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Abstract
Maintaining road pavement integrity is crucial for ensuring safe and efficient transportation. Conventional methods for 
assessing pavement condition are often laborious and susceptible to human error. This paper proposes YOLO9tr, a novel 
lightweight object detection model for pavement damage detection, leveraging the advancements of deep learning. YOLO9tr 
is based on the YOLOv9 architecture, incorporating a partial attention block that enhances feature extraction and attention 
mechanisms, leading to improved detection performance in complex scenarios. The model is trained on a comprehensive 
dataset comprising road damage images from multiple countries. This dataset includes an expanded set of damage cat-
egories beyond the standard four types (longitudinal cracks, transverse cracks, alligator cracks, and potholes), providing a 
more nuanced classification of road damage. This broadened classification range allows for a more accurate and realistic 
assessment of pavement conditions. Comparative analysis demonstrates YOLO9tr’s superior precision and inference speed 
compared to state-of-the-art models like YOLOv8, YOLOv9 and YOLOv10, achieving a balance between computational 
efficiency and detection accuracy. The model achieves a high frame rate of up to 136 FPS, making it suitable for real-time 
applications such as video surveillance and automated inspection systems. The research presents an ablation study to ana-
lyze the impact of architectural modifications and hyperparameter variations on model performance, further validating the 
effectiveness of the partial attention block. The results highlight YOLO9tr’s potential for practical deployment in real-time 
pavement condition monitoring, contributing to the development of robust and efficient solutions for maintaining safe and 
functional road infrastructure.
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1  Introduction

Within the sphere of transportation infrastructure, the 
structural integrity of road pavements is critical for ensur-
ing commuter safety and enabling seamless operational 
flow. Substandard pavement conditions lead to a reduc-
tion in road capacity, characterized by decreased vehicle 
speeds and an increased risk of accidents due to compro-
mised pavement integrity. Consequently, agencies tasked 

with pavement maintenance require effective methods for 
evaluating pavement conditions. Traditional approaches 
to assessing pavement deterioration are fraught with chal-
lenges, including labor-intensive processes and susceptibil-
ity to errors in human judgment. The assessment of road 
pavement conditions culminates in the calculation of the 
Pavement Condition Index (PCI) [1]. Developing a system-
atic approach for the accurate detection and categorization of 
pavement defects would enable engineers to perform timely 
and efficient pavement condition assessments. Utilizing 
such assessments, strategic interventions can be planned to 
improve road conditions, thus restoring them to an accept-
able standard. To overcome these challenges, the present 
study proposes a novel approach that harnesses advance-
ments in deep learning technologies for enhanced pavement 
condition analysis.
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With the advent of advanced computational technolo-
gies, image processing methodologies have increasingly 
become integral to object detection within digital images. 
The emergence of artificial intelligence has catalyzed the 
creation of sophisticated automated detection and classifica-
tion systems. These AI-driven target detection frameworks 
are fundamentally categorized into one-stage and two-stage 
detection algorithms. Two-stage algorithms, exemplified by 
R-CNN [2], Mask-R-CNN [3] and its subsequent iterations, 
commence with proposal generation prior to target detection. 
This methodology provides a measured response to class 
imbalance dilemmas, albeit at the cost of reduced speed, 
despite aspirations for heightened accuracy. Conversely, one-
stage algorithms, such as the YOLO (You Only Look Once) 
series, directly ascertain the location and classification of 
targets within the image, thereby achieving remarkable 
detection velocities. Within the realm of real-time object 
detection, the YOLO algorithmic suite has undergone a sig-
nificant evolution, characterized by advancements in detec-
tion rapidity, accuracy, and computational thrift. The pio-
neering YOLOv1 [4] algorithm instigated a transformative 
wave in the field through the deployment of a unified convo-
lutional neural network that concurrently predicts bounding 
boxes and class probabilities. Ensuing versions, YOLOv2 [5] 
and YOLOv3 [6], introduced anchor boxes and multi-scale 
detection capabilities, respectively, markedly enhancing the 
detection efficacy for objects of diverse dimensions. Fur-
ther iterations, YOLOv4 [7] and YOLOv5 [8], honed the 
architectural framework, optimizing computational dispatch 
without detracting from precision. Progress persisted with 
YOLOv6 [9] through YOLOv9 [6, 10], which amalgamated 
cutting-edge methodologies from the expansive machine 
learning domain to augment model performance. The most 
recent iteration, YOLOv10 [11], has instigated a paradig-
matic shift by eliminating the necessity for non-maximum 
suppression (NMS), thus diminishing inference latency and 
simplifying the object detection schema. The majority of 
object detection algorithms have been developed based on 
extensive image detection databases such as COCO and 
ImageNet, with training data encompassing over 100,000 
images. The challenge lies in adapting these aforementioned 
architectures to specialized datasets, such as pavement dam-
age, where the data available is comparatively limited.

Recent advancements in pavement distress detection 
leverage deep learning techniques, including multi-scale 
feature fusion [12], generative adversarial networks [13], 
and multitask fusion models [14], to enhance accuracy 
and robustness. UAV-based image capture combined 
with CNNs, particularly YOLOv3 [15], has shown 
superior performance in detecting pavement distress. 
Data augmentation methods, such as crack translators 
[16], further improve detection models by generating 
diverse, and realistic datasets. The utilization of deep 

learning methodologies for the detection of road damage 
is primarily dependent on the RDD2022 database [17], 
an open-source repository. This comprehensive dataset 
contains 47,420 images of road damage, amassed from 
six distinct nations, and is annotated with over 55,000 
instances of various damage types. Designed to bolster 
the CRDDC2022 challenge, the RDD2022 database is 
pivotal for the automated detection and classification of 
road damage via deep learning algorithms, thus serving 
as a crucial resource for road condition monitoring and 
the progression of computer vision research. Within the 
RDD2022 schema, road damage is methodically catego-
rized into four main types: longitudinal cracks, which run 
parallel to the road’s direction; transverse cracks, perpen-
dicular to the road’s course; alligator cracks, resembling 
an alligator’s skin with interconnected fissures; and pot-
holes, marked by depressions in the road surface. These 
classifications are integral to the training of deep learning 
models, facilitating the autonomous detection and assess-
ment of road damage, which is essential for maintaining 
safer and well-maintained road infrastructures. Numerous 
academic publications have sought to refine deep learn-
ing approaches for pavement damage detection [18–25]. 
These endeavors include efforts to augment the existing 
YOLO architecture by incorporating additional structures 
and applying diverse augmentation techniques to enhance 
its efficacy. The classification of pavement damage detec-
tion was initially based on the original four categories of 
the RDD2022 challenge. However, practical applications 
necessitate more detailed road damage detection classes 
for the implementation of comprehensive road pavement 
damage analysis. Consequently, further research is imper-
ative to expand the types of road damage and improve 
image detection capabilities. Nevertheless, practical 
pavement design requires an extended range of damage 
classifications that surpass the four types specified in the 
RDD2022 database.

In this study, we introduce a lightweight object detection 
model predicated upon the YOLOv9 architecture. The novel 
modification incorporates a partial attention block (PSA) 
[11] into the base model, which precedes the feature map 
tensor’s progression to the YOLO detection head. Utilizing 
the RDD2022 database in conjunction with Thailand’s pave-
ment detection database, the model classifies seven unique 
types of pavement damage. The classifications include lon-
gitudinal wheel mark (D00), lateral crack (D10), alligator 
crack (D20), patching (D30), pothole (D40), crosswalk blur 
(D43), and white line blur (D44). A comprehensive com-
parison of the enhanced model’s performance against the 
current state-of-the-art object detection models, namely 
YOLOv8, YOLOv9, and YOLOv10, was conducted to verify 
its improved effectiveness. The principal contributions of 
this research are as follows:
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•	 Development of an enhanced object detection model: 
this research introduces an advanced object detection 
model, which is predicated upon the architecture of the 
latest state-of-the-art models. It incorporates an attention 
mechanism into the model’s architecture, thereby dem-
onstrating augmented precision and expedited inference 
speeds surpassing those of previous models documented 
in the literature.

•	 Comparative evaluation with specialized dataset: the 
study conducts a comprehensive evaluation of contempo-
rary state-of-the-art object detection models, specifically 
YOLOv8, YOLOv9, and YOLOv10, utilizing a special-
ized dataset for pavement damage. It is noteworthy that 
the size of this dataset is relatively limited when juxta-
posed with the extensive COCO database.

•	 Extension of damage detection classification range: an 
expansion of the damage detection classification range 
has been realized, transcending the limitations of cur-
rent state-of-the-art models. This extension offers a more 
veracious reflection of real-world scenarios pertinent to 
pavement engineering applications

2 � Data characteristics

In the present study, pavement distress was systematically 
classified into seven discrete categories of damage. The pri-
mary category, designated as D00, pertains to longitudinal 
cracking, as illustrated in Fig. 1. Longitudinal cracking, a 
prevalent form of pavement distress, is typified by fissures 
aligned parallel to the pavement’s centerline or laydown 
direction. These cracks may stem from a variety of sources, 

including fatigue or top-down cracking, and their occurrence 
can precipitate moisture infiltration, thereby aggravating sur-
face roughness and potentially heralding the onset of alli-
gator cracking and structural failure, denoted as D20. The 
genesis of longitudinal cracks is complex, often tracing back 
to inadequate joint construction or improper placement. In 
contrast, lateral cracks in flexible pavements, identified as 
D10, are chiefly associated with fatigue cracking—a com-
mon mode of distress in such pavements. Fatigue cracking 
results from the interplay of repetitive, heavy traffic loads 
and thermal variations, which induce tensile stresses within 
the pavement matrix. Pothole formation in asphalt pave-
ments is characterized by small, bowl-shaped indentations 
penetrating through the asphalt layer to the base course, with 
sharply defined edges and vertical walls at the depression’s 
upper boundary. Potholes typically develop on roads with 
thin hot mix asphalt (HMA) overlays and are less frequent 
on routes with thicker HMA applications. When pavement 
damage occurs, the remedial strategy involves delineating 
the impacted zone and incorporating new asphaltic concrete 
through a procedure known as patching, coded as D30. This 
technique mitigates localized degradation by restoring the 
affected area with new material. Additionally, the detection 
of obscured or faded pavement markings, due to the associ-
ated traffic safety hazards, was of interest and is denoted as 
D44. Similarly, the imperceptibility of pedestrian crosswalks 
is indicated and coded as D43. The purpose of these two 
classes of damage is to identify faded or unclear road mark-
ings. Repairs are necessary to enhance road safety standards.

The dataset employed in this study was sourced from the 
RDD2022 database, enhanced by road detection data linked 
to the enterprise of the third author. It was further enriched 
by contributions from five countries, including an additional 
dataset from Thailand, depicted in Fig. 2. The consolidated 

Fig. 1   The road damage class Fig. 2   Source of image for training
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data were methodically categorized into seven class groups, 
as outlined in Table 1, following the guidelines set by the 
Highway Department of Thailand. This updated dataset 
version surpasses its predecessor by incorporating new cat-
egories relevant to current asphalt repair methods, notably 
‘patching’, and clearly distinguishing pedestrian crossings 
and areas where white traffic lines are less visible. The inclu-
sion of obscured or invisible crosswalks and lane markings 
adds a layer of complexity for the entity responsible for road 
upkeep. The data utilized to train the object detection deep 
learning model were not augmented to ensure an equitable 
comparison of the capacity of the proposed model with other 
state-of-the-art (SOTA) models.

The expansion of damage categories presents formida-
ble challenges for deep learning frameworks, compelling 
the formulation of sophisticated classification algorithms to 
refine the prognostic accuracy of damage assessment. The 

dataset was partitioned into training, validation, and testing 
subsets to facilitate the model’s training process (refer to 
Fig. 3), following a distribution ratio of 80/10/10 (training/
validation/testing). The validation subset played a pivotal 
role during the training phase for hyperparameter optimiza-
tion, while the testing subset was instrumental in gauging 
the model’s efficacy with novel data. A notable challenge 
encountered in the application of deep learning was the 
imbalance in the number of specified images per class. It 
was observed that the D40 and D43 categories exhibited a 
lower number of training instances, approximately 500 and 
1000, respectively, which could potentially skew the learn-
ing process.

3 � Model architecture

The proposed model, designated as ‘YOLO9tr’, is based on 
the YOLOv9s architecture [10], which represents the most 
compact design within the YOLOv9 series (Fig. 4). The 
primary objective was to develop a lightweight model that 
maintains the efficiency of larger-scale models for real-time 
road damage detection. The selection of YOLOv9 as the 
backbone, rather than YOLOv10, was predicated on prelimi-
nary experiments that demonstrated significantly superior 
performance of YOLOv9 on the utilized dataset. Detailed 
analysis of this performance differential will be presented 
in subsequent sections. The YOLOv9s architecture is seg-
mented into three primary components: the backbone, neck, 
and head. A distinctive feature of YOLOv9s, compared to 
other larger models, is the absence of an auxiliary model 
part to assist in identifying the feature map during training. 
Nonetheless, critical components such as the generalized 
efficient layer aggregation network (GELAN) are maintained 
within the model’s architecture. An additional layer of par-
tial attention was incorporated into the feature vector ema-
nating from the neck segment of the model, prior to its trans-
mission to the head segment for detection purposes. This 
concept of partial self-attention (PSA) was adapted from 
the YOLOv10 [11] architectural framework. We hypothesize 
that the PSA layer will enhance the identification of critical 
layers for road damage detection. This layer was applied 
to the deeper layers (#4–#6) to facilitate the detection of 
edges or boundaries, which are the primary characteris-
tics for identifying cracks on pavement, the larger model, 
YOLO9tr-L, follows a similar concept to the smaller model 
but incorporates an attention layer across layers #1–#6.

The partial self-attention (PSA) architecture employs a 
sequential process of feature manipulation and attention 
mechanisms (Fig. 5). Initially, the input undergoes a 1 × 1 
convolution, followed by feature partitioning into two seg-
ments. The first segment is subjected to a self-attention 
mechanism within an Attention Block (AB), while the 

Table 1   The class of road damage in this study

Damage type Details Class name

Crack
 Linear crack Longitudinal crack D00

Lateral crack D10
 Alligator crack Partial/overall pavement D20

Patching Defective/good patching D30
Other damage Pothole D40

Crosswalk blur D43
White line blur D44

Fig. 3   Data label characteristics
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second segment remains unaltered. The AB (Fig. 6) imple-
ments a multi-step process where the input feature tensor is 
divided into three components (key, query, and value) and 
further bifurcated. The first part of this bifurcation is pro-
cessed through a self-attention layer, with the key dimen-
sion reduced to half the size of the head dimension to opti-
mize computational efficiency. The processed features are 
then passed through the self-attention layer and fused with 

the value component, which has been processed through a 
conventional convolutional layer. Subsequently, two con-
volutional layers are applied to the output of the AB. The 
resulting features are then fused with the unaltered second 
segment from the initial partitioning. This architecture 
allows for selective application of self-attention, potentially 
balancing the trade-off between computational cost and fea-
ture refinement.

Fig. 4   Model architecture improved model from YOLOv9s
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The architecture of partial attention block are shown in 
Figs. 5 and 6. The attention block (AB) architecture was 
the concept of the split the feature map into 3 components, 
query, key and value. Then it will be combined with the par-
tial attention block (Fig. 5). The architecture of the attention 
block is defined by several key parameters that structure its 
functionality. The input tensor is x ∈ ℝ

B×C×H×W . The atten-
tion block can be defined as follows:

The batch size, denoted by B, is the number of samples 
processed in parallel during training or inference. The num-
ber of channels, C, indicates the depth of the feature map 
and is crucial for capturing the complexity of the input data. 
The height and width of the input feature map are repre-
sented by H and W, respectively, which together determine 
the spatial dimensions of the map. The total number of 
features within the map, N, is computed as the product of 
H and W. The dimension of each attention head, D, is a 
critical factor that influences the granularity of the atten-
tion mechanism. The attention ratio, R, is a parameter that 
adjusts the proportionality of the key dimensions in rela-
tion to the dimensions of the attention heads. Lastly, the 
number of attention heads, M, reflects the model’s ability 
to simultaneously attend to various segments of the input 
feature map, enhancing its representational power. The out-
put feature map (Y) is obtained by reshaping and projecting 
the attended features back to the original dimensions. Our 

(1)

Y = Conv
(

V ⊗ Attention(Q,K,V) ⋅ reshape(B,C,H,W) + ConvPE(V ⋅ reshape(B,C,H,W))
)

,

(2)
Q,K,V =Conv(x) ⋅ view(B,M,D ⋅ R × 2 + D,N)⋅

split([D ⋅ R,D ⋅ R,D], dim = 2)

(3)Attention(Q,K,V) = softmax

�

QTK
√

D ⋅ R

�

V .

Fig. 5   The partial attention block (PSA)

Fig. 6   The attention block (AB)
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model employs several key operations: Conv() for convolu-
tion, softmax() for normalizing attention scores, and split() 
to separate tensor components.

The architecture of the partial attention block is illustrated 
in Fig. 6. The number of heads was set to 2 for the high input 
channel at position #6, while the other head count was 1. 
This architecture integrates a convolutional framework with 
batch normalization and an Attention Block (AB). Initially, 
the feature map traverses the AB, where it is bifurcated into 
two segments. The segment on the right is subsequently 
channeled into the AB and a convolutional layer. A residual 
connection is established between the input of the block and 
the feature map transiting through the block, amalgamated 
to mitigate the attenuation of gradients that typically occurs 
in extensive deep learning architectures.

The parameter count of the proposed model increased 
from 7.1 million (YOLOv9s) to 10.2 million due to the 
incorporation of an attention layer (Table 3). The selection 
of the small base model was intended to achieve the smallest 
possible model for rapid image interpretation. Despite this 
increase, the model’s parameters remain significantly fewer 
than those of other state-of-the-art (SOTA) models. Addi-
tionally, the lightweight nature of the model is preserved 
because the PSA architecture does not include query, key, 
and value tensor weights applied to the input tensor. This 
omission reduces the size and number of training param-
eters, thereby maintaining the model’s compactness and 
enabling rapid image detection.

4 � Experiment

The study employed the Vast Ai Cloud computational 
platform [26], equipped with dual NVIDIA GeForce RTX 
4090 GPUs. The deep learning architecture’s construc-
tion was enabled through the PyTorch framework (version 
2.2.0), while CUDA version 12.1 was utilized as the pro-
gramming language for the compilation of the code. The 
YOLOv9 object detection algorithm was sourced from a 
GitHub repository [27]. Throughout the training phase of the 
model, mosaic data augmentation was applied at an inten-
sity level of 1.0 and the mixup algorithm was incorporated 
with a parameter value of 0.5. Input images were standard-
ized to a resolution of 640 × 640 pixels. The batch size was 
determined according to the maximum available memory 
capacity. For the training phase, the batch size was set to 
20. A total of 200 epochs were allocated for training, with 
a focus on optimizing the model’s validation performance. 
The model’s weights were saved at the epoch which yielded 
the best validation results. The hyperparameter that controls 
the model’s attention ratio, denoted as R, was set at 0.5. 

The number of attention heads was determined by the input 
channel’s dimensions.

4.1 � Indicators of evaluation

In the conducted research, the evaluation of the recog-
nition efficacy for road surface damage was performed 
using a set of metrics: precision, recall, F1-score, FPS 
(frames per second), and mean average precision (mAP). 
Precision (P) quantifies the classifier’s accuracy in pre-
dicting road surface damage, denoted by the ratio of true 
positive instances to the overall positive instances identi-
fied by the classifier. Conversely, recall (R) measures the 
classifier’s ability to detect all instances of road surface 
damage, represented by the ratio of accurately identified 
positive instances to the total actual positive instances. 
The mathematical expressions for precision and recall are 
delineated in Eqs. (4) and (5), respectively:

In this context, TP represents the count of accurately 
identified positive instances (true positives), FP indicates 
the quantity of falsely identified positive instances (false 
positives), FN refers to the number of negative instances 
incorrectly classified (false negatives), and TN stands for 
the count of negative instances correctly classified (true 
negatives).

The mean average precision (mAP) serves as an indi-
cator of the detection precision within target recognition 
tasks. The mAP is derived by computing the mean of 
the precision values for each category, which is obtained 
through the integration of the Precision–Recall (P–R) 
curve, and subsequently averaging these values. The mAP 
is then obtained by averaging these AP values across all 
classes. Mathematically, this can be expressed as:

The F1-score is a harmonizing metric that equilibrates 
the measures of precision and recall. This metric is desig-
nated as the evaluative standard in the IEEE Big Data 2022 
Road Damage Detection Challenge. It is mathematically 
articulated as follows in Eq. (7):

(4)P =
TP

TF + FP
,

(5)R =
TP

TP + FN
.

(6)mAP =
1

N

N
∑

i=1

APi.

(7)F1-score = 2 ×
P × R

P + R
.
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The speed of detection was very important for the 
object detection of deep learning. The frame per second 
(FPS) was use as one of the indicator index in this study

The tpre represents the time allocated for preprocess-
ing prior to detection. tinference denotes the duration of the 
inference process. tpost is the time subsequent to inference.

4.2 � Experiment results

The results of the model’s training are detailed in Table 2. 
The precision metrics for the model displayed minimal vari-
ation among the different classes. Notably, class D43, which 
corresponds to blurred crosswalks, registered the highest 
precision. In contrast, the precision for detecting blurred 

(8)FPS =
1

tpre + tinference + tpost
.

white lines was the lowest. The detection of potholes and 
patching, classes D40 and D30, respectively, showed high 
precision. These were more discernible and straightforward 
to detect compared to other types of pavement damage, 
such as cracks. Particularly challenging was distinguishing 
between alligator cracks and a series of longitudinal cracks. 
The recall for alligator cracks, class D20, was the lowest 
among the types of failures detected. Precision for other cat-
egories of pavement damage was relatively consistent. The 
mean Average Precision (mAP50) of our study was signifi-
cantly lower than that reported in previous research. This dif-
ference may be attributed to the greater diversity of detection 
classes and the unbiased, random selection of images used 
in our study. In some cases, the detection was so challeng-
ing that it bordered on the limits of human visual judgment. 
Despite the balanced or lower number of training data for 
D40 and D43 compared to other types of damage (Fig. 3), 
the mAP50 remained high. This could be attributed to the 
significantly larger object size of these two classes relative 
to other damage classes, and the relatively square shape of 
the detection box, which had a low aspect ratio.

In Table 3, Figs.  7 and 8, we present a comparative 
analysis of our proposed model against current state-of-
the-art (SOTA) models. To maintain the integrity of the 
comparison, neither our proposed model nor the YOLOv9 
series underwent reparameterization. The proposed models, 
YOLO9tr and YOLO9tr-L, exhibited enhanced performance 
in terms of mean Average Precision (mAP50), achieving 
an equilibrium between model dimensions and inference 
velocity. Our models paralleled the mAP50 values of larger 
models, such as RT-Deter, YOLOv8x, and YOLO9e, which 
possess extensive parameter sets. However, these mod-
els necessitate substantial computational resources and 
extended inference time, resulting in diminished frame rates 
for image detection. In contrast, our models are compara-
ble in size to smaller SOTA models like YOLOv10s and 
YOLOv8s, yet they significantly outperform them in preci-
sion. A notable characteristic of our proposed models is their 
minimal parameterization, which enables a high frame rate 
of up to 136 frames per second (FPS) in image detection 
tasks. The frame rate was calculated using Eq. 8, accounting 
for the time allocated to preprocessing prior to detection, the 
duration of the inference process, and the time subsequent 
to inference. This capability is particularly advantageous for 
video applications where high frame rates are essential.

5 � Visualization

The feature map tensor before and after applying the PSA 
layer (#6) is shown in Fig. 9. The index used to indicate noise 
was the signal-to-noise ratio (SNR), defined as the ratio 
between the mean pixel value and the standard deviation. 

Table 2   The test results of proposed model (YOLO9tr)

mAP50 P R

Overall 0.655 0.652 0.616
D00 0.688 0.591 0.643
D10 0.575 0.614 0.573
D20 0.579 0.630 0.466
D30 0.708 0.656 0.644
D40 0.719 0.715 0.667
D43 0.774 0.718 0.746
D44 0.543 0.537 0.575

Table 3   Comparison to the previous model

Bold indicates the best model performance

Model mAP50 F1-score Parameters 
(million)

FLOPs (G) FPS

RT-Deter 0.654 0.640 76 259 74
YOLO8s 0.592 0.600 11.2 28.6 313
YOLO8m 0.588 0.590 25.9 78.9 227
YOLO8l 0.602 0.590 43.7 165.2 152
YOLO8x 0.590 0.53 68.2 257.8 109
YOLOv10s 0.533 0.560 8.0 24.5 454
YOLOv10b 0.570 0.590 20.4 98.0 166
YOLOv10x 0.557 0.570 31.6 169.8 117
YOLO9m 0.649 0.630 32.6 130.7 128
YOLO9c 0.636 0.620 50.7 236.7 108
YOLO9e 0.658 0.640 68.6 240.7 75
YOLO9etr 0.653 0.630 75.8 250 73
YOLO9ctr 0.651 0.630 69.3 228 75
YOLO9tr-L 0.658 0.640 10.6 42.6 117
YOLO9tr 0.655 0.630 10.2 41.1 136
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The SNR of the feature map before applying the PSA layer 
was 1.730, which was increased to 1.734 after applying the 
PSA layer. Visualization indicates that the application of 

a partial self-attention (PSA) layer enhances the quality of 
feature maps in a neural network. Initially, the feature maps 
are characterized by distinct, noisy, and scattered spatial 

Fig. 7   The comparison between 
mAP50 of different model with 
different parameters

Fig. 8   The comparison between 
mAP50 of different model with 
FLOPS (G)
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distributions, capturing redundant or irrelevant information 
with less correlation or interaction between features. Post-
PSA, the feature maps exhibit more uniformity and smooth-
ness, with refined patterns and reduced noise, suggesting 
that the PSA layer effectively enhances the consistency and 
coherence of feature representations. This transformation 
implies a better integration and correlation of features, lead-
ing to more holistic and robust representations. The PSA lay-
er’s ability to focus on more relevant regions reduces noise 
and emphasizes important features, which is crucial for tasks 
such as object detection or segmentation. This improvement 
aligns with findings in the literature where self-attention 
mechanisms have been shown to enhance feature learning 
by enabling networks to weigh the importance of different 
spatial locations more effectively. Consequently, the network 
can capture and utilize critical features more efficiently, 
potentially leading to improved overall performance.

The comparative analysis of image detection capabilities 
between the proposed model and the state-of-the-art (SOTA) 
model is illustrated in Fig. 9. The images, sourced from vari-
ous countries, demonstrate the models’ performance under 
diverse circumstances and camera angles for pavement dam-
age detection. It is evident that our proposed model discerns 
finer details compared to other competitive models. Spe-
cifically, our model successfully identifies the D00 damage 
category in the leftmost image, a feat that other models, such 

as YOLO9e and YOLO8x, fail to achieve. Moreover, in the 
challenging scenario of a blurred crosswalk depicted in the 
second image, our proposed model exhibits robust detection 
capability (Fig. 10).

6 � Ablation study

The current investigation undertook an ablation study to 
delineate the ramifications of architectural alterations and 
hyperparameter adjustments on the model’s performance. 
Employing YOLO9s as the baseline, it provided a bench-
mark against which the augmented model, integrated with 
PSA layers, was evaluated. The experimental framework 
encompassed a comparative analysis between a single 
attention layer, illustrated at position #6 in Fig. 4, and 
a complex attention architecture consisting of six layers. 
This methodology required each feature map to be pro-
cessed through the PSA before advancing to the YOLO 
detection head. Furthermore, the attention ratio parameter 
was escalated from its initial setting of 0.5 in the proto-
type to 1.0, aiming to appraise its influence on the model’s 
functional efficiency. Throughout the comprehensive abla-
tion study, the proposed model manifested superior preci-
sion and inference velocity. The YOLO9tr-L model exhib-
ited a marginally elevated mAP50 score. Nonetheless, its 

Fig. 9   The feature map of 
model before and after applied 
partial self-attention layer in 
model
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Fig. 10   Detection results of different models
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inference speed and training duration surpassed that of the 
proposed model. The YOLO9s, augmented with a solitary 
attention step, significantly underperformed in mAP50 
compared to the unmodified YOLO9s. Efforts to modify 
larger models, namely YOLOe and YOLOc, by incorporat-
ing the PSA layer, did not markedly enhance performance. 
In fact, the YOLOe modification yielded slightly inferior 
performance relative to the original model (Table 4).

7 � Discussion

The results from the YOLOv9tr model underscore its capa-
bility to efficiently and accurately detect pavement damage, 
advancing the state-of-the-art in object detection. By incor-
porating a partial attention block into the YOLOv9 architec-
ture, the model leverages enhanced feature extraction and 
attention mechanisms, leading to improved detection per-
formance, particularly in complex scenarios such as blurred 
images or intricate damage patterns. In a comparative analy-
sis with contemporary models like YOLOv8 and YOLOv9, 
YOLOv9tr consistently demonstrated superior precision and 
inference speed. Specifically, the YOLOv9tr achieved a bal-
ance between computational efficiency and detection accu-
racy, a crucial factor for real-time applications. The model’s 
precision, particularly in identifying the D00 damage cat-
egory and maintaining robustness in blurred conditions, 
outperformed models like YOLOv9e and YOLOv8x, which 
struggled with these challenging scenarios. The YOLOv9tr 
model’s capability to process up to 136 frames per second 
(FPS) positions it as an ideal candidate for real-time moni-
toring systems. This high frame rate is particularly benefi-
cial for applications in video surveillance and automated 
inspection systems, where timely detection and response are 
critical. Additionally, the model's compact architecture, with 
minimal parameterization and computational load, ensures 
its deployment feasibility on devices with limited process-
ing power.

An essential contribution of this research is the expan-
sion of the damage classification range, addressing the 

limitations of existing models that typically categorize 
only four types of damage. By extending the classifications 
to include seven types, such as longitudinal wheel marks, 
lateral cracks, and crosswalk blurs, YOLOv9tr provides a 
more comprehensive and realistic assessment of pavement 
conditions. This expanded classification capability is piv-
otal for pavement engineering applications, where diverse 
damage types need to be accurately identified and assessed 
for maintenance and safety purposes. Future research 
can further optimize the YOLOv9tr model by exploring 
additional augmentation techniques and integrating more 
sophisticated attention mechanisms. Moreover, applying 
this model to other domains requiring real-time object 
detection, such as autonomous driving or security moni-
toring, could validate its versatility and robustness. Addi-
tionally, expanding the dataset to include more diverse 
damage scenarios from various geographical regions could 
enhance the model's generalization capabilities, ensuring 
its effectiveness in a broader range of real-world applica-
tions. In summary, the YOLOv9tr model represents a sig-
nificant step forward in object detection technology, par-
ticularly for applications in pavement damage detection. 
Its balanced performance, real-time processing capability, 
and expanded classification range highlight its potential 
for practical deployment and set a new benchmark for 
future research in this domain.

8 � Conclusion

In conclusion, the YOLOv9tr model demonstrates sig-
nificant advancements in object detection, particularly 
in pavement damage detection tasks. Our model exhibits 
a balanced trade-off between precision, model size, and 
inference speed, making it suitable for real-time applica-
tions. The YOLOv9tr model’s high frame rate of up to 136 
FPS is particularly advantageous for video applications, 
outperforming larger models like RT-Deter, YOLOv8x, 
and YOLOv9e in terms of precision while maintaining a 
compact size akin to smaller models such as YOLOv10s 
and YOLOv8s. The comparative analysis underscores 
the superior performance of YOLO9tr in detecting finer 
details and handling challenging scenarios, such as blurred 
images, more effectively than other state-of-the-art mod-
els. Our findings suggest that the YOLOv9tr model holds 
substantial potential for practical deployment in real-time 
pavement condition monitoring and other similar applica-
tions. The success of the YOLO9tr model in maintaining 
high precision with minimal parameterization and compu-
tational resource requirements underscores its efficacy and 
utility. Future work could explore further optimizations 

Table 4   The results for the abrasion study

Bold indicates the best model performance

Models mAP50 F1-score FLOPS(G)

YOLO9s 0.640 0.620 38.7
YOLO9tr-single attention layer 0.587 0.570 40.1
YOLO9tr-L-6 attention layer 0.658 0.640 42.6
YOLO9etr-1 attention layer 0.653 0.630 236.7
YOLO9ctr-2 attention layer 0.651 0.630 240.7
YOLO9tr-R = 1.0 0.647 0.630 41.2
YOLO9tr 0.655 0.630 41.1



Journal of Real-Time Image Processing          (2024) 21:163 	 Page 13 of 13    163 

and the application of this model to other domains requir-
ing efficient and accurate real-time object detection
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