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Abstract
With the development of apple-picking robots, deep learning models have become essential in apple detection. However, 
current detection models are often disrupted by complex backgrounds, leading to low recognition accuracy and slow speeds in 
natural environments. To address these issues, this study proposes an improved model, YOLOv8s-CFB, based on YOLOv8s. 
This model introduces partial convolution (PConv) in the backbone network, enhances the C2f module, and forms a new 
architecture, CSPPC, to reduce computational complexity and improve speed. Additionally, FocalModulation technology 
replaces the original SPPF module to enhance the model’s ability to recognize key areas. Finally, the bidirectional feature 
pyramid (BiFPN) is introduced to adaptively learn the importance of weights at each scale, effectively retaining multi-scale 
information through a bidirectional context information transmission mechanism, and improving the model’s detection abil-
ity for occluded targets. Test results show that the improved YOLOv8 network achieves better detection performance, with 
an average accuracy of 93.86%, a parameter volume of 8.83 M, and a detection time of 0.7 ms. The improved algorithm 
achieves high detection accuracy with a small weight file, making it suitable for deployment on mobile devices. Therefore, 
the improved model can efficiently and accurately detect apples in complex orchard environments in real time.
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1 Introduction

The annual global apple output is approximately 8,433,057 
tons, with the largest producers being China, the United 
States, Poland, and Turkey. This output continues to increase 
year by year [1]. Currently, apple harvesting heavily relies on 
manual labor, a process that is time-consuming, labor-inten-
sive, and inefficient [2]. Apple-picking robots are specially 
engineered devices designed to automate the harvesting pro-
cess [3], effectively tackling challenges posed by labor short-
ages and inefficiencies in manual picking, ultimately leading 
to cost reductions [4]. These robots are equipped with mobil-
ity devices, robotic arms, end effectors, vision systems, and 
control systems [5]. The vision system plays a pivotal role 
in enabling apple-picking robots to autonomously harvest 

apples. Therefore, quick and precise apple detection is cru-
cial for advancing automated apple picking and achieving 
intelligent agricultural production [6].

Computer vision is an advanced and objective detection 
technology. The development of multi-camera combined 
imaging systems further enables computer vision technol-
ogy to meet target accuracy and quality requirements [7]. 
In recent years, significant progress has been made in this 
area of research. Gao et al. [8] proposed an apple detection 
system and showed that the system can achieve robotic apple 
picking performance. Yoshida et al. [9] used RGB-D sensors 
to detect and locate fruits, improving the positioning accu-
racy of robot picking. Furthermore, Linker et al. [10] used 
color and texture information to classify green apples. By 
comparing detection circles with heuristic models, it can be 
concluded that color texture affects the results.

With advancements in computer technology, convolu-
tional neural networks and deep learning-based object detec-
tion models have been widely applied across various indus-
tries, including fruit recognition, disease detection, and yield 
estimation in agriculture [11]. Currently, there are two main 
types of deep learning-based fruit detection models. The 
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first type uses region proposal methods, which generate can-
didate bounding boxes through box generation techniques. 
These candidate boxes are then classified and localized using 
convolutional neural networks such as Faster R-CNN [12], 
R-FCN [13], Mask R-CNN [14], etc. These models achieve 
high accuracy but require large computational resources and 
are slower in terms of speed. Zhu et al. [15], for example, 
used the Faster R-CNN model to recognize blueberries at 
different stages of ripeness, achieving recognition accuracies 
of 97% for ripe fruits, 95% for semi-ripe fruits, and 92% for 
unripe fruits. However, the average frames processed per 
second (FPS) was only 8, which does not meet the real-
time requirements of fruit-picking robots. The second type 
is single-stage detection models, which directly predict the 
position and class of objects in an image. Common single-
stage detection models include the YOLO [16] series and 
SSD [17]. Among them, YOLO stands out as a single-stage 
detection algorithm and is increasingly used in fruit detec-
tion due to its excellent performance. Although YOLO’s 
detection speed surpasses that of two-stage algorithms, its 
network design, intended for general scenarios with mul-
tiple categories, involves a large number of parameters 
and computations. In orchard fruit detection, which typi-
cally involves only a few fruit types, such complex network 
structures can be overly redundant. Additionally, given the 
cost-effectiveness and compactness requirements for har-
vesting robots, edge computing devices have become the 
preferred choice for online detection tasks. However, these 
devices often have lower computing performance compared 
to personal computers or servers, raising the challenge of 
effectively reducing the detection network's computational 
burden under limited resources. Faced with these problems, 
researchers have proposed some lightweight detection algo-
rithms, especially those based on YOLO. In the field of 
apple detection, Tian et al. [18], used the DenseNet method 
to process the low-resolution feature layer in the YOLO-V3 
network based on the improved YOLOv3 model. It effec-
tively enhanced feature propagation, promoted feature reuse, 
and improved network performance. It explored real-time 
detection of apples throughout the growth stage, which can 
continuously monitor crop growth and nutritional status. Yan 
et al. [19], proposed an improved YOLOv5 model based on 
the BottleneckCSP module and attention mechanism, with 
recognition recall rate, accuracy, mAP, and F1 of 91.48%, 
83.83%, 86.75% and 87.49%, respectively, which effectively 
improved the detection accuracy of apple fruits. It further 
distinguished the fruit occlusion caused by branches with 
high precision and realized the automatic recognition of 
graspable fruits. Yang et al. [20], proposed to introduce the 
MobileOne module in the backbone network of YOLOv7 
to realize parameter fusion, and improved the SPPCSPS 
module, changing the serial channel to a parallel channel 
to increase the speed of image feature fusion. Finally, an 

auxiliary detection head was added to the head structure. The 
improved YOLOv7 algorithm has an accuracy increase of 
6.9%, a recall increase of 10%, and a mAP increase of 3.8%. 
Ma et al. [21] proposed a lightweight model YOLOv8n-
ShuffleNetv2-Ghost-SE. The model uses the ShuffleNetv2 
module to replace the Backbone of YOLOv8n, the Ghost 
module to replace the Conv module, the C2fGhost module 
to replace the C2f module in the Neck part, WIoU to replace 
CIoU to calculate the bounding box regression loss, and 
embeds the SE module. The model has a mAP of 91.4%, a 
model size of 2.6 MB, 1.18 M parameters, and 3.9G FLOPs. 
Table 1 summarizes the performance of the YOLO model in 
the field of apple detection.

Although existing research has made progress in network 
lightweighting, detection accuracy is often maintained by 
adding attention modules or additional detection lay-
ers. While these methods help ensure accuracy, they also 
increase the network’s computational burden, which con-
tradicts the goal of lightweighting. The results indicate that 
existing networks still contain a large number of parameters 
and computational requirements, suggesting that current 
lightweight improvements are insufficient. Furthermore, 
many studies lack validation on edge computing devices 
such as Raspberry Pi, Jetson, and Arduino. Developing a 
lightweight apple detection algorithm that is suitable for 
edge computing devices without compromising accuracy 
remains a significant challenge.

This paper considers embedded device deployment and 
apple fruit detection system, and studies a lightweight apple 
detection algorithm based on YOLOv8 target detection algo-
rithm. The main contributions of this paper are as follows:

1. PConv is introduced in the backbone network, and a 
new structure, CSPPC, is proposed to replace the C2f 
module. In the backbone network, CSPPC reduces com-
putational complexity and the number of floating-point 
operations (FLOPs) by operating on fewer channels, 
which also decreases memory access—beneficial for 
edge devices. Additionally, CSPPC ensures effective 
flow of feature information.

2. FocalModulation technology is introduced to enhance 
feature detection by focusing on specific areas. This 
allows the model to more accurately capture the detailed 
features of apples, especially in complex environments 

Table 1  Performance of the YOLO models

Model mAP% Parameters (M) Detect time (ms) FLOPs (G)

YOLOv3 92.76 61.5 11.35 32.8
YOLOv5s 84.8 13.7 1.8 16.4
YOLOv7 92.9 75 65.4 104.7
YOLOv8s 92.22 11.13 1.0 28.6
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and occlusions. The technology adaptively adjusts the 
focus area, improving both the detection accuracy and 
robustness for apples.

3. A bidirectional feature pyramid network (BiFPN) is 
designed in the neck network. BiFPN enhances detection 
accuracy through bidirectional feature fusion, allowing 
for effective multi-scale feature integration. This capa-
bility ensures accurate detection of apples of various 
sizes and degrees of occlusion. Additionally, BiFPN 
uses a weighted feature fusion strategy to reduce the 
number of model parameters and computations, improv-
ing real-time detection efficiency. In complex orchard 
environments, BiFPN significantly enhances the model's 
adaptability to lighting changes and background inter-
ference by strengthening feature extraction capabilities, 
thereby performing well in practical applications.

2  Materials and methods

2.1  Source of experimental data

The accuracy of model detection relies on the quality of 
the dataset. To ensure the model can recognize apple fruit 
targets in various environments and sizes, experimental 
data for this study were collected at an eco-unmanned farm 
smart orchard. This orchard is a collaborative effort between 
Shandong University of Technology and Shandong Zhong 
Yi Modern Smart Agriculture Co., Ltd., located in Yiyuan 
County, Zibo City, Shandong Province. The orchard adheres 
to high-standard planting practices, with the apple variety 
being Red Fuji. A total of 2000 images were captured and 
saved in JPEG format.

In this experiment, the LabelImg annotation tool was 
used to draw bounding boxes around the apple objects in 
the original images for manual annotation. The label “apple” 
was assigned to the apples, and the saved format was PAS-
CAL VOC.

To enrich the image training set, effectively extract 
image features, and avoid overfitting, the data set was 
enhanced before network training [22], including flipping, 
rotation, Gaussian blur and reduction, and Gaussian noise 
addition [23]. The images were flipped horizontally and 
vertically, the rotation angle was controlled between − 15° 
and + 15°, and the images were blurred (1.5 px) to remove 
noise or subtle irregularities in the image, making the 
image clearer and smoother. In addition, to simulate the 
noise that may be generated by the device during image 
acquisition, we enhanced the data by adding Gaussian 
noise with a variance of 0.02 to the original image. After 
data enhancement, a total of 6179 images were obtained 
for network training and parameter optimization. 5052 
images were randomly selected from 6179 images as the 

training set, and the rest were used as the training set and 
validation set, with 564 images respectively.

2.2  Target detection method for apple fruits

2.2.1  YOLOv8 network model

Among various single-stage object detection algorithms, 
the YOLO series stands out for its excellent balance of 
speed and accuracy. It can quickly and accurately iden-
tify targets and is highly suitable for deployment on vari-
ous mobile devices. Therefore, the YOLO series has been 
widely used in various fields such as object detection, 
tracking, and segmentation. YOLOv8 consists of five 
networks: YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, 
and YOLOv8x, each with differences in model depth and 
width. It is currently one of the most advanced network 
models and is well-suited for apple image object detection. 
The performance of yolov8 version in detecting Apple is 
shown in Table 2

In this experiment, considering factors such as model 
size, recognition efficiency, and accuracy, it was decided to 
base the apple recognition model on YOLOv8s and make 
improvements to design a more efficient and accurate 
model for apple detection.

YOLOv8s is an object detection model consisting of 
four parts: Input, Backbone, Neck, and Head. The model 
uses mosaic data augmentation techniques to improve 
robustness and generalization performance. In the Back-
bone layer, it changes the kernel size of the first convolu-
tional layer from 6 × 6 to 3 × 3 and references the design 
philosophy of YOLOv7 ELAN. In the Neck layer, it 
removes two convolutional connection layers and replaces 
all C3 modules with C2f modules. In the Head layer, it 
transitions from Anchor-Based to Anchor-Free. During the 
training process, the mosaic data augmentation operation 
is turned off to improve accuracy. The loss calculation 
adopts a positive and negative sample allocation strategy. 
Conv, C2f, and SPPF modules are used in the model to 
speed up convergence and improve model performance.

Table 2  Performance of the YOLOv8 models

Model mAP% Parameters (M) Detect time (ms) FLOPs (G)

YOLOv8n 90.1 6.2 1.2 15.8
YOLOv8s 92.22 11.13 1.0 28.6
YOLOv8m 92.9 75 65.4 104.7
YOLOv8l 93.5 180.7 89.4 216.5
YOLOv8x 94.2 245.6 123.3 324.8
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2.2.2  Improvements to the YOLOv8s model

The original YOLOv8s algorithm has problems such as 
low detection accuracy, slow detection speed, and large 
model size, which makes it inconvenient to deploy, espe-
cially when applied to the apple dataset discussed in this 
article. To meet the requirements of this task, this study 
mainly improves YOLOv8s in the following aspects: (1) 
PConv is introduced into the backbone network to improve 
C2f to form a new architecture CSPPC, which reduces 
the computational complexity and improves the detection 
speed. (2) FocalModulation technology is used to replace 
the original SPPF module to improve the model's regional 
recognition ability on key issues. (3) Lightweight bidirec-
tional feature pyramid (BiFPN) is introduced to adaptively 
learn the importance weights of each scale, effectively 
retain multi-scale information through the bidirectional 
context information transmission mechanism, and improve 
the model's detection ability for occluded targets. The 
enhanced algorithm is named YOLOv8s-CFB, and its 
structure is shown in Fig. 1.

The main improvements of this article are:

1. CSPPC module

In actual deployment scenarios, the object detection 
model needs to be deployed on embedded devices with lim-
ited hardware memory and computing resources. In addition, 
to detect apples in complex environments, a certain degree 
of real-time performance is required. To meet these require-
ments, the model must be lightweight. The C2f module in 
YOLOv8 uses more bottleneck structures to extract more 
features, but it also leads to the problem of excessive redun-
dancy of channel information. At this stage, lightweight 
models, such as MobileNet [24], SENet [25] and ShuffleNet 
[26], all use deep convolution to extract spatial features. 
Although the number of floating point operations (FLOPs) 
is reduced, it causes an increase in memory access. PConv 
in FasterNet uses the redundant information in the feature 
map to only apply conventional convolution on a part of the 
input channel for spatial feature extraction, while leaving 
the remaining channels unchanged. This can reduce com-
putational complexity and memory access, and can main-
tain Feature information flow [27]. Its working principle is 
shown in Fig. 2. The figure (a) shows regular convolution, 

Fig. 1  YOLOv8s-CFB network structure diagram
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(b) shows depth/grouped convolution, and (c) shows our 
partial convolution method. In PConv, a part of the chan-
nel is passed directly through the identity operation without 
convolution processing.

PConv only performs convolution operations on a part of 
the input channels to extract spatial features while keeping 
other channels unchanged. Assume that H  and W  represent 
the length and width of the input feature map, c represents 
the number of input channels, cp  represents the channels 
participating in the convolution, k  is the convolution kernel 
size, r represents the participating convolution rate, and its 
calculation amount expression is as follows (1), the memory 
access meter formula is as formula (3).

PConv’s participation convolution rate is 1/4, and its 
FLOPs are only 1/16 of conventional convolution. Due to 
the low memory consumption of the convolution process, 
the memory access is about 1/4 of conventional convolution.

This article uses PConV to design the C2f module, and 
introduces PConV by building CSPPC to further reduce 
the amount of calculation and floatingpoint numbers. The 
CSPPC module structure diagram is shown in Fig. 3.

2. FocalModulation technology

Due to the complex and variable environment of apple 
detection, improving the model's ability to extract key 
apple features is crucial. To address this, FocalModulation 
technology is introduced in the YOLOv8 backbone net-
work to replace the original SPPF module. This technology 

(1)FPConV = H ×W × k2 × c2
p
,

(2)r =
cp

c
,

(3)MAC = H ×W × 2cp + k2 × c2
p
≈ h × w × 2cp.

minimizes the interference from irrelevant background 
information and enhances the focus on more effective apple 
feature information. The self-attention mechanism, while 
offering strong long-range dependency and adaptability, 
has limitations. It neglects the two-dimensional struc-
ture of images and incurs significant computational costs, 
particularly when processing large convolution kernels. 
FocalModulation technology is introduced to address the 
excessive computational load associated with self-attention 
using smaller computational costs, thereby achieving higher 

Fig. 2  Working principle of 
Pconv

Fig. 3  CSPPC module structure diagram. C is the number of chan-
nels of the input feature map; * is the convolution operation; H and W 
are the height and width dimensions of the feature map respectively; 
Conv is the conventional convolution module; PConv is the partial 
convolution; Split is the channel segmentation module
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performance.The calculation process for self-attention 
involves an initial interaction followed by aggregation. The 
formula for this process is:

where M1 represents the aggregation process and represents 
the interaction process.

The working principle of FocalModulation technology 
covers three key aspects. First, the aggregated features are 
fused into the query via modulation or element-level aff-
ine transformation. This process adopts an interaction first 
and then aggregation method, which is different from the 
self-attention (SA) model, which first aggregates features 
and then interacts the query with the aggregated features to 
fuse contextual information. Second, hierarchical semantics 
are introduced to extract contextual information at differ-
ent granularity levels from local to global scope. This step 
captures local and global contextual information by pro-
jecting the input features to a new feature space and then 
using L depth-wise convolutions to obtain a hierarchical 
representation. Finally, gated aggregation is applied to con-
dense contextual features at different granularity levels into 
a single feature vector, forming a modulator. Spatially and 
level-aware weights are obtained via linear layers, and then 
a weighted sum is performed via element-wise multiplica-
tion to obtain a single feature map of the same size as the 
input. This process models the relationship between different 
channels and forms the calculation process of the overall 
focus modulation. Combining the interaction and aggrega-
tion formulas, the overall focus modulation formula can be 
expressed as:

(4)yi = M1(T1(xi,X),X) where g�
i
 and z�

i
 are the gating value and visual feature at 

location i of G� and Z� , respectively.
Its structure diagram is shown in the Fig. 4, Fig. 4 shows 

FocalModulation technology on the left. Right: Detailed 
illustration of context aggregation in FocalModulation.

3. Feature fusion layer improvements

The goal of multi-scale feature fusion is to integrate 
features of different resolutions. PANet uses two paths, 
bottom–up and top–down, which are better than FPN, but 
require more calculations. BiFPN is developed on the basis 
of PANet, removing the situation of only one input node, 
because this node contributes less to feature fusion. To better 
integrate features, an additional path is added to connect the 
input nodes and output nodes of the peer network [28]. The 
original BiFPN structure is shown in Fig. 5a. In this paper, 
we improved the BiFPN structure and added a P2 large-size 
feature layer to improve the feature fusion ability of apple 
fruit distant targets. The improved BiFPN structure is shown 
in Fig. 5b.

During the feature fusion process, the resolution differ-
ences of different input features lead to their different con-
tributions to the output features. Under field conditions, 
collected multiscale apple targets are common. In order 
to balance the weights of different features, mine the deep 
information of apple targets, and reduce false detections 
and missed detections caused by environmental complexity, 

(5)yi = q(xi) × h

(

L+1
∑

�+1

g�
i
× z�

i

)

,

Fig. 4  FocalModulation
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BiFPN adopts a fast normalization fusion module. This 
module is designed to effectively adjust the weights between 
features to better reflect their importance to the object detec-
tion task. Therefore, the relationship between the input and 
output of BiFPN can be expressed as.

where, �i is the learning weight corresponding to the input 
feature Ii , which is ensured by applying ReLU in the subse-
quent stage �i ≥ 0 . To avoid numerical instability, set the 
initial learning rate ε = 0.000 1, and the value of the normal-
ized weight decreases between 0 and 1.

To further improve efficiency, we employ depthwise 
separable convolutions in the feature fusion stage and sub-
sequently add batch normalization and activation opera-
tions. This paper replaces the feature fusion network with 
BiFPN, so that features of different scales can obtain differ-
ent weights, and performs cross-scale weight suppression or 
feature expression to enhance feature fusion, thereby further 
improving target detection performance.

2.3  Model training and evaluation

2.3.1  Experimental environment

The operating system used in this experiment is Win11 
and the in-depth learning framework development envi-
ronment of Py3.9.18, CUDA11.6 and Pyr1.12.1 is used. 
The processor carried by the computer is Intel Core 
i7-12700H@3.80 GHz, memory of 32 GB, video card of 
RTX3060 and video memory of 6 GB. The input picture 
size is adjusted to, the Batchsize is set to 8, the thread is set 
to 2, and a total of 300 epochs are trained.

(6)O =
�

i

�i

∈ +
∑

j �j

× Ii,

2.3.2  Evaluation index

Evaluation indicators are important tools for quantitatively 
evaluating model performance. For accuracy evaluation, we 
used the mAP indicator, which is calculated as follows

mAP is the average of the mean precision (AP) and is deter-
mined by integrating the precision–recall (P–R) curve:

In this study, there is only one apple class N equal to 
1. Precision (P) is the ratio of correctly predicted Apple 
instances to the total number of predicted Apple instances, 
and recall (R) is the ratio of correctly predicted Apple 
instances to the total number of true Apple instances. They 
are calculated as:

Among them, true positives (TP) represent the number 
of instances that are actually apples and are predicted to 
be apples. False positives (FP) represent the number of 
instances that are not actually apples but are predicted to 
be apples. False negatives (FN) represent the number of 
instances that are actually apples but are not predicted to be 
apples. In terms of speed and efficiency, we use parameters, 
detection time and FLOPs, and to evaluate the computational 
complexity and real-time performance of the model.

(7)MAP =
1

N

N
∑

i=1

APi × 100%,

(8)AP = ∫
1

0

P(R)dR.

(9)P =
TP

TP + FP
× 100%,

(10)R =
TP

TP + FN
× 100%.

Fig. 5  BiFPN structure
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3  Results and analysis

3.1  Comparison with other lightweight networks

This experiment is based on YOLOv8s as the base net-
work. The backbone is replaced by mainstream lightweight 
networks (such as MobileNetV3, SENet, ShuffleNetV2) 
and improved light backbone networks. While keeping 
other parameters the same, the training effects of different 
backbone networks on the target are compared. The evalu-
ation indicators include mAP, detection time, FLOPs and 
Parameter.

As shown in Table 3, the CSPPC improvement method 
has great advantages in parameter quantity, average preci-
sion, detection time and floatingpoint number compared 
with MobileNetV3, SENet and ShuffleNetV2. The average 
precision is improved by 3.5, 7.47 and 10.01 percentage 
points respectively compared with other networks. The 
number of parameters of some lightweight model improve-
ment networks is smaller than that of this method, but the 
model has poor feature extraction ability and cannot meet 
the deployment requirements.

3.2  Ablation experiment

To verify the impact of the three improvement strategies in 
this study on the model, eight ablation experiments were 
conducted and the results are shown in Table 4.

As shown in Table 4, Experiment 1 uses the original 
YOLOv8s network model. The model’s mAP for apple rec-
ognition is 92.22%, the number of parameters is 11.13 M, 
and the average detection time of each photo is 1.0 ms, 
FLOPs at 28.6 G; Experiment 2 is to combine the backbone 
of the original YOLOv8s model. The network introduces 
partial convolution (PConv) to improve the C2f module to 
form a new architecture CSPPC. Compared with Experiment 
1, mAP is increased by 0.2%, the number of parameters is 
reduced by 1.82 M, and the average time of each photo is 
reduced by 5.3 ms, FLOPs decrease, The reason is that only 
some channels are convolved, which effectively reduces the 
model weight and computational redundancy, while los-
ing a small number of features that may be contained in 
the remaining channels, resulting in a slight decrease in 
average accuracy; Experiment 3 On the basis of Experi-
ment 1, FocalModulation technology was used to replace 
the original SPPF module. Compared with Experiment 1, 
mAP increased by 1.08% and detection time was increased 
by 0.1 ms, FLOPs remain almost unchanged, It shows that 
FocalModulation technology can improve the fitting degree 
of the model and improve the model recognition accuracy; 
Experiment 4 introduced the BiFPN idea in the Neck layer. 
The model Compared with Experiment 1, mAP, parameter 
amount, detection time and FLOPs are almost all better than 
Experiment 1, This shows that BiFPN can fuse more features 
and assign more weights to the correct features through the 
weighted feature fusion mechanism; Experiments 5, 6, and 7 
are two combinations of the improved strategies. Compared 
with Experiment 1, the improved model is almost better than 
Experiment 1 in terms of mAP value, number of parameters, 
detection time and FLOPs; Experiment 8 is the YOLOv8s 
model improved in this study, with mAP reaching 93.86%, 
parameter amount reduced by 2.3, and detection time only 
0.3 ms. The ablation test proves that this experiment is 

Table 3  Comparison of different lightweight feature extraction back-
bone networks

YOLOv8s-M new network after Backbone is replaced by Mobile-
NetV3, YOLOv8s-SE new network after Backbone is replaced by 
SENet, YOLOv8s-S new network after Backbone is replaced by Shuf-
fleNetV2, YOLOv8s-CSPPC new network after the C2f module is 
designed with PConv

Model Map% Parameters (M) Detection 
time (ms)

FLOPs (G)

YOLOv8s-M 88.92 11.51 0.9 23.4
YOLOv8-SE 84.95 6.28 0.4 23.0
YOLOv8s-S 82.41 6.31 0.4 22.1
YOLOv8s-

CSPPC
92.42 9.31 0.6 23.3

Table 4  Comparison of ablation 
test results

Test no. CSPPC FocalMo-
dulation

BiFPN Mean average 
precision Map%

Parameters (M) Detection 
time (ms)

FLOPs (G)

1 × × × 92.22 11.13 1.0 28.6
2 √ × × 92.42 9.31 0.6 23.3
3 × √ × 93.30 11.54 1.1 29.0
4 × × √ 92.56 10.24 0.6 27.8
5 √ √ × 93.62 9.73 0.6 23.6
6 √ × √ 92.88 8.42 0.6 23.5
7 × √ √ 93.81 10.65 0.7 29.1
8 √ √ √ 93.86 8.83 0.70 23.8
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effective for YOLOv8s. The improvements to the model all 
have positive effects.

3.3  Comparison before and after improvement 
of YOLOv8 model

To study the recognition ability of the improved YOLOv8s 
model to the covering condition of complex apple orchard, 
the samples with different illumination degree and differ-
ent covering condition are selected for comparative test, as 
shown in Fig. 6. Under the positive light condition, the rec-
ognition accuracy of YOLOv8s and improved YOLOv8s is 
very high, but under the back light and low light intensity 
condition, the recognition accuracy of YOLOv8s to apple 
decreases, The improved YOLOv8s has a good effect on 
identifying this situation. Under different sheltering condi-
tions, the recognition accuracy of YOLOv8s model is very 
high for non-sheltering conditions, but the accuracy of 
branch and leaf sheltering and fruit sheltering is reduced; 
However, the improved YOLOv8s model has high accuracy 
for the non-occlusion condition, and has good effect for the 
identification of the other two occlusion conditions.

The identification effect of improved model and original 
model is shown in Table 5.

3.4  Model feature visualization

To more intuitively observe the improvement of the recog-
nition ability of the model feature fusion network BiFPN, 
Grad-CAM [29] (gradient-weighted class activation map-
ping) is used to draw a heat map, which can more intuitively 
see the learning of the network for different targets. Grad-
CAM uses the training weight back propagation to perform 
global average pooling on the obtained gradient matrix in the 
spatial dimension, and then weightedly activates each chan-
nel of the feature layer to obtain a heat map. The brightness 
depth of a certain area in the heat map can show the part of 
the image that has a greater impact on the model output. The 
heat map before and after adding BiFPN is shown in Fig. 7.

Compared with Fig. 7b, the color of the apple target in 
Fig. 7c is brighter and the response is higher, while the 
brightness of the incorrectly extracted leaf features is lower. 
The use of the fast normalization fusion module enhances 
the model’s perception of the correct target and suppresses 
the impact of the wrong samples on the overall prediction, 
allowing the model to focus more accurately on the apple 
target features.

3.5  Comparison of different inspection models

To verify the effectiveness of the YOLOv8s-CFB model in 
apple fruit detection, we compared it with advanced object 
detection algorithms such as Faster R-CNN (ResNet50), 

SSD, YOLOv5s [30], YOLOv7-tiny, MobileNetv3_small_
Faster, ShuffleNetv2, Faster R Former [31] and DETR. The 
training cycle was set to 300 rounds, and the apple fruit 
dataset was trained based on the above object detection algo-
rithms. The detection and evaluation of these algorithms 
were performed using the test set. The results are shown in 
Table 6. The improved model greatly reduces the model size, 
parameter amount, and computational complexity while 
maintaining high detection accuracy, which is conducive 
to the migration and application of the model to hardware 
platforms such as edge devices, embedded systems, and 
dedicated chips.

3.6  Edge device deployment

To verify and improve the edge device deployment of the 
YOLOv8s-CFB model, and to improve the detection speed 
of the model, the TensorRT inference library is selected 
for acceleration. TensorRT is a high-performance infer-
ence optimization framework released by Nvidia, which 
can provide low-latency and high-throughput deployment 
inference acceleration for the model on Nvidia GPU. The 
YOLOv8s-CFB model training weight file is converted into 
a wts intermediate file and imported into Jetson Nano for 
compilation, and the model object is serialized to generate 
the engine inference engine. The deserialization operation of 
the engine file can realize the inference and post-processing 
operations. The device deployment detection situation is 
shown in Table 7.

As shown in Table 7, before TensorRT acceleration, the 
improved YOLOv8s-CFB model has a relatively low detec-
tion speed due to the limited computing power of embed-
ded devices. After acceleration, the model detection speed 
is increased by 7.9 times, the detection frame rate is 49 
frames/s, and the single-image detection speed is 20.41 ms.

4  Conclusion

1. This paper proposes a lightweight apple target detec-
tion algorithm, YOLOv8s-CFB, based on an improved 
YOLOv8s convolutional neural network. The algorithm 
achieves an average accuracy of 93.86% with a model 
parameter volume of 8.83 MB. Compared to the original 
model, the improved version reduces the parameter vol-
ume to 79.33% of the baseline network, increases accu-
racy by 1.64 percentage points, and also reduces detec-
tion time and FLOPs. It offers certain advantages over 
mainstream target detection models, including SSD, 
Faster RCNN, YOLOv5s, YOLOv7, and YOLOv8s.

2. The introduction of PConv to create C2f-PConv reduced 
the model weight by 25.33% and provided better detec-
tion performance compared to using lightweight back-
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bone networks like MobileNetV3, SENet, and Shuf-
fleNet. Additionally, replacing the backbone network 
with BiFPN enhanced the model’s feature fusion capa-
bility, reducing the model parameters to 75.65% of the 
original YOLOv8s.

Fig. 6  Comparison of model 
effects before and after improve-
ment

Table 5  Comparison of YOLOv8 model before and after improve-
ment

Model mAP% Parameters (M) Detect time (s) FLOPs (G)

YOLOv8s 92.22 11.13 1.0 28.6
Ours 93.86 8.83 0.7 23.8
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3. Replacing the original SPPF module with FocalModula-
tion technology increased accuracy by 1.08 percentage 
points and improved model fitting speed. After deploy-
ing the model with the TensorRT inference library, the 

detection frame rate reached 49 frames per second, 
meeting the requirements for edge device deployment.

Fig. 7  Model heat map visuali-
zation

Table 6  Comparison of results 
of different models

Model mAP% Parameters (M) Detect time (ms) FLOPs (G)

Faster R-CNN(ResNet50) 77.41 28.28 0.42 462.0
SSD 84.91 23.61 3.15 87.4
YOLOv5s 96.36 7.01 1.10 15.8
TPH-YOLOv5 94.22 11.80 17.05 15.4
YOLOv7-tiny 96.51 6.01 1.16 13.2
MobileNetv3_small_Faster 93.91 2.44 1.87 5.8
ShuffleNetv2 90.28 1.38 3.16 4.3
Faster R Former 69.24 43.96 3.50 93.55
Ours 93.86 8.83 0.70 23.8
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