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Abstract
As the mainstream chip packaging technology, plastic-encapsulated chips (PEC) suffer from process defects such as delamina-
tion and voids, which seriously impact the chip's reliability. Therefore, it is urgent to detect defects promptly and accurately. 
However, the current manual detection methods cannot meet the application's requirements, as they are both inaccurate and 
inefficient. This study utilized the deep convolutional neural network (DCNN) technique to analyze PEC's scanning acous-
tic microscope (SAM) images and identify their internal defects. First, the SAM technology was used to collect and set up 
datasets of seven typical PEC defects. Then, according to the characteristics of densely packed PEC and an incredibly tiny 
size ratio in SAM, a PECNet network was established to detect PEC based on the traditional RetinaNet network, combining 
the CoTNet50 backbone network and the feature pyramid network structure. Furthermore, a PEDNet was designed to clas-
sify PEC defects based on the MobileNetV2 network, integrating cross-local connections and progressive classifiers. The 
experimental results demonstrated that the PECNet network's chip recognition accuracy reaches 98.6%, and its speed of a 
single image requires only nine milliseconds. Meanwhile, the PEDNet network's average defect classification accuracy is 
97.8%, and the recognition speed of a single image is only 0.0021 s. This method provides a precise and efficient technique 
for defect detection in PEC.
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1  Introduction

Plastic packaging is one of the most critical manufactur-
ing processes for providing electrical interconnection and 
physical protection for chips because of its advantages of 
miniaturization, lightweight, and high reliability compared 
to ceramic and metallic packaging technologies [1–3]. 
However, since plastic-encapsulated chips (PEC) are a non-
hermetic packaging technology, it is easy to produce some 
defects inside the chip that are difficult to detect visually, 
such as delamination, voids, dislocation, and incomplete 

filling. These defects will cause severe chip reliability issues, 
so detecting internal defects is essential for PEC [4–6]. Due 
to the non-destructive testing characteristics of scanning 
acoustic microscope (SAM) technology, SAM is typically 
used to obtain defective images of PEC [7–9].

PEC defects and their detection methods have drawn 
considerable research interest. Cai et al. analyzed the fail-
ure mechanisms and potential reliability risks of common 
defects that are likely to occur in the PEC packaging process 
but cannot be identified solely through visual inspection or 
electrical parameter testing. This investigation established a 
technical foundation for detecting PEC defects [1]. Hullinger 
et al. [10] attempted to construct a stretchable thermome-
chanical test chip using sensors such as crack, conductivity, 
short circuit, and corrosion to evaluate the reliability of PEC. 
Liang et al. [11] used an ultrasonic scanning microscope to 
analyze defects such as cracks, impurities, and delamination 
of PEC using different scanning modes. They demonstrated 
that SAM can accurately characterize the internal defects 
of PEC. Liao et al. [7] proposed a defect judgment method 
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based on waveform amplitude and phase that can autono-
mously generate defect images with color marks, thereby 
reducing the workload of ultrasonic inspection. It signifi-
cantly increases the efficiency of manual defect detection. 
Chen et al. [12] investigated the application of deep convo-
lutional neural network (DCNN) technology to the automatic 
visual detection of fastener defects in rail vehicles, which led 
to the realization that the possibility of applying artificial 
intelligence (AI) technology to detect the internal defect of 
PEC. Overall, internal defect detection of PEC relies primar-
ily on the manual visual inspection method aided by imaging 
auxiliary tools. Nevertheless, there are still some issues:

(1)	 Procedure: difficult and complex Due to the small 
size and dense arrangement of chips in ultrasonic 
images, it is difficult to accurately identify and classify 
tiny and randomly distributed internal defects only by 
manual inspection methods.

(2)	 Result: poor stability and low efficiency Very depend-
ent on the state and experience of the inspector. Fur-
thermore, human eyes are less effective at identifying 
minor defects, and long-term observation can readily 
result in visual fatigue, decreasing the stability and effi-
ciency of inspection.

(3)	 Cost: very high The inspector must be a mature techni-
cian with rich experience, which induces high time and 
energy costs.

Therefore, there is an urgent need to introduce AI technol-
ogy to realize the automatic detection of internal defects of 
PEC [13–15]. However, in the SAM image of PEC, the chips 
are arranged densely, and each size ratio is tiny. Therefore, 
the automatic detection of internal defects in PEC takes time 
to implement. It is urgent to resolve two technical challenges 
immediately: the precise identification and marking of a sin-
gle chip and the accurate identification and classification of 
randomly distributed small-size defects.

CNN is a typically used deep learning model used 
mainly on data characterized by a grid structure, such as 
photos, videos, and audio. The fundamental concept of 
the method is gathering input data features using convolu-
tion and pooling operations, followed by performing clas-
sification or regression tasks via fully connected layers. 
CNN may build up an understanding of the characteristics 
of the input data through these procedures, resulting in 
effective data processing and analysis. CNN is extensively 
employed in various computer vision applications, includ-
ing but not limited to picture classification, target recogni-
tion, and image segmentation. One notable advantage of 
this technique is its ability to automatically acquire and 
extract characteristics from input data, avoiding manual 
feature extraction. Furthermore, CNN possesses unique 
translation invariance and local perception abilities, 

enabling them to manage variations in position and local 
deformations inside images effectively. Additionally, it 
exhibits a certain level of robustness and tolerance against 
noise and shifts in the input data. CNN achieved excellent 
results in practical applications by learning previous infor-
mation from massive data and continuously upgrading the 
model's structure and parameters. Consequently, CNN has 
become an essential field of research and practical applica-
tion within deep learning.

DCNN has achieved current success in the recognition 
and positioning of small targets. Wen et al. [16] proposed 
a TCNN (ResNet50) network for small-volume sample 
fault diagnosis, combined transfer learning to train fea-
ture extractors, and increased the accuracy to more than 
98.95%. Zhou et al. proposed a method for small target 
detection in high-resolution remote sensing images. Using 
depthwise separable deconvolution to restore the lost fea-
ture information effectively and combining dilated convo-
lution and CoTNet to extract local context features in the 
HRSC2016 dataset [17, 18], the recognition and detection 
rate of the rotation-invariant target increased to 96% [19].

Moreover, DCNN has also obtained excellent results in 
defect detection and classification [20, 21]. Sandler et al. 
[22] described a new architecture, MobileNetV2, which 
incorporates an inverted residual structure to drastically 
reduce the number of operations and memory required 
while maintaining the accuracy of feature classification. 
Liu et  al. [23] introduced an enhanced receptive field 
block (RFB) structure, which improved the feature extrac-
tion capability of the network, enhanced the accuracy of 
multi-scale target detection, and made the model lighter 
in quantity. Ma et al. [24] introduced the convolutional 
block attention module (CBAM) into MobileNetV2 and 
proposed the I_CBAM_MobileNetV2 model, automati-
cally achieving a 98.21% recognition accuracy rate for 
corn seeds.

This work introduces DCNNs to solve the defect detec-
tion problem in PEC. A dataset of typical PEC defects 
is first collected and prepared using SAM technology. 
Then, considering PEC's small size and dense arrange-
ment, the backbone network ResNet in the RetinaNet is 
replaced by CoTNet50. The feature pyramid networks 
(FPN) are used to improve the algorithm's feature fusion 
and extraction capabilities. The PECNet (net for plastic-
encapsulated chips) network is constructed to position and 
identify a single chip. Furthermore, based on the internal 
defect characteristics of PEC and the requirements for an 
accurate and quick network, a cross-local connection net-
work backbone and a progressive classifier are added to 
the MobileNetV2 network. The PEDNet (net for plastic-
encapsulated defects) network is proposed for fast and 
accurate identification and classification of various PEC 
defects.
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2 � Methodology

2.1 � System framework and process

As shown in Fig. 1, when using SAM technology to col-
lect defect images of PEC, the ultrasonic transceiver sends 
signal pulses to the ultrasonic transducer to generate ultra-
sonic waves of a specific frequency. While scanning inter-
nal defects of the PEC, each layer of material in the device 
has a different density and atomic weight, so the ultrasonic 
wave will be reflected when it reaches the various detec-
tion surfaces of the sample. Then, the receiver receives the 
ultrasonic wave reflected from the sample surface. After data 
processing, a high-resolution ultrasonic scanning image is 
acquired, representing defect information at various depths. 

Due to its high sensitivity and lack of sample damage, SAM 
is widely utilized in screening PEC.

As depicted in Fig. 2a, the frame is typically used as 
a unit for batch packaging in the chip plastic packaging 
procedure, and each frame contains approximately 10–20 
individual chips. As depicted in Fig. 2b, three frames are 
typically scanned simultaneously to efficiently produce an 
ultrasound image comprising 30–60 chips. The single chip 
size is small, and the arrangement is dense. Furthermore, 
the internal defects are randomly distributed in the SAM. 
Consequently, it is difficult for the manual to identify the 
defects due to low accuracy and poor real-time performance.

As depicted in Fig. 3, if there are defects such as voids 
or delaminations within the PEC, it will appear red around 
the chip in SAM. Figure 3a reveals that the ultrasonic image 
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Fig. 1   Schematic diagram of the scanning acoustic microscope

Fig. 2   a Surface CCD image 
and b internal ultrasonic scan-
ning image of PEC for multi-
frames

(a)

A single chip
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Fig. 3   Ultrasonic detection of defects in PEC, a a portion of the origi-
nal SAM and various categories of defects on each single chip, b no 
defect (ND), c strip delamination (SD), d top void (TV), e pin delam-
ination (PD), f semi-cycle delamination (SCD), g cycle delamination 
(CD), and h fully delamination (FD)
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contains images of multiple chips that are arranged in an 
orderly manner and have a transparent background. How-
ever, the defects on each chip have a variety of shapes and 
are distributed randomly. According to the different shapes 
of the internal defects of the PEC, as depicted in Fig. 3b–h, 
the defect types can be divided into seven categories: no 
defect (NF), strip delamination (SD), top void (TV), pin 
delamination (PD), semi-cycle delamination (SCD), cycle 
delamination (CD), and fully delamination (FD). The 
ratio of defects to chip area varies across different types of 
defects. TV, SD, and PD have a lower rate, below 5.0%, 
whereas SCD, CD, and FD have more severe defects, with 
higher defect rates of about 9.5–20%.

The procedure to detect PEC defects is illustrated in 
Fig. 4. First, the plastic chip packaging process experiment is 
designed, multi-chip SAM images are collected, and a data-
set for training and testing models is constructed. Afterward, 
the detection approach was divided into two steps: chip loca-
tion and defect classification, considering the features of the 
densely packed plastic chips and the small size of each chip 
in the SAM images. The PECNet and PEDNet models are 
trained by employing the improved RetinaNet and Mobile-
NetV2 models, respectively. The defect detection system has 
been constructed with well-trained PECNet and PEDNet net-
works. When the SAM images of plastic packaging chips 
were input into the detection system, the PECNet model 

was used to identify and locate a single chip. In contrast, 
the PEDNet model was used to identify and classify chip 
defects. Finally, the PEC defect identification results were 
then quantitatively analyzed and compared horizontally.

2.2 � Defect dataset setup

The dataset provides an accurate way of guaranteeing preci-
sion defect detection. To obtain chip images containing vari-
ous defects, we modify essential process parameters in the 
plastic packaging process, including wake-up time, injection 
time, curing time, and post-curing time. This modification is 
performed based on the variable sensitivity of these process 
parameters to the quality of the packaging. A comprehensive 
set of nine different process conditions was established, and 
60 chips were fabricated under each condition. Subsequently, 
a SAM device (YTS500, SHSIWI, Shanghai) was utilized 
to collect ultrasound images of PEC, as shown in Fig. 5. 
To address issues such as noise in ultrasonic photos, the 
image receives filtration and histogram equalization. Fur-
thermore, this dataset also includes defect images obtained 
from a packaging company (MC-Power Semiconductor Co., 
Ltd.) to confirm the dataset's sufficiency.

In addition, the collected defect images undergo data 
expansion using cropping, horizontal mirroring, rotation, 

Fig. 4   The detection procedure 
of chips and their defects for 
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and brightness changes. Eventually, the increased dataset 
size prevents model overfitting due to insufficient data.

The chip region in the ultrasonic image can be manually 
labeled using marking software. Subsequently, the ultrasonic 
image can be divided into various defect datasets in Table 1, 
according to the defect types depicted in Fig. 3. The number 
of ultrasonic images obtained differs due to the various prob-
abilities of different defects happening under different plas-
tic packaging process conditions. Furthermore, all images 
are normalized to a resolution of 224 × 224 pixels per inch 
(PPI) to improve the efficiency of following network training 
while also enhancing the generalization to different images. 
Moreover, we have confirmed that the normalized resolu-
tion procedure never negatively affects detection accuracy. 

Subsequently, every defect image is divided into training and 
test sets in an 8:2 ratio.

2.3 � Chip detection network by PECNet

Before detecting various defects on PEC, it is necessary to 
identify individual chips precisely from original ultrasound 
images. However, a single chip occupies a small propor-
tion of the original ultrasound image, making it challenging 
to detect in the densely packed original ultrasound image. 
In general, the size of the original ultrasonic test image is 
about 1676 × 1628 pixels. In contrast, the size of a single 
chip is only 65 × 65 pixels, and its area ratio in the original 
image is only 0.15%. Therefore, such a small ratio imposes 
stringent requirements on chip inspection networks' feature 
extraction efficacy.

To efficiently improve the feature extraction capability 
of PEC, the backbone network is RetinaNet, a single-stage 
network known for its quickness and precise detection. This 
network uses a residual module defined as a "shortcut con-
nection" to connect the input and output. This connection 
method has effectively addressed the gradient explosion-
induced issues of network degradation and feature extraction 
capability within deep networks [16, 25]. Then, as shown 
in Table 2, The CoTNet50 core network, which incorpo-
rates the self-attention mechanism, is used to replace the 
3 × 3 convolution in RetinaNet to further improve the feature 
extraction capability [26]. Furthermore, the FPN is also used 
to enhance the feature extraction capability under a mini-
mal ratio [27–29]. Finally, the proposed PECNet enables 
the accurate extraction of chip features and possesses the 
benefits of thin layers and high speed.

Fig. 5   The SAM tool for scanning and collecting ultrasonic images 
of PEC

Table 1   Datasets for each category of defect

Defect type Train dataset Test dataset Total dataset

PD 4340 1085 5425
SCD 4515 949 5464
CD 2983 746 3729
FD 989 247 1236
SD 1901 475 2376
TV 1318 330 1648
ND 2722 680 3402

Table 2   Improvement of CoTNet50 network based on ResNet50 net-
work

Bold is to highlight the details of improvements made to the network

Steps ResNet50 CoTNet50 Layer

1 7 × 7 Conv, 64, stride2 7 × 7 Conv, 64, stride2 × 1
2 3 × 3 max pool, stride2 3 × 3 max pool, stride2 × 1

1 × 1, 64
3 × 3, 64
1 × 1, 256

1 × 1, 64
COT, 64
1 × 1, 256

× 3

3 1 × 1, 128
3 × 3, 128
1 × 1, 512

1 × 1, 128
COT, 128
1 × 1, 512

× 4

4 1 × 1, 256
3 × 3, 256
1 × 1, 1024

1 × 1, 256
COT, 256
1 × 1, 1024

× 6

5 1 × 1, 512
3 × 3, 512
1 × 1, 2048

1 × 1, 512
COT, 512
1 × 1, 2048

× 3

6 Global average pool
1000-d fc, softmax

Global average pool
1000-d fc, softmax

–
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Utilizing CoTNet50 to replace the RetinaNet backbone 
network can enhance the chip's ability to extract features 
because it introduces a CoTBlock module. As depicted 
in Fig. 6, CotBlock is a transformer-style self-attention 
mechanism module that is superior at capturing the inter-
nal correlation of data or features. First, the input keys are 
context-encoded using 3 × 3 convolutions, yielding a static 
contextual representation of the input. Next, the encoded 
static keys are concatenated with the input query x to dis-
cover a dynamic multi-head attention matrix using two 1 × 1 
convolutions. The input values are then multiplied by the 
learned attention matrix to produce a dynamic contextual 
representation of the input data. Finally, the merged static 
and dynamic contextual representations are taken as the final 
output. Using the core module with CotBlock can integrate 
context learning and self-attention learning in PEC ultra-
sound images, effectively enhancing the detection backbone 
network's feature extraction and expression capabilities.

After using the CoTNet50 backbone network with the 
CotBlock module as the core to obtain feature-enhanced 
images, an FPN network for feature fusion detection is 
employed to identify PEC accurately. As depicted in 
Fig. 7, a low-resolution feature map with a size of 1/32 
of the original image is up-sampled to a high-resolution 
feature map with a size of 1/16. Then, a 1/16-sized feature 
map is generated using 3 × 3 convolutional linear superpo-
sition, and the two feature maps are initially fused. Con-
tinue using the same method to develop a 1/8-scale feature 
map. Finally, the 1/8 large-scale feature map obtained by 

progressively merging these three-level feature maps is 
then utilized for classification and regression. The shallow 
feature map in the FPN contains more position and detail 
information, but its semantics are weaker. In contrast, the 
high-level feature map has more robust semantics but poor 
resolution and detail perception. Adopting this method 
of step-by-step fusion of three-level features can ensure 
that the network for detecting PEC has a sufficiently large 
receptive field and robust high-dimensional semantics and 
is more conducive to accurately identifying chips with a 
tiny area ratio.

The PECNet constructed with CoTNet50 feature extrac-
tion and FPN feature fusion can obtain a feature map that 
is 1/8 the size of the original image, as well as output the 
location of the target chip. The regression sub-network 
consists of four convolutional layers, each with a step size 
of 1, a convolution kernel size of 3 × 3, and a padding 
value of 1. The network processes the feature map, whose 
size remains unchanged and whose number of channels is 
4 × num_Anchor. The classification sub-network is com-
parable to the regression sub-network, with the addition of 
2 × num_Anchor channels. RetinaNet places nine Anchors 
at each feature point, with an aspect ratio of (0.5, 1, 2) and 
scaling ratios of (20, 22/3, 21/3). To obtain all Anchor, 
the generated Anchor is translated according to a fixed 
step size [19].

ECNet follows RetinaNet's classification loss function 
FocalLoss and regression loss function SmoothL1. By 
assigning various weights to samples with varying degrees 
of difficulty, FocalLoss can balance the contribution of 
positive and negative examples to the loss and prevent the 
number of negative samples from influencing the direc-
tion of model optimization. SmoothL1 computes the loss 
of the coordinate prediction value of the regression frame 
separately before adding them linearly, thereby reducing 
the correlation between the coordinates and achieving the 
correction of the anchor frame.
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2.4 � Defect recognition network by PEDNet

The MobileNetV2 is chosen as a primary network to iden-
tify plastic chip defects due to its advantages of relative 
lightness and high efficiency [22, 30, 31]. MobileNetV2 is 
a lightweight neural network that employs an inverse resid-
ual structure. It increases the dimension of the input vector 
through point-wise convolution and then extracts features 
from each vector channel through depth convolution. Ulti-
mately, features' dimensions are compressed and reduced via 
point-by-point convolution. Not only can the reverse residual 
enhance the number of features and improve precision, but it 
may also reduce the network's overall computation load. Due 
to the random distribution of defects in PEC and the recogni-
tion requirement for high accuracy and speed, the chip defect 
recognition network faces significant feature extraction and 
classification performance challenges. Therefore, the net-
work must be enhanced based on MobileNetV2 to improve 
the accuracy and efficiency of defect detection.

The original MobileNetV2 backbone network was rede-
signed to derive the fundamental characteristics of chip 
defects, as shown in Table 3, where n is the number of 
times the bottleneck block is used. First, replace the fourth 
bottleneck structure in the original MobileNetV2 backbone 
network with pooling and convolution operations, and then 
merge the derived features from the two replaced branches 
into the following bottleneck structure. This enhancement 
can increase the detection network's receptive field and 
extend the number and types of defect fundamental charac-
teristics. Then, a cross-local connection structure is added 
concurrently at the sixth bottleneck structure of the original 
MobileNetV2 backbone network. This enhancement can 
increase the scale-specific information of output features, 
making the backbone network more familiar with various 
defect shapes and sizes to identify defects in PEC precisely.

The primary function of the classifier is to transform the 
target features extracted by the backbone network into spe-
cific classification results. When classifying PEC defects, it 
is necessary to retain the characteristics as much as possible 
and classify them rapidly according to the seven types of 
defects that have been defined. As demonstrated in Table 4, 
the original MobileNetV2 classifier directly classifies the 

output of the final bottleneck and generates a 320-channel 
feature map. However, the PEC only needs to output seven 
categories of defects. Suppose the number of neurons in the 
original network classifier is only modified stiffly to match 
the defect types. In that case, it will not be conducive to 
fully utilizing the feature extraction ability of the model 
during transfer learning, negatively impacting the accuracy 
and efficiency of defect classification. Therefore, this work 
enhances the original classifier with an additional progres-
sive convolution layer to better preserve features and refine 
the classification of the PEC defects [12, 32].

As shown in Fig. 8, the enhanced PEDNet consists of 
the defect recognition backbone network and the classi-
fier network. Initially, the defect recognition backbone 
network improves the problems in the original network by 
strengthening the original backbone network's fourth and 
fifth bottleneck structures: the fundamental characteristics 
loss problem caused by the linear superposition of the bot-
tleneck's deep network layers. Moreover, the receptive field 
of the PEDNet is significantly increased, and the number 
and types of defect features such as color, texture, and edge 
are expanded. By adding a progressive convolution layer, 
the defect classifier effectively overcomes the feature loss 
caused by directly altering the number of neurons in the 
original classifier. PEDNet effectively retains defect features 
and refines the classification according to actual demands, 
thereby improving defect identification and classification 
accuracy and efficiency.

3 � Results and discussion

3.1 � Training details

A server was constructed for the training and testing of the 
model, with the Ubuntu 18.04 operating system being con-
figured. The central processing unit utilized in the system was 
the Intel Core i7-7700K, operating at 4.20 GHz. The graphics 

Table 3   Improvement of network structure based on the original 
MobileNetV2

Bold is to highlight the details of improvements made to the network

Steps MobileNetV2 Improved MobileNetV2 n

1 7 × 7 × 1280 Conv2d 1 × 1 7 × 7 × 192 Conv2d 1 × 1
5 × 5 × 64 Conv2d 3 × 3

× 1

2 1 × 1 × 1280 Avgpool 7 × 7 5 × 5 × 64 Avgpool × 1
5 1 × 1 × k Conv2d 1 × 1 1 × 1 × 7 Conv2d 1 × 1 –

Table 4   Enhancement of the classifier architecture by a progressive 
convolution layer

Bold is to highlight the details of improvements made to the network

Steps MobileNetV2 Improved MobileNetV2 n

1 112 × 112 × 32 Conv2d 112 × 112 × 32 Conv2d × 1
2 112 × 112 × 16 Bottleneck

56 × 56 × 24 Bottleneck
28 × 28 × 32 Bottleneck

112 × 112 × 16 Bottleneck
56 × 56 × 24 Bottleneck
28 × 28 × 32 Bottleneck

× 1
× 2
× 3

3 14 × 14 × 64 Bottleneck 14 × 14 × 32 Maxpool
14 × 14 × 32 Conv2d

× 4

4 14 × 14 × 96 Bottleneck 14 × 14 × 96 Bottleneck × 3
5 7 × 7 × 160 Bottleneck 7 × 7 × 128 Bottleneck

7 × 7 × 64 Conv2d
× 3
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processing unit employed was the GeForce GTX 1660 Ti. The 
system's memory capacity was 6 GB, and the DCNN utilized 
was Pytorch with CUDA version 10.0.

Before the training and testing processes, the original 
image was scaled to dimensions of 320 × 320 pixels using 
linear interpolation and fed into the neural network for fur-
ther analysis. Then, before training the chip detection network 
PECNet on the given dataset, it underwent training on the 
ImageNet dataset to acquire pre-trained weights. The Adam 
optimization algorithm, a kind of stochastic gradient descent, 
was employed to optimize the model [33]. The optimization 
parameters encompass the initial learning rate of 0.0001, the 
weight decay value of 0.0001, the batch size of 8, and the max-
imum number of iterations of 10,000 to achieve complete net-
work convergence. Furthermore, the PEDNet model, designed 
for defect identification, was utilized for training and testing. 
The optimization parameters for the model consist of an ini-
tial learning rate of 0.001, a weight decay value of 0.0001, a 
batch size of 16, and a total of 300 epochs. Similarly, once the 
network model has undergone training, it will undergo testing 
using the internal defect test set specific to the chip.

To quantitatively assess the impact of the chip detection 
model, the evaluation criteria employed include the recall rate, 
accuracy, precision, and comprehensive evaluation indicators, 
all measured under a 0.5IoU threshold.

(1)R =
TP

TP + FN

(2)P =
TP

TP + FP

(3)AP = ∫
0

1

P(R)dR

(4)F1-measure =
2 ∗ P ∗ R

P + R

The formula incorporates several variables, including R, 
which represents the recall rate, and P, which denotes the 
accuracy rate. AP signifies precision, and the F1 measure 
serves as the total assessment index. TP signifies the accu-
rate identification of the chip, while TN denotes the proper 
background identification. FP refers to the misidentification 
of the background as the chip, and FN represents the wrong 
identification of the chip as the backdrop.

The training loss function of the PECNet chip detection 
network model exhibits a notable decline as the number of 
iterations grows. After around 4400 iterations, the curve 
reaches a state of stability, suggesting that the network 
model tends to converge following a training period.

3.2 � Experimental results and discussion

3.2.1 � Chip detection by PECNet

Figure 9 demonstrates the precision and effectiveness of the 
chip detection network. It illustrates the successful identifi-
cation of a single chip using the PECNet network. Addition-
ally, the network can partition the chip's position area and 
mark the chip's potential value simultaneously.

The efficacy of PECNet is further verified through a hori-
zontal quantitative comparison, as shown in Table 5. Multi-
ple representative target detection networks were employed 

Fig. 8   PEDNet Network for 
defect recognition and clas-
sification
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to evaluate and compare their performance on the identical 
self-constructed dataset. Among these target detection net-
works, ResNet50 and single-shot multi-Box detector (SSD) 
represent two-stage and one-stage networks, respectively. 
The comparison results show that the original ResNet50 
has the highest detection accuracy rate of 99.8%. However, 
it was also discovered that this network's detection time 
was far too long before any improvements were made. The 
PECNet model demonstrates a detection accuracy of 98.5% 
and a recall rate of 100%. Additionally, it exhibits notable 
enhancements in detection speed, with a single-chip detec-
tion time of only 9 ms. This detection time is 96.4% and 
66.7% lower than the ResNet50 and SSD models. Hence, 
the designed PECNet is capable of efficiently and precisely 
detecting PEC.

3.2.2 � Defect detection by PEDNet

To evaluate the defect detection capabilities of the PED-
Net network model, several kinds of defects were tested and 
compared to the testing performance of other typical net-
work models. As shown in Fig. 10a, the PEDNet model dem-
onstrates that the detection accuracy of all types of defects 
exceeds 96%. Notably, the detection performance is power-
ful for top void, complete delamination, and no damage, with 
accuracy rates of 98.50%, 99.30%, and 99.60%, respectively. 
According to the data presented in Fig. 10b, when com-
paring the four well-known classification networks, namely 
MobileNetV2, ResNet50, DenseNet121, and InceptionV3, 
it is observed that PEDNet achieves an average accuracy of 
97.8%. This accuracy is comparable to InceptionV3, which 
is 98.1% and surpasses the performance of alternative mod-
els. Furthermore, the PEDNet model has superior detection 
speed, with a mere 0.0021 s per image recognition time, 
which is 53.3% faster than the InceptionV3 model.

Figure 10 presents the performance characterization of 
the PEDNet defect identification network. Subfigure (a) dis-
plays the detection accuracy for various defect types, while 
subfigure (b) compares the detection accuracy among dif-
ferent detection networks and shows the average recognition 
time for a single image.

As shown in Table 6, the enhancement of the Mobile-
NetV2 classifier has significantly improved the defect 
detection performance of PEDNet. Specifically, there was a 
1.2% rise in the average accuracy rate of all defect types, a 
20.8% drop in the number of network parameters, a 20.5% 

decrease in the model size, and an 8.7% increase in the 
average recognition rate of a single image. The outcomes 
demonstrate that the enhancements to PEDNet's backbone 
network significantly affect the model's capability to extract 
features. Additionally, the newly designed classifier can 
learn these characteristics effectively, resulting in a more 
accurate classification of defects on time. Furthermore, it is 
essential to recognize that PEDNet exhibits slightly lower 
accuracy than InceptionV3, with a tiny difference of 0.3%. 
Fortunately, all other performance parameters show bet-
ter results for PEDNet. In particular, there is a significant 
decrease in the parameter amount and the model size com-
pared to ResNet50, with reductions of 92.4% and 92.2%, 

Table 5   Comparison of the 
performance parameters of 
networks for chip identification

Network Size (px) Recall rate (%) Accuracy (%) F1 (%) Time (ms)

ResNet50 (Original) 320,320 93.7 99.8 97.2 249
SSD 320,320 100 98.1 97.7 27
PECNet (this work) 320,320 100 98.5 98.5 9
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respectively. Consequently, the PEDNet created through this 
investigation demonstrates precise identification and clas-
sification of defects in PECs and illustrates the benefits of 
being lightweight and fast. Therefore, it meets the demands 
of PEC reliability testing.

4 � Conclusion

We proposed an original method for applying DCNNs to 
defect detection inside PECs. Initially, a dataset contain-
ing seven types of internal defects was collected and pro-
duced using SAM techniques. Furthermore, the PECNet 
chip detecting network was developed to address the issue 
of densely packed chips and the tiny ratio of single chip 
area. The network architecture is constructed based on the 
RetinaNet framework, which integrates the CotNet50 model 
and the FPN network structure. The test result shows that the 
chip recognition accuracy rate reaches 98.6%, and its infer-
ence speed for processing a single image is only nine mil-
liseconds. Additionally, PEDNet, a network for PEC defect 
detection, has been established to address the demands of 
high-precision, rapid, and lightweight industrial applications 
in microelectronics reliability testing. PEDNet was founded 
on the base of the MobileNetV2 architecture, combining 
both cross-local connections and progressive classifiers. 
Moreover, the network achieved an average recognition 
and classification accuracy of 97.8%, taking only 0.0021 s 
for each image recognition. The proposed method offers an 
accurate and effective solution for detecting defects in PEC. 
This method serves as a technological assurance to improve 
the plastic encapsulation process and enhance the reliability 
of the chips.
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