidence threshold and the recall rate reaches 
94.0%. These data show that the model has higher sensitiv-
ity in terms of lower confidence in the threshold and is able 
to detect more positive samples. The variation curve of F1 
value is shown in Fig. 11c for the performance of Precision 
and Recall, and F1 value, as an overall performance indica-
tor, provides a comprehensive evaluation of the detection 
accuracy of the model. In this study, the highest F1 value 
was obtained, the value of YOLOv7-tiny model is 0.74, 
which proves that the model has a good balance between the 
precision rate and the recall rate, ensuring the accuracy and 
reliability of accurate detection. Figure 11d shows the AP 
value for each foreign object category, which is composed of 
the surrounded area accuracy and recall rate, from which it 
can be seen that YOLOv7-tiny has good performance results 
for all kinds of foreign objects [27] invading the railway. 
They are sorted according to the size of the enclosed area, 

i.e. dogs, people, trains, cars, horses, cats, cows, buses, bicy-
cles, motorcycles, sheep and stone cats in order.

5.2  Comparison of network models

In order to better verify the superiority of the improved 
model in the performance of foreign body intrusion detec-
tion under the background of open railway, the interna-
tional mainstream lightweight network was trained under 
the same conditions, and different models were analyzed 
and compared. To better demonstrate the benefits of the 
improved model, this experiment compared SBG-YOLO 
with the models of YOLOv5s, YOLOX-tiny, YOLOv8s, 
and YOLOv7-tiny. All these models were trained and 
validated on self-built data sets, and the test results are 
shown in Table 4. From the improvement of the YOLO 
version, it can be seen that with the upgrade of the ver-
sion, the image recognition accuracy has been greatly 
improved. For example, from YOLOX-tiny to YOLOv5s, 
the recognition accuracy has improved by 4.6%; From 
YOLOv5s to YOLOv7-tiny, the recognition accuracy 
has been improved by 2.9%. Compared to the YOLOv7-
tiny, our improved SBG-YOLO improves the recognition 

Fig. 11  Improved YOLOv7-tiny training result line graph
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accuracy by 3.3% and greatly reduces the computational 
effort. In the subsequent table, the bolded data points rep-
resent key metrics that demonstrate the superior perfor-
mance of the SBG-YOLO algorithm model, particularly 
highlighting its minimal FLOPS and optimal mAP@0.5.

As shown in Table  4, the comparison experiment 
selected network models from various YOLO series that 
exhibit significantly lightweight characteristics in terms 
of parameter count, computational load, and model 
weights. However, each detection model has certain 
drawbacks. For instance, YOLOv5s sacrifices consider-
able accuracy in mAP to achieve higher detection speed, 
which increases the risk of false positives and missed 
detections in practical applications. Although YOLOv8s 
improves detection accuracy, it significantly increases the 
parameter count and computational load of its network 
structure. Therefore, we chose to improve the YOLOv7-
tiny network, which performs well in all aspects. The 
improved YOLOv7-tiny achieves a maximum mAP of 
77.5%, delivering high precision in railway perimeter 
intrusion detection. By integrating the GhostNetv2 net-
work, it significantly reduces the computational load 
of the model, greatly enhancing the detection speed. A 
comprehensive evaluation of various performance metrics 
shows that the improved YOLOv7-tiny strikes a good bal-
ance between high-precision target detection and speed. 
This algorithm maintains fast detection speeds while 
ensuring high precision, making it highly suitable for 
railway perimeter intrusion detection scenarios where 
real-time performance and detection accuracy are crucial.

5.3  Ablation experiment

The four improvement methods proposed in this paper are 
S(SimAM), B(BiFPN), G(GhostNetV2). In order to verify 
the effectiveness of different improvement methods, four 
improvement methods are used to improve YOLOv7-tiny, 
and the four improvement methods are added together on 
YOLOv7-tiny for comparison, where √ indicates the use 
of methods. As can be seen from Table 5, all the four meth-
ods have improved the accuracy of YOLOv7-tiny to vary-
ing degrees. Although SimAM and BiFPN have slightly 
improved the original detection accuracy, the improved 
algorithm jointly applied to YOLOv7-tiny by the four 
improvements has the most significant effect, increasing by 
3.3 percentage points. In the table below, we have promi-
nently displayed the exemplary performance data of SBG-
YOLO, which has been progressively refined through con-
tinuous improvements, achieving high accuracy and low 
computational cost.

In the process of implementing model lightweighting, 
reducing the number of parameters and computational load 
of the YOLOv7-tiny network with the integration of Ghost-
NetV2 modules inevitably sacrifices some accuracy. How-
ever, by simultaneously introducing GhostNetV2 modules in 
both the Backbone and Neck, the computational load is sig-
nificantly reduced without changing the number of param-
eters, leading to a notable increase in accuracy by 2.2%. 
Additionally, to further enhance the detection accuracy, the 
BiFPN cross-regional feature fusion module is incorporated 
in the feature fusion layer, and the SimAM attention mecha-
nism is added before the detection head. This combination 
increases the weight of neurons corresponding to key targets, 
resulting in an additional 1.1% improvement in detection 
accuracy. Compared with the original network, the improved 
network reduces the calculation amount by 61.2%, and the 
mAP value increases by 3.3%, indicating that the network 
model greatly increases the detection accuracy of railway 
foreign objects while being lightweight.

5.4  Embedded platform test results

After training, we obtained the required weight, loaded the 
weight into improved YOLOv7-tiny network, and migrated 
the entire network model to the embedded platform for testing 

Table 4  Comparison of performance metrics of different target detec-
tion algorithms

Algorithm mAP@0.5 Parameters/MB FLOPS FPS

YOLOv7-tiny 74.2% 6.044 13.3G 117.6
YOLOv5s 71.6% 7.084 16.2G 86.2
YOLOX-tiny 67.0% 6.056 13.3G 109.9
YOLOv8s 74.9% 11.132 28.5G 99.0
SBG-YOLO 77.5% 6.208 5.4G 122.0

Table 5  Comparison of 
evaluation indicators of various 
improved algorithms

Methods S B G Parameters/MB mAP@0.5 FLOPS FPS

YOLOv7-tiny 6.044 74.2% 13.3G 117.6
S √ 6.044 74.2% 13.3G 102.0
G √ 6.619 76.0% 5.4G 126.2
BG √ √ 6.208 76.4% 5.4G 126.1
SBG-YOLO √ √ √ 6.208 77.5% 5.4G 122.0



Journal of Real-Time Image Processing          (2024) 21:166  Page 13 of 17   166 

applications. Parameters, FLOPs, FPS, inference time, and 
video detection speed of the model were compared. The spe-
cific data are shown in Table 6, where the bolded data points 
highlight the exceptional performance of SBG-YOLO when 
deployed on the embedded platform, showcasing its ability 
to process frames at a high rate, making it well-suited for 

real-time applications. As shown in Table 6, compared with 
YOLOv7-tiny, improved YOLOv7-tiny model reduces the 
amount of FLOPS by 61.2%, which reduces the difficulty of 
deploying the model on the embedded side with limited com-
puting power, and the video detection reaches 25.8 FPS, which 
meets the needs of real-time target detection.

5.5  Example of railway foreign object intrusion 
detection result

To validate the detection performance of the improved 
YOLOv7-tiny model in the field of railway perimeter intrusion 

Table 6  Comparison of deployment performance

Model Parameters FLOPS Inference time Image Video

YOLOv7-tiny 6.044M 13.3G 37.4s 26.7 24.3
SBG-YOLO 6.208M 5.4G 35.8s 28.1 25.8

Fig. 12  Example of railway foreign object intrusion detection results
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detection, this study selected some representative images of 
railway perimeter intrusion from the test set as input data to 
be sent to the improved YOLOv7-tiny network model for test-
ing. Figure 12 shows the results of this comparison, with the 
left side displaying the results of the original YOLOv7-tiny 
model and the right side displaying the results of the improved 
YOLOv7-tiny model. As shown in Fig. 12, the improved 
YOLOv7-tiny model has achieved an increase in detection 
accuracy, with the confidence of almost all detected objects 
being improved. Furthermore, the improved model effectively 
addressed the issue of missing detection of some people and 
vehicles in the first and third images of the original network, 
ensuring the completeness of the detection results. Addition-
ally, the improved model demonstrates higher precision in 
locating intrusion targets, and the alignment between detected 
targets and actual situations is further improved, reflecting the 
enhanced adaptability and reliability of the improved model 
to real-world application scenarios.

5.6  Recognition results of foreign bodies in railway 
tracks

The enhanced YOLOv7-tiny model demonstrates significant 
improvements in detecting a variety of foreign objects on rail-
way tracks. As illustrated in Fig. 13, the model showcases its 
recognition accuracy and the types of objects it can detect. In 
Fig. 13a, the model accurately identifies foreign objects such 
as sheep and humans in a complex and chaotic environment. 
Figure 13b, g highlights the model's ability to recognize cars 
encroaching on open railway tracks, a common occurrence in 
such settings. Figure 13c, h, i demonstrates that the model can 
detect individuals riding motorcycles or bicycles, showcasing 
its versatility.

Figure 13d, e shows the model's detection of common 
domestic pets like cats and dogs, which frequently appear 
on residential railway tracks. Figure 13f emphasizes the 
model's critical role in identifying fallen rocks on the 

Fig. 13  Recognition results of foreign bodies in railway tracks
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tracks, a significant cause of train derailments. Overall, the 
results illustrate the powerful performance of the improved 
YOLOv7-tiny model, capable of accurately detecting a 
wide range of foreign objects, including cars, humans, 
fallen rocks, cats, dogs, sheep, bicycles, and motorcycles. 
The model can make precise identifications even in com-
plex environments with multiple encroachments, proving its 
value in maintaining railway safety.

5.7  Analysis of testing results based on improved 
YOLOv7‑tiny

Given the complexity of the railway operating environ-
ment, this section primarily examines the reliability of 
the improved YOLOv7-tiny model under variable weather 
conditions and complex railway backgrounds. By testing 
intrusion images in various railway perimeter scenarios, 
the detection results are shown in Fig. 14. The improved 
YOLOv7-tiny demonstrates excellent performance in 

adapting to different environmental changes. Whether under 
poor night visibility, adverse rain, snow, foggy weather, or 
in complex railway crossings and bridge environments, the 
improved model maintains stable detection performance, 
with detection confidence generally above 0.85. Addition-
ally, the improved algorithm shows high accuracy and low 
false alarm rates when handling multi-object complex rail-
way scenarios, without missing or falsely detecting targets. 
In summary, the improved YOLOv7-tiny algorithm, due 
to its strong environmental adaptability, becomes an ideal 
choice for foreign object intrusion detection on railway 
perimeters.

6  Conclusion

In the current railway environments, such as subways 
and high-speed railways, due to the limited reaction time 
of drivers during high-speed operation, the entire line is 

(a)Detection in extreme environment

(b)Detection in complex environment

(c)Detection in normal environment

Fig. 14  Target detection of railway foreign bodies in various environments
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planned as a closed railway. However, since coal trans-
port railways are long and operate at relatively low speeds, 
locomotive drivers have enough reaction time. To reduce 
unnecessary costs, most of the lines are in an open envi-
ronment with complex and diverse backgrounds, often 
accompanied by extreme weather conditions. To address 
these issues and ensure safe and stable railway locomotive 
operation, a lightweight and high-precision recognition 
algorithm is proposed to tackle the low detection accuracy 
of foreign objects invading the clearance in complex open 
railway environments, especially under extreme weather 
conditions, and to improve mobile deployment perfor-
mance. Firstly, the SimAM attention mechanism is intro-
duced into the model to provide higher neuron weights 
for foreign object targets in complex environments within 
the detection head module, thereby improving detection 
performance. Secondly, inspired by the BiFPN network 
structure, an original feature path is introduced to achieve 
cross-region feature fusion, further enhancing detection 
accuracy. Finally, to meet mobile deployment require-
ments, the ELAN-S module is improved to the Ghost-
NetV2 module, reducing model computation and enhanc-
ing deployment performance. Moreover, the combination 
of Focal_loss and CIoU_loss is replaced with the NWD 
loss function, which improves the network model's detec-
tion of distant, blurry small targets.

Experimental results show that our improved algorithm 
increases detection accuracy to 77.5% with a slight increase 
in the number of parameters and a significant reduction in 
computation. The loss function converges faster, robustness 
is improved, and it meets real-time requirements at a lower 
computational cost. Compared to other mainstream models, 
our improved algorithm is more suitable for railway foreign 
object detection in complex backgrounds.

In future work, binocular vision technology [28] can 
become the exploration direction to realize three-dimen-
sional monitoring of locomotive front and rear, further 
improve the efficiency of model detection, and ensure the 
safety of locomotive running. Additionally, continuous 
learning technology [29] can be added to accumulate large 
datasets during locomotive operation to improve detection 
performance. Simultaneously, we can explore lightweight 
optimization of network structure parameters [30] while 
reducing computational load, aiming to achieve better per-
formance on embedded systems. Our goal is to ensure the 
model remains lightweight while accelerating inference 
speed and enhancing detection accuracy, maximizing perfor-
mance under limited resources. Ultimately, we will further 
optimize these technologies to ensure the safety of locomo-
tive operations in open railway environments.
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