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Abstract
Simultaneous Localization and Mapping (SLAM) is the core technology enabling mobile robots to autonomously explore 
and perceive the environment. However, dynamic objects in the scene significantly impact the accuracy and robustness of 
visual SLAM systems, limiting its applicability in real-world scenarios. Hence, we propose a real-time RGB-D visual SLAM 
algorithm designed for indoor dynamic scenes. Our approach includes a parallel lightweight object detection thread, which 
leverages the YOLOv7-tiny network to detect potential moving objects and generate 2D semantic information. Subsequently, 
a novel dynamic feature removal strategy is introduced in the tracking thread. This strategy integrates semantic information, 
geometric constraints, and feature point depth-based RANSAC to effectively mitigate the influence of dynamic features. To 
evaluate the effectiveness of the proposed algorithms, we conducted comparative experiments using other state-of-the-art 
algorithms on the TUM RGB-D dataset and Bonn RGB-D dataset, as well as in real-world dynamic scenes. The results 
demonstrate that the algorithm maintains excellent accuracy and robustness in dynamic environments, while also exhibiting 
impressive real-time performance.
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1  Introduction

Simultaneous localization and mapping (SLAM) is a piv-
otal technology in robotics and serves as the foundation for 
robots to autonomously navigate, explore, and perceive their 
surroundings [1]. According to the sensor, SLAM is mainly 
divided into laser-based SLAM, visual-based SLAM, and 
multi-sensor fusion SLAM. Visual SLAM has attracted 
widespread attention from researchers due to its compact 
size, cost-effectiveness, and the rich environmental infor-
mation it can acquire. With the relentless efforts of scien-
tific researchers, visual SLAM has developed rapidly. There 
have been numerous exemplary systems that have proposed 
in recent years, such as ORB-SLAM2 [2], DS-SLAM [3], 
DynaSLAM [4], etc. Its applications span across autono-
mous driving, medical service robots, smart agriculture, 
augmented reality (AR) [5–7], and more.

Although visual SLAM has achieved promising results, 
it also encounters a significant challenge: dynamic environ-
ment. Many existing visual SLAM systems are built on the 
assumption of static scenes, which severely restricts their 
deployment and usability in dynamic environments [4]. For 
instance, the presence of dynamic objects such as moving 
people and animals can negatively affect pose estimation and 
map reconstruction, thereby undermining the accuracy and 
stability of the system.

To ensure the stability of the visual SLAM system in 
dynamic environment, the traditional visual SLAM utilizes 
geometric constraints to directly eliminate dynamic features 
but is susceptible to noise and requires manual threshold 
adjustments [5]. The emerging semantic visual SLAM com-
bines geometric constraints with deep learning technologies, 
such as semantic segmentation and object detection, effec-
tively improving the robustness of visual SLAM in dynamic 
environments [1]. For instance, semantic segmentation net-
works such as SegNet [8] and PSPNet [9], along with object 
detection networks like MobileNetV3 [10] and YOLOv7 
[11], can identify moving objects. Integrating these tech-
nologies with geometric data ensures the accuracy of visual 
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SLAM system, but it also inevitably introduces real-time 
performance challenges.

Addressing the impact of dynamic objects on visual 
SLAM is, therefore, crucial for enabling accurate position-
ing, mapping, and intelligent applications of robots in real-
world environments. This paper proposes a real-time RGB-D 
visual SLAM system designed for dynamic indoor environ-
ments. The main contributions of this article include the 
following aspects: 

1.	 First, we optimize and employ YOLOv7-tiny on a sin-
gle CPU and compensate for missed detections using 
Extended Kalman Filtering and the Hungarian algorithm 
to ensure the accuracy of semantic information.

2.	 Second, we propose a dynamic feature point removal 
algorithm to enhance the tracking and locating accuracy 
of the visual SLAM in dynamic environments by com-
bining semantic information, geometric constraints, and 
depth information.

3.	 Third, we conduct a detailed experimental evaluation on 
various public datasets and real-world dynamic scenes, 
and demonstrate superior accuracy and robustness 
through rigorous testing and analysis.

The rest of this paper is organized as follows: Sect. 2 reviews 
related work on dynamic visual SLAM, Sect. 3 presents the 
details of the proposed method, Sect. 4 provides extensive 
quantitative and qualitative evaluations of the proposed 
method, and Sect. 5 concludes the paper and discusses future 
prospects.

2 � Related work

2.1 � Geometric‑based visual SLAM methods 
in dynamic scenes

In visual SLAM systems, only static features satisfy inter-
frame and global geometric constraints. Therefore, some 
researchers utilize geometric constraints to distinguish 
between static and dynamic features. Zhang et  al. [12] 
employed the dense optical flow residual method to detect 
dynamic regions in the scene and reconstructed the static 
background using a framework similar to the algorithm 
proposed in [13]. Ji et al. [14] proposed a motion detec-
tion geometry module that clusters depth images and uti-
lizes reprojection errors to identify dynamic areas and 
detect moving objects. Dai et al. [15] established a corre-
lation between mapping points and distinguished dynamic 
points from static map points based on the assumption that 
the relative positions of static points remain consistent over 
time. Du et al. [16] employed a graph-based approach that 
integrates long-term consistency via conditional random 

fields (CRFs) to robustly detect and track dynamic objects 
over extended observations across multiple frames, thereby 
tackling the challenges of SLAM in dynamic environments. 
Wang et  al. [17] segmented objects to identify moving 
objects, thereby estimating the camera pose and perform-
ing dense point cloud reconstruction. Zhang et al. [18] used 
particle filtering to process depth images, combining optical 
flow and grid-based motion statistics to estimate inter-frame 
transformations during the tracking stage.

There are also many geometric methods based on line fea-
tures and plane features. Zhang et al. [19] matched the point 
and line features in the images captured by stereo camera to 
estimate the pose, and utilized dynamic grids and motion 
models to remove dynamic features. Fan et al. [20] proposed 
a approach based on plane features, utilizing a network to 
extract these features and incorporating plane constraints 
into the reprojection error calculation during backend opti-
mization to ensure accuracy. Long et al. [21] proposed a 
approach tailored for dynamic planar environments. This 
method effectively separates dynamic planar objects based 
on rigid motion and tracks them independently, showcasing 
superior performance in localization and mapping. Geomet-
ric methods are straightforward to implement, and do not 
require pretrained models, making them highly computa-
tionally efficient. However, they have limitations such as a 
strong dependence on geometric features, poor performance 
in highly dynamic scenes, and a lack of deep understanding 
of the surrounding environment, which prevents the estab-
lishment of globally consistent maps. Therefore, they are 
often used in combination with other methods.

2.2 � Semantic‑based visual SLAM methods 
in dynamic scenes

Semantic-based visual SLAM primarily relies on deep learn-
ing techniques, such as object detection and semantic seg-
mentation, to obtain semantic information. This is done to 
eliminate dynamic features during tracking and mapping. 
An et al. [22] were the first to use semantic segmentation 
methods for detecting and removing moving vehicles. Yu 
et al. [3] enhanced ORB-SLAM2 by incorporating a SegNet-
based [8] semantic segmentation thread to manage dynamic 
objects. Runz et al. [23] utilized the semantic labels gen-
erated by Mask R-CNN [24] to segment moving objects, 
create semantic object masks, and establish object-level 
representations of dynamic objects. Jin et al. [25] proposed 
an unsupervised semantic segmentation model based on 
residual neural network structure, promoting the application 
of SLAM in various real-world scenarios. Chang et al. [26] 
utilized YOLACT for semantic segmentation and integrated 
geometric constraints to detect dynamic features beyond the 
segmentation mask. Wu et al. [27] improved the YOLOv3 
network by incorporating depth difference and random 
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sample consistency to distinguish dynamic features. Hu 
et al. [28] improved ORB-SLAM3 by adding geometric and 
semantic segmentation threads. They integrated multi-view 
geometry and semantic information to identify dynamic fea-
ture points. Cheng et al. [29] extended ORB-SLAM2 with 
object detection and semantic mapping, using a dynamic 
feature exclusion algorithm for 3-D octo-map and semantic 
object creation. Jin et al. [30] integrated ORB-SLAM3 with 
a saliency prediction model that comprehensively consid-
ers geometric, semantic, and depth information to focus on 
important areas and enhance the accuracy of visual SLAM. 
He et al. [31] combined YOLOv5, optical flow, and depth 
information to differentiate between foreground and back-
ground regions in images, treating the foreground areas 
as dynamic regions. Chen et al. [32] proposed a semantic 
SLAM method that integrates knowledge distillation and 
dynamic probability propagation. This approach effectively 
mitigates the impact of dynamic scenes on SLAM accuracy 
and processing speed through lightweight segmentation 
models and a static semantic keyframe selection strategy.

Some recent studies have proposed multimodal technol-
ogies, such as recovering missing depth images [33], and 
understanding and predicting human behavior and emo-
tions from visual images [34]. These advancements will 
contribute to the development of visual SLAM systems. 
These studies have promoted the development of SLAM in 
dynamic environments, representing a substantial advance-
ment in SLAM technology. While they enhance localization 
accuracy and map consistency, they also inevitably increase 
computational overhead and may result in the loss of some 
valuable information.

3 � System overview

In this section, we will elaborate on the proposed method in 
detail from four different aspects. First, we will introduce the 
overall framework of the system. Second, we will discuss the 
deployment and implementation details of the object detect-
ing thread. Subsequently, we will explain the inter-frame 

geometric constraint and depth-based RANSAC. Finally, we 
will focus on dynamic feature removal strategy.

3.1 � System framework

The algorithm presented in this article is an improvement 
of the classic visual SLAM system, ORB-SLAM2. This 
algorithm operates through three primary parallel threads: 
tracking, local mapping, and loop closing. It has demon-
strated outstanding performance in terms of both speed and 
accuracy. Therefore, this article introduces functional exten-
sions and improvements based on the foundation provided 
by ORB-SLAM2.

As shown in Fig. 1, our system incorporates a parallel 
real-time object detecting thread. Normally, object detec-
tion processes are time-intensive, whereas ORB feature 
extraction and inter-frame tracking operate at faster speeds. 
To achieve real-time operation, we utilize parallel threads 
for object detection to minimize the blocking time of the 
SLAM system and optimize overall system efficiency. Next, 
the dynamic feature removal strategy proposed in this article 
is implemented to remove dynamic features. By removing 
these dynamic feature points, we then focus on robust static 
feature points for tracking purposes. Subsequently, key-
frames are selected based on a specific keyframe decision 
strategy. These keyframes, devoid of dynamic features, are 
then forwarded to the local mapping and loop closing thread, 
where local and global pose optimization is conducted.

The detailed process of removing dynamic feature points 
is shown in Fig. 2. During system operation, RGB images 
captured by the RGB-D camera are sent to both the track-
ing and object detecting threads for feature point extraction 
and object detection. Next, a tightly coupled approach is 
used to integrate 2D semantic information, inter-frame geo-
metric constraint, and depth threshold to effectively remove 
dynamic features. The semantic information includes the 
probability of semantic labels along with the 2D bounding 
box generated by the object detecting thread. The bound-
ing box can identify the most probable location of dynamic 
feature points in the image. The geometric constraint utilize 

Fig. 1   The overall framework 
of our system. Different colored 
boxes represent different threads
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the fundamental matrix to calculate the distance from each 
feature point to its corresponding epipolar line, followed by 
a comparison with an empirical threshold. The depth thresh-
old within each 2D bounding box is iteratively calculated 
using an improved depth-based RANSAC algorithm. If a 
feature point’s depth value exceeds the depth threshold, the 
feature point is removed. After processing the dynamic fea-
ture points, the remaining static feature points are accurately 
matched and subsequently used for tasks, such as tracking, 
local mapping, and loop closing.

3.2 � Object detection

The visual SLAM system designed in this article is primarily 
designed for mobile robot applications. Under constraints 
such as limited space, cost, and power consumption, the 
deployment of object detection model faces a significant 
challenge, especially since many existing studies such as 
DS-SLAM [3], DynaSLAM [4] require GPU acceleration 
to operate effectively. This increases the flexibility and com-
plexity of system deployment.

This paper selects YOLOv7-tiny, a lightweight object 
detection network, as the primary model for the object 
detecting thread, which is trained on the MS COCO dataset 
[35]. At the same time, considering the balance between 
speed and accuracy among various object detection net-
works, the deployment framework NCNN [36] is chosen. 
NCNN is a high-performance neural network inference 
framework designed for mobile devices, implemented in 
pure C++, and known for its ease of setup, rapid imple-
mentation, and seamless integration with the visual SLAM 
system.

When detecting dynamic objects, the absence of semantic 
information in certain frames can result in feature point mis-
matches, which can significantly impact the accuracy of the 

SLAM system. To address this issue, we introduce Extended 
Kalman Filtering (EKF) and the Hungarian algorithm to 
compensate for missed detections of dynamic objects. The 
EKF predicts the bounding box in the next frame, while the 
Hungarian algorithm associates the predicted box with its 
corresponding detection box.

3.3 � Epipolar geometry constraint

The initial step in removing dynamic feature points using 
epipolar geometry involves matching feature points between 
two adjacent RGB image frames. To achieve this, the paper 
applies a pyramid-based Lucas–Kanade optical flow method, 
which establishes correlations between feature points across 
frames. Subsequently, the seven-point method based on 
RANSAC is used to compute the fundamental matrix F 
between the two adjacent frames.

Figure 3 illustrates the principle of epipolar geometry. 
Consider two RGB image frames, denoted by I1 and I2, 
where O1 and O2 represent the optical center of the camera. 

Fig. 2   The process of removing dynamic features. First, ORB feature points are extracted, and dynamic objects are detected. Then, the proposed 
dynamic feature removal strategy is used to filter out dynamic features. Finally, only static features are retained for subsequent processing

Fig. 3   Epipolar geometry constraint
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Let P1 and P2 represent a pair of correctly matched feature 
points in I1 and I2, respectively, with a common map point 
P. L1 and L2 represent polar lines. The fundamental matrix 
F is solved using the following equation:

where xi and yi represent the pixel coordinates of the fea-
ture points P1 and P2 in their respective image coordinate 
systems, and ei represents each element of the fundamental 
matrix F. Then, the polar line L2 of the current frame I2 can 
be calculated by the following equation:

Here, X, Y, and Z represent the vector form of the polar line 
L2 . The calculation formula of the distance D from the fea-
ture point P2 to the corresponding polar line L2 is

In an ideal scenario, the point P2 in the current frame I2 
should lie exactly on the corresponding polar line L2 . This 
alignment implies that, ideally, the distance D between P2 
and L2 equals zero. However, due to noise in real scenar-
ios, the distance D between P2 and L2 often exceeds zero. 
As shown in Fig. 3, when there is a dynamic point P′ , the 
feature point P2 may shift to a new position like P4. The 
threshold � helps in determining when the feature point is 
considered to be moving, which occurs when the distance D 
exceeds this predefined threshold �.

3.4 � Feature point depth‑based RANSAC

Each frame of an RGB image undergoes processing by 
the object detecting thread to generate semantic labels and 
bounding boxes that describe the object’s position. Some 
studies choose to directly remove all feature points located 
within the bounding box. which removes static feature 
points within the bounding box that are not associated with 
dynamic objects. However, when the bounding box in the 
RGB image occupies a substantial portion of the frame, it 
can result in the termination of the SLAM system due to 
insufficient remaining feature points.

Inspired by article [27], we utilize depth images to 
assist in identifying dynamic features. As shown in Fig. 4, 
it is evident that the depth value of the dynamic objects 
within the bounding box differs significantly from the 
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static background. Therefore, the dynamic feature points 
can be removed utilizing depth information. Inspired by 
the approach described in [27], dynamic feature points are 
separated using depth images by improving the RANSAC 
iterative method based on depth values. 

Algorithm 1   Feature point depth-based RANSAC

The description of depth-based RANSAC is presented in 
Algorithm 1. Utilizing the 2D semantic information gener-
ated by the object detecting thread, find the feature points 
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Fig. 4   Some RGB images and depth images were acquired using 
RGB-D camera, along with bounding boxes
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located within the bounding box and store them in a set. 
Then, begin iterative processing by initializing a loop, ran-
domly select two feature points from the set and calculate 
their average depth value dave , which serves as the initial 
depth value. Subsequently, iterate through all the remain-
ing feature points, recalculating the average depth value by 
incorporating the new feature points, and comparing it with 
the dave . If the depth value exceeds the dave , valid feature 
points should be included. After completing the traversal, 
calculate the average depth value of the effective feature 
points, and update the value from the previous cycle accord-
ingly. Finally, return an optimal depth threshold. Feature 
points with depth values greater than this threshold are then 
classified as static feature points.

The depth-based RANSAC math model, which can be 
described as follows:

where dave represents the mean of depth, N is the number 
of points, and di represents the depth value of the selected 
points. We use � to represent the percentage of inliers in 
the total number of points. In an iteration using N points, 
the probability that at least one outlier in the selected points 
is 1 − �

N , then the probability that at least one outlier con-
tinuously exists in K iterations is (1 − �

N)
K . Using P denote 

the probability that points randomly selected from the point 
set during K iterations are all inliers. There is an equation 
as follows:

Then, the calculation formula of K is as follows:

In our method, the number of K is continuously adjusted 
based on the previous estimate � and the desired probability 
P to achieve a specific confidence level. Subsequently, we 
determine the optimal depth threshold for the feature points 
within the bounding box.

3.5 � Dynamic feature rejection strategy

We will introduce the dynamic feature rejection strategy 
designed in this article, which integrates semantic informa-
tion, geometric constraint, and depth threshold. Algorithm 2 
describes the implementation process of the dynamic feature 
rejection strategy.

Let us discuss how to select the effective distance 
threshold � , which will directly affect the effectiveness 
of the dynamic feature rejection strategy. Therefore, we 

(4)dave =

∑N

i=1
di

N
,

(5)1 − P = (1 − �
N)

K
.

(6)K =
log(1 − P)

log(1 − �
N)

.

continuously track and record the distance from the feature 
points in adjacent frames to the corresponding epipolar line 
in a static scene. After analyzing the entire data, we found 
that the value of distance D is mainly concentrated around 
1.0. Hence, this article sets the distance threshold � to 1.0. 
In an indoor environment, the probabilities and amplitudes 
of motion for different potential moving objects vary sig-
nificantly. For example, pedestrians exhibit high dynamics, 
chairs exhibit low dynamics, and desks are typically static 
objects. Therefore, a value W is assigned to represent the 
motion weight of the object. However, if the weight value 
is too small, too many moving dynamic points will be over-
looked; conversely, if the weight value is too large, robust 
static points will be mistakenly classified and deleted. To 
accurately filter dynamic features while retaining static fea-
tures, we utilize a weight scale ranging from 0 to 5. Pedes-
trians are assigned a weight of 5, chairs a weight of 3, and 
desks a weight of 1. 

Algorithm 2   Dynamic feature rejection strategy

For each feature point, we initially verify the presence of 
semantic information in the image frame after processing 
through the object detecting thread. If semantic informa-
tion is present, we proceed to check if the feature point falls 
within the bounding box. Following this, calculations and 
assessments are conducted using the specified weights W 
and thresholds � as mentioned earlier.

4 � Experiment and analysis

This section will comprehensively discuss the algorithm’s 
performance in dynamic scenarios. We will systematically 
analyze and evaluate the proposed method using public 
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datasets and real-world scenarios. First, we evaluate the 
tracking accuracy of the system using dynamic sequences 
from the TUM RGB-D dataset [37] and Bonn RGB-D data-
set [38], and then compare it with current state-of-the-art 
dynamic visual SLAM solutions. Second, we compare the 
tracking performance of this algorithm with ORB-SLAM2 
in real dynamic scenes. Next, we conduct an ablation 
experiment to verify the effectiveness of each module in 
the dynamic feature removal strategy. Finally, we analyze 
the real-time performance of the system. The experimen-
tal platform consists of a computer equipped with an Intel 
i5-8400 CPU, 16GB of memory, running the Ubuntu 18.04 
operating system, and an NVIDIA Jetson Xavier NX 16GB 
development kit.

The absolute trajectory error (ATE) and relative pose 
error (RPE) are commonly used metrics for evaluating the 
performances of SLAM systems. ATE measures the direct 
difference between the estimated pose and the ground truth 
pose, providing an intuitive assessment of the algorithm’s 
accuracy and the global trajectory consistency. RPE, on 
the other hand, quantifies the accuracy of pose differences 
between two frames separated by a fixed time interval, 
akin to measuring odometry error directly against ground 
truth. In each quantitative comparison table for the metrics, 
bold text is used to highlight the optimal results (e.g., error, 
processing time, etc.).

4.1 � Performance evaluation on TUM RGB‑D dataset

The TUM RGB-D dataset, provided by the Technical Uni-
versity of Munich, is a significant benchmark for visual 
SLAM systems. It comprises multiple sequences catego-
rized into various usage scenarios, such as sitting, walk-
ing, and interactions involving objects like tables. In our 

experiments, we utilized four highly dynamic sequences 
from the fr3_walking for validation. These sequences depict 
two individuals walking in an office setting. Additionally, 
a low dynamic sequence is included as supplementary 
data. We selected ORB-SLAM2 [2], DS-SLAM [3], RDS-
SLAM [8], Blitz-SLAM [20], and SG-SLAM [29] as the 
comparison algorithms. ORB-SLAM2 is the foundation of 
our algorithm, while DS-SLAM, RDS-SLAM, Blitz-SLAM, 
and SG-SLAM are outstanding dynamic visual SLAM algo-
rithms from the past and recent years, providing strong refer-
ence significance.

Figure 5 shows the feature point extraction performance 
of our algorithm compared to ORB-SLAM2 using the TUM 
RGB-D dataset. Figures 6 and 7 show the ATE and RPE 
measurement diagrams, respectively, comparing the tracking 
trajectory with the ground truth of our algorithm and ORB-
SLAM2 across different sequences. From a qualitative per-
spective, it is evident that the camera trajectories estimated 
by our algorithm are more consistent with the ground truth 
compared to ORB-SLAM2.

Tables 1, 2, and 3 show the quantitative comparison 
results of ATE and RPE between our algorithm and other 
algorithms across five dynamic sequences. Our algorithm 
achieves superior results. In the quantitative compari-
son results of ATE in Table 1, our algorithm shows sig-
nificant performance improvements across four highly 
dynamic sequences, with increases of at least 96.3% and 
96.7% in RMSE and SD compared to ORB-SLAM2. This 
improvement can be attributed to the effective integration 
of 2D semantic information provided by the object detect-
ing thread, along with the combined impact of inter-frame 
geometric constraint and depth threshold based on feature 
points. In five dynamic sequences, our algorithm consist-
ently outperforms DS-SLAM and RDS-SLAM, achieving 
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Fig. 5   Performance comparison of feature point extraction between ORB-SLAM2 (top) and our algorithm (bottom) on the TUM RGB-D dataset
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Fig. 6   ATE results of the tracking trajectory for the algorithm proposed in this article and ORB-SLAM2 using the TUM RGB-D dataset
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Fig. 7   RPE results of the tracking trajectory for the algorithm proposed in this article and ORB-SLAM2 using the TUM RGB-D dataset

Table 1   Results of metric absolute trajectory error (ATE) on TUM RGB-D dataset

The bold text represents the optimal results in the experimental data. These results arethe best values selected after comparing the data under dif-
ferent conditions

Seq. ORB-SLAM2 DS-SLAM RDS-SLAM Blitz-SLAM SG-SLAM Ours

RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD

walking_xyz 0.9528 0.5604 0.0247 0.0161 0.0571 0.0229 0.0153 0.0078 0.0152 0.0075 0.0151 0.0074
walking_static 0.4116 0.1876 0.0081 0.0036 0.0206 0.0120 0.0102 0.0052 0.0073 0.0034 0.0072 0.0032
walking_rpy 1.1808 0.5958 0.4442 0.2350 0.1604 0.0873 0.0356 0.0220 0.0324 0.0187 0.0264 0.0143
walking_half 0.6917 0.4120 0.0303 0.0159 0.0807 0.0454 0.0256 0.0126 0.0268 0.0134 0.0258 0.0134
sitting_static 0.0082 0.0041 0.0065 0.0033 0.0084 0.0043 – – 0.0060 0.0029 0.0066 0.0031
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optimal results in three highly dynamic sequences, demon-
strating superior overall performance. Blitz-SLAM excels in 
the “fr3/walking_half" sequence due to its effective handling 
of dynamic object boundaries using semantic segmentation 
technology, demonstrating outstanding accuracy. Both our 
algorithm and other algorithms show improvements in the 
“fr3/sitting_static" low dynamic sequence, albeit relatively 
limited, as ORB-SLAM2 already effectively suppresses low 
dynamic features. From the quantitative comparison results 
of RPE in Tables 2 and 3, it is evident that the trend of error 
reduction in RPE for translation and rotation aligns closely 
with that observed in the ATE comparison in Table 1. 
According to these comparison results, it can be concluded 
that the algorithm presented in this paper achieves smaller 
ATE and RPE errors in dynamic scenarios of the TUM 
RGB-D dataset, demonstrating promising performance com-
pared to state-of-the-art algorithms.

4.2 � Performance evaluation on Bonn RGB‑D dataset

To assess the generalization performance of our algorithm, 
we conducted additional experimental evaluations using the 
Bonn RGB-D dataset. The Bonn RGB-D Dynamic Dataset 
comprises 24 dynamic sequence datasets released by the 
Photogrammetry and Robotics Laboratory of the Univer-
sity of Bonn in 2019 for evaluating RGB-D SLAM systems. 
For our evaluation, we selected nine representative dynamic 

sequences where individuals engage in activities, such as 
crowd walking, moving boxes, synchronized movements, 
and more. Each scene in the dataset includes ground truth 
trajectories of the camera for reference. In Sect. 4.1, some 
of the selected comparison algorithms were not tested on the 
Bonn RGB-D dataset. Therefore, in Sect. 4.2, we selected 
ORB-SLAM2 [2], StaticFusion [13], ReFusion [38], YOLO-
SLAM [27], and SG-SLAM [29] as the comparison algo-
rithms. StaticFusion proposes a probability-based static/
dynamic segmentation to handle moving objects in dynamic 
scenes. ReFusion introduces truncated signed distance func-
tions, utilizing color information to estimate the camera pose 
in dynamic scenes.

Figure 8 shows the feature point extraction performance 
of our algorithm compared to ORB-SLAM2 on the Bonn 
RGB-D dataset. It can be seen that the algorithm in this 
paper has a significant dynamic feature removal effect on the 
Bonn RGB-D dataset, showing a noticeable improvement 
compared to ORB-SLAM2. Table 4 presents the quantitative 
comparison results of ATE between the algorithm proposed 
in this paper and the selected comparison algorithms on nine 
dynamic sequences. Our algorithm demonstrated a 96.5% 
improvement in RMSE and a 95.3% improvement in SD 
compared to ORB-SLAM2 across the nine sequences. How-
ever, our algorithm did not achieve optimal performance on 
the “Moving_no_box1" sequence, possibly due to the pres-
ence of moving box that hindered the effective elimination 

Table 2   Results of metric translation drift (RPE) on TUM RGB-D dataset

The bold text represents the optimal results in the experimental data. These results arethe best values selected after comparing the data under dif-
ferent conditions

Seq. ORB-SLAM2 DS-SLAM RDS-SLAM Blitz-SLAM SG-SLAM Ours

RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD

walking_xyz 0.4864 0.3131 0.0333 0.0229 0.0426 0.0317 0.0197 0.0096 0.0194 0.0100 0.0205 0.0108
walking_static 0.2731 0.2380 0.0102 0.0048 0.0221 0.0149 0.0129 0.0069 0.0100 0.0051 0.0095 0.0042
walking_rpy 0.4503 0.3288 0.1503 0.1168 0.1320 0.1067 0.0473 0.0283 0.0450 0.0262 0.0368 0.0197
walking_half 0.4082 0.3131 0.0297 0.0152 0.0482 0.0360 0.0253 0.0123 0.0279 0.0146 0.0262 0.0121
sitting_static 0.0092 0.0046 0.0078 0.0038 0.0123 0.0070 – – 0.0075 0.0035 0.0085 0.0037

Table 3   Results of metric rotation drift (RPE) on TUM RGB-D dataset

The bold text represents the optimal results in the experimental data. These results arethe best values selected after comparing the data under dif-
ferent conditions

Seq. ORB-SLAM2 DS-SLAM RDS-SLAM Blitz-SLAM SG-SLAM Ours

RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD

walking_xyz 9.5312 6.1544 0.8266 0.5826 0.9222 0.6509 0.6132 0.3348 0.5040 0.2469 0.6225 0.3877
walking_static 4.5227 3.9107 0.2690 0.1182 0.4944 0.3112 0.3038 0.1437 0.2676 0.1144 0.2633 0.1134
walking_rpy 8.8086 6.4082 3.0042 2.3065 13.1693 12.0103 1.0841 0.6668 0.9565 0.5487 0.8593 0.4856
walking_half 8.5589 6.5261 0.8142 0.4101 1.8828 1.5250 0.7879 0.3751 0.8119 0.3878 0.7357 0.3533
sitting_static 0.2777 0.1237 0.2735 0.1215 0.3338 0.1706 – – 0.2657 0.1163 0.2723 0.1200
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of dynamic feature points. Nevertheless, the quantitative 
comparison results further emphasize the robustness and 
accuracy of the algorithm in highly dynamic environments.

4.3 � Evaluation in the real‑world environment

To showcase the robustness of this algorithm in real-world 
dynamic environments, we conducted experiments using the 
Intel RealSense D435i camera. We employed an Aprilgrid 
black and white checkerboard for calibrating the camera’s 
internal parameters, ensuring accurate calibration for both 
the RGB and depth images, each sized at 640 × 480 pixels.

In our experiment, two individuals moved frequently 
within the camera’s field of view. This movement had a 
substantial impact on the stability of the visual SLAM sys-
tem, providing a valid test of the algorithm’s performance. 
Figure 9 illustrates the effect of the proposed algorithm and 
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Fig. 8   Performance comparison of feature point extraction between ORB-SLAM2 (top) and our algorithm (bottom) on the Bonn RGB-D dataset

Table 4   Results of metric 
absolute trajectory error (ATE) 
on Bonn RGB-D dataset

The bold text represents the optimal results in the experimental data. These results arethe best values 
selected after comparing the data under different conditions

Seq. ORB-SLAM2 StaticFu-
sion

ReFusion YOLO-
SLAM

SG-SLAM Ours

RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD

crowd 1.120 0.503 3.586 – 0.204 – 0.033 – 0.023 0.014 0.019 0.009
crowd2 1.501 0.664 0.215 – 0.155 – 0.423 – 0.058 0.041 0.025 0.013
crowd3 1.017 0.292 0.168 – 0.137 – 0.069 – 0.032 0.022 0.031 0.020
moving_no_box 0.317 0.113 0.141 – 0.071 – 0.027 – 0.019 0.008 0.023 0.009
moving_no_box2 0.349 0.065 0.364 – 0.179 – 0.035 – 0.029 0.012 0.029 0.009
person_tracking 0.997 0.475 0.484 – 0.289 – 0.157 – 0.040 0.014 0.038 0.013
person_tracking2 1.107 0.492 0.626 – 0.463 – 0.037 – 0.037 0.015 0.038 0.014
synchronous 1.068 0.521 0.446 – 0.441 – 0.014 – 0.323 0.182 0.013 0.008
synchronous2 1.168 0.550 0.027 – 0.022 – 0.007 – 0.016 0.013 0.007 0.003
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Fig. 9   Performance comparison of the feature point extraction 
between ORB-SLAM2 (top) and our algorithm (bottom) in the real-
world environment
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ORB-SLAM2 on feature point extraction in real dynamic 
scenes. It is evident that the proposed algorithm effectively 
eliminates dynamic features, thus enhancing the accuracy of 
tracking and positioning within the SLAM system.

4.4 � Ablation experiment

We conducted an ablation experiment to assess the impact 
of each proposed module (object detection, geometric con-
straint and depth-based RANSAC) on the overall system per-
formance. As shown in Table 5, “O” represents object detec-
tion, “G” represents geometry constraint, and “D” represents 
the depth-based RANSAC. It is evident that among the five 
selected dynamic sequences, the “O” module demonstrates 
very high accuracy when operating independently. This is 
because it tends to remove a significant number of static 
points in the bounding box, which can easily result in track-
ing failure. The “G” module, when operating alone, can only 
eliminate feature points exhibiting large motion amplitudes, 
thereby resulting in limited overall improvement. Comparing 
the accuracy achieved when the “O” module operates alone, 
there is a significant improvement when combining the 
“O+G” modules in the “fr3_walking_rpy” sequence. Con-
versely, in the “fr3_walking_xyz” sequence, the accuracy 
decreases when the modules are combined. This is because 
the weight value of the dynamic object is too mechanical and 
cannot be adjusted dynamically. The algorithm presented 
in this paper introduces the depth threshold, represented by 
the “D” module, alongside the existing “O+G” modules. 
This new addition aids in effectively filtering dynamic fea-
ture points within the bounding box, thereby enhancing the 
accuracy of tracking and positioning.

4.5 � Time analysis

The time cost is a critical indicator for assessing the qual-
ity of an SLAM system. The algorithm discussed in this 
article is specifically designed for real-time application 
scenarios, to evaluate the real-time performance of this 
algorithm, we measured the processing time for each 

frame of an RGB image and compared it with other algo-
rithms. The experiment was conducted on two platforms: a 
computer with an i5-8400 CPU, 16GB of memory (without 
GPU acceleration), and an embedded platform using the 
NVIDIA Jetson Xavier Nx with 16GB of memory, running 
Ubuntu 18.04. During the experiment, we extracted 1000 
ORB feature points per frame and executed the algorithm 
ten times to obtain the average processing time. This meth-
odology allowed us to assess and compare the algorithm’s 
efficiency and real-time capabilities across different hard-
ware platforms.

The processing time of each frame is shown in Table 6. 
From the observed results, it is evident that visual SLAM 
systems like DS-SLAM and RDS-SLAM, which employ 
semantic segmentation networks, often incur significant 
time overheads, compromising real-time performance. In 
contrast, our method utilizes parallel thread technology to 
implement a lightweight target detection network. Com-
pared to the ORB-SLAM2 system, the algorithm presented 
in this paper only marginally increases the frame process-
ing time by a few milliseconds. This modest increase is 
sufficient to meet the real-time operational demands of 
the SLAM system.

Table 5   The ATE (m) results 
of ablation experiments of Ours 
using different methods

The bold text represents the optimal results in the experimental data. These results arethe best values 
selected after comparing the data under different conditions

Methods fr3/walking_xyz fr3/walking_
static

fr3/walking_rpy fr3/walkingw_
half

fr3/sitting_
static

O G D RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD
– – – 0.9528 0.5604 0.4116 0.1876 1.1808 0.5958 0.6917 0.4120 0.0082 0.0041
✓ – – 0.0162 0.0086 0.0079 0.0037 0.0434 0.0294 0.0307 0.0177 0.0086 0.0046
– ✓ – 0.3211 0.1655 0.0279 0.0231 0.7563 0.4315 0.1160 0.0940 0.0078 0.0039
✓ ✓ – 0.0178 0.0092 0.0074 0.0037 0.0293 0.0192 0.0344 0.0215 0.0081 0.0039
✓ ✓ ✓ 0.0151 0.0074 0.0072 0.0032 0.0264 0.0143 0.0258 0.0134 0.0066 0.0031

Table 6   The time-consuming cost

The bold text represents the optimal results in the experimental data. 
These results arethe best values selected after comparing the data 
under different conditions

Systems Processing time
per frame (ms)

Hardware platform

DS-SLAM 76.46 Intel i7 CPU, P4000 GPU
RDS-SLAM 206.13 Nvidia RTX 2080Ti GPU
Blitz-SLAM 81 Intel Core i5-6500 CPU
YOLO-SLAM 696.09 Intel Core i5-4288U CPU
ORB-SLAM2 32.50 Intel Core i5-8400 CPU
Ours 37.25 Intel Core i5-8400 CPU
ORB-SLAM2 94.76 Nvidia Jetson Xavier Nx
Ours 103.5 Nvidia Jetson Xavier Nx
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5 � Conclusion

In this paper, we introduce a real-time dynamic visual 
SLAM algorithm that integrates a parallel object detect-
ing thread with ORB-SLAM2 to identify dynamic objects 
and generate 2D semantic information. Additionally, we 
propose an efficient strategy for removing dynamic feature 
points within the tracking thread. This strategy leverages 
semantic information, inter-frame geometry constraint, and 
a depth-based RANSAC approach to enhance the accuracy 
and robustness of the visual SLAM system in dynamic envi-
ronments. We conducted qualitative and quantitative com-
parisons with state-of-the-art algorithms using datasets, such 
as TUM RGB-D, Bonn RGB-D, and real-world scenarios. 
Our algorithm demonstrates high tracking and positioning 
accuracy while maintaining excellent real-time performance.

Despite its strengths, this algorithm exhibits some 
limitations. For instance, when dynamic objects appear 
in irregular forms, such as individuals walking at a 45◦ 
angle due to camera rotation, the detection accuracy may 
decrease. In future research, we aim to address these 
challenges by exploring methods to estimate camera pose 
through sensor fusion, integrating information from mul-
tiple sensors to enhance accuracy and robustness. Further-
more, we are dedicated to developing a globally consistent 
multi-level map to support advanced tasks such as navi-
gation and path planning. These efforts will contribute to 
further enhancing the algorithm’s capabilities and appli-
cability in diverse real-world scenarios.

Data availability  The data that support the findings of this study are 
available from the corresponding author, upon reasonable request.
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